JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-III Semester (BI)

COURSE CODE (CREDITS): 25B11BI311 (3)

MAX. MARKS: 25

COURSE NAME: Biological Computation

COURSE INSTRUCTORS: Dr. Shikha Mittal

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No		<u> </u>	
Q1	Given the distance matrix for four taxa (A, B, C, D):	CO	Marks
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[V]	(5)
		•	1
	B 5 0 10 10		
	C 9 10 0 8		
	D 9 10 8	1	
-	Draw the Neighbor Joining tree and label all branch lengths.		
Q2	What are PAM and BLOSUM matrices How are they constructed and	IIII	(3)
Q3	what are then differences?	[]	
ŲS	A BLAST output snippet:	[II]	(3)
	QuerySubjectAlign BengthIdenticalPositiveGapsSeq1Seq2120901056		` ′
	 a. Calculate sequence identity (%) b. Calculate sequence similarity (%) 		
	c. Discuss the effect of gaps on identity and similarity.	!] .
Q4	Explain the general strategy of progressive alignment methods with an	- TT 13	
	Oxumpie.	[IV]	(3)
Q5	Define the following -	 	(6)
ľ	a. Applications of MSA		(6)
	b. Maximum parsimony		
A SO	Sequence homology and orthology		1
Qå San	Explain the heuristic approach of BLAST and how it improves speed	[I,	(3)
2	compared to exhaustive dynamic programming methods like Smith-	II]	`
Q7	Calculate the number of unrooted binary trees and rooted binary trees		
	possible for-		(2)
	a. 4 taxa		1
	b. 6 taxa		}