JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 1 EXAMINATION (Aug-Sept 2025)

B.Tech. - III Semester (CE)

COURSE CODE (CREDITS): 18B11MA311 (3)

MAX. MARKS: 15

COURSE NAME: NUMERICAL METHODS

COURSE INSTRUCTORS: RKB*

MAX. TIME: 1 Hour

Note: All questions are compulsory. Use of scientific calculator is allowed. The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

$Q.N_0$	Onest!	orootems	
0.1	Suppose that we are using a commutation	CO	Marks
Q1	86.45315.	CO-1	2
Q2	If the true value of an observation is 1565 and the approximated value is 1520, then find the percentage relative error.	1 00-1	2
Q3	If for a transistor, the node-voltage equation reduces to a polynomial like $x^3 - x - 4 = 0$ after non-dimensionalization. Solve the polynomial using Newton-Raphson method correct to 3 decimal places to find the node voltage (normalized) at the DC operating point needed before analyzing small-signal behavior or designing bias networks. Suppose we have a gate delay measured at different input transition times.	CO-2	4
	Input Slew (ns) 0.1 0.3 0.5 Delay (ns) 0.25 0.40 0.65 Using Lagrange Interpolation, estimate the interpolated delay at input slew 0.20.	CO-2	4
Q5	Suppose the following data represents the measured NMOS saturation current (Id) versus gate voltage (Vgs) data: Vgs 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Id 0.05 0.40 1.10 2.10 3.45 5.10 7.05 Jsing the method of least square, fit a linear order equation to interpolate the value of saturation current at the gate voltage 1.5.	CO-2	3