

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-III Semester (CSE)

COURSE CODE (CREDITS): 25B11CI315 (3)

MAX. MARKS: 15

COURSE NAME: Theory of Computation

COURSE INSTRUCTORS: ARV*, MNK, NSA, RMS, SKS, SMA

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Construct an equivalent Deterministic Finite Automaton (DFA) as shown in the following figure, consisting of states: $Q = \{q_0, q_1, q_2\}$, and Alphabet: $\Sigma = \{a, b\}$. Here, ε denotes the empty string transition.	2	3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Q2	Answer the following along with proper justifications: How many numbers of states are present in the Minimal DFA that accepts all strings over alphabet {a, b} where (a) Length of string is at most 6. (b) The number of a's is exactly 3 and the number of b's is at least 3 in the string. (c) 4'th symbol is 'a' while reading the string from RHS.	2	3
Q3.	Design a DFA that accepts the set of all strings over {a, b} such that the second alphabet from the right-hand side is 'a'.	2	3
Q4.	Construct the regular expression corresponding to the Finite Automata given in the following figure.	1	3
Q5	Represent the language over $\Sigma = \{0, 1\}$ using a regular expression containing all possible combinations of 0's and 1's, but not having two consecutive 0's.	1	3