JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

Ph D (CE)

COURSE CODE (CREDITS): 24P1WCE232 (3)

MAX. MARKS: 25

COURSE NAME: CHARACTERIZATION OF MATERIALS

COURSE INSTRUCTORS: DR SAURAV

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c)Use of Non Programmable Scientific Calculator is allowed

Q.No	Question	CO	Marks
Q1	 i. Define Thermal Analysis and explain its importance in characterizing construction materials. ii. Differentiate between Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) based on their measurement principles and outputs. iii. A DSC experiment shows a peak area of 30 mJ for a 5 mg sample. If the calibration coefficient K = 0.8 J/mJ, calculate the heat of transition per gram of sample. 	3	5
Q2	 i. Describe how heating rate and sample mass influence the DTA and TG curves. ii. With the help of examples, discuss how DTA can identify phase transformations in cementitious materials. iii. During a TG test, a 12 mg hydrated OPC sample shows the following mass losses: 100 - 250 °C: 1.5 mg , 250 - 450 °C: 0.7 mg and 450 - 600 °C: 0.5 mg (a) Calculate the percentage mass loss in each interval and the total mass loss. (b) Interpret the likely phases corresponding to each stage of loss. 	3	5
Q3	ii. Draw a schematic TG-DTG curve and label key transitions for Portland cement paste. iii. Given that the total mass loss between 105°C and 1000°C is 8%, and portlandite accounts for 25% of the total loss, calculate the bound water content and portlandite content (in % of total mass).	3	5

	i. Discuss the application of DSC in assessing the durability of cementitious systems exposed to sulfate attack.	<u> </u>	
Q4.	ii. Compare stepwise and tangential methods used for phase quantification in TG analysis.	3	5
	iii. If the DSC curve of a hydrated OPC sample shows an endothermic peak at	.	
	530°C corresponding to Ca(OH) ₂ decomposition, and the enthalpy change is 115°		
	J/g, calculate the energy absorbed by a 3 g sample.		
	i. Explain the difference between constant heating rate, gradually isothermic, and isothermal temperature—time programs used in thermal analysis.		
Q5.	ii. Explain how DTA and TG data together can be used to identify conversion reactions in calcium aluminate cement.	3	5
	iii. A DSC analysis of a hydrated calcium aluminate cement sample shows two overlapping exothermic peaks:	-	
	Peak 1: Dehydration of CAH ₁₀ \rightarrow C ₃ AH ₆ + AH ₃ Δ H ₁ \equiv -40 J/g		
	Peak 2: Minor exothermic conversion of $C_2AH_8 \rightarrow C_3AH_6 + AH_3$, $\Delta H_2 = -18$ J/g		
	The total sample mass is 0.8 g, and experimental deconvolution of peaks shows		
	that Peak 1 contributes 70% and Peak 2 contributes 30% of the total sample mass loss.		
	Find the total heat released from both reactions.		