U^{3}_{j}

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 24BS1MA511 (3)

MAX. MARKS: 15

COURSE NAME: Statistical Methods for Data Analysis

COURSE INSTRUCTORS: BKP

MAX. TIME 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No.	Question	CO	Marks
Q1.	A search engine evaluates the performance of two different ranking	1	4
	algorithms based on the number of relevant documents retrieved in 5 trials		
	each. The results are:		
	• Algorithm A: 42, 45, 47, 44, 46		
	• Algorithm B: 40, 55, 35, 60, 50		
	(a) Compute the mean and standard deviation for both algorithms.		
	(b) Which algorithm shows more stability in performance? Justify your answer.		
Q2.	The response times (in milliseconds) of a web server to 10 consecutive user	1	5
	requests are:		
	120, 150, 130, 170, 160, 140, 155, 135, 200, 210		
	(a) Calculate the coefficient of skewness using Karl Pearson's method.		
	(b) Calculate the coefficient of kurtosis.		
	(c) Interpret the results: Is the distribution of response times		
	positively/negatively skewed? Is it leptokurtic, mesokurtic, or		
	platykurtic?		
Q3.	A data analyst monitors the response times (in milliseconds) of an API	1	3
	during 12 calls:		
(3)	120, 125, 118, 130, 128, 122, 135, 124, 500, 127, 121, 126		
	(a) Using the Inter quartile Range (IQR) method, detect if any		
	observation is an outlier.		
	(b) Comment on why detecting and handling outliers is important in		
	machine learning model training.		

Q4.	A cloud service claims that the average response time for processing a user request is 150 milliseconds. A researcher collects a random sample of 36 requests and finds the sample mean = 155 ms with population standard deviation = 12 ms. At the 5% significance level, test whether the observed data provides sufficient evidence to conclude that the true mean response time is different from 150 ms.	2	3	