JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): PHYSICS-1 (04)

MAX. MARKS: 15

COURSE NAME: 25B11PH111

COURSE INSTRUCTORS: PBB, SKK, VSA, SKT, SBA, HSR, HAZ

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Using the expression for path difference in Young's double-slit experiment,	1	2
	calculate an expression for fringe width.		
Q2	Calculate the displacement of the fringes on introducing a thin transparent film in	2	3
	the path of one of the interfering beams.		
Q3.	In an interference pattern, at a point we observe 12^{th} order maximum for $\lambda_1 = 600$	3	2
	nm. What order will be visible here if the source is replaced by a light of		
	wavelength 480 nm.	ļ	
Q4.	Newton's rings are observed normally in reflected light of wavelength 600 nm. The	3	2
	diameter of 10th dark ring is 0.50 cm. Find the radius of curvature of the lens and		
	the thickness of the film.		
Q5	Two optically plane glass strips of length 10 cm are placed one over the other. A	3	2
	thin foil of thickness 0.010 mm is introduced between the plates at one end to form		
	an air film. If the light used has a wavelength of 590 nm, find the separation		
	between consecutive bright fringes.		
Q6	(a) Newton's rings are formed by a planoconvex lens of diameter 2 m and a	4	1
	planoconcave lens of radius 1 m. Comment on the observed pattern in the		
	reflected mode.	<u> </u>	
	(b) In an interference experiment, what will happen if D (distance between slit and	4	1
	screen) is comparable to wavelength?		
Q7	Calculate the width of the secondary maximum for Fraunhofer's single-slit	2	2
	diffraction pattern.		