JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST – 2 EXAMINATION- 2025

B.Tech- III Semester (CSE/IT)

COURSE CODE (CREDITS): 24B11CI311 (03)

MAX. MARKS: 25

COURSE NAME: COMPUTATIONAL FUNDAMENTALS FOR OPTIMIZATION

COURSE INSTRUCTORS: RBT, VSG

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

_			
Q.No	Question	CO	Marks
Q1	(a) Show that the function $f(x, y) = x^3 - 6xy - y^3$ has critical points at $(0, 0)$ and $(-2, 2)$.	4	1+2+2
	(b) Use the Hessian form of the second derivative test to show that f has a relative maximum at (-2, 2) and a saddle point at (0, 0).		
	(c) Verify that the matrix is orthogonal.		
	$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$		
Q 2	 (a) Distribution of heights of peoples follows binomial distribution (True / False). Justify your answer. (b) Suppose that the average number of accidents occurring weekly on a particular stretch of a highway equals 3. Calculate the probability that there is at least one accident this week. (c) Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls (ii) atmost 2 girls. Assume equal probabilities for boys and girls. 	4	1+2+2
Q3 N	(a) Let R^2 have the weighted Euclidean inner product $< u, v > = 2 u 1 v 1 + 3 u 2 v 2$ and let $u = (1, 1), v = (3, 2), w = (0, -1)$, and $k = 3$. Compute the stated quantities.	2	2+3
	$\langle \mathbf{u}, \mathbf{v} \rangle \langle k\mathbf{v}, \mathbf{w} \rangle d(\mathbf{u}, \mathbf{v}) \ \mathbf{u} - k\mathbf{v}\ $		
	(b) In parts (i)–(vi) determine whether the statement is true or false,		. <u>.</u> .

		_	
	and justify your answer.		
	(i) The dot product on R ² is an example of a weighted inner		
	product.		
	(ii) The inner product of two vectors cannot be a negative real		
	number.		
	(iii) $< u, v + w > = < v, u > + < w, u >$		
	(iv) $< ku, kv > = k2 < u, v >$		
	(v) If $< u$, $v > = 0$, then $u = 0$ or $v = 0$. (vi) If A is an $n \times n$ matrix, then $< u$, $v > = Au$. Av defines an	I III	
	(vi) If A is an $n \times n$ matrix, then $< u, v > = Au \cdot Av$ defines an inner product on \mathbb{R}^n .		
	inner product on K.		
Q4	Find a singular value decomposition of A	3	5
		Market .	
i	$A = \begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix}$		ļ
	[0 4]		
	OR		
	Find the QR decomposition of the matrix		
	Trind the QK decomposition of the matrix		
	$\Gamma_1 = \Gamma_1$		
	$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$		
	[2 3]		
Q5		2	1+2+
	a) What conditions must k1 and k2 satisfy for $\langle u, v \rangle = k1 \ u1 \ v1 + v1$		2 .
	$k2 u2 v2$ to define an inner product on R^2 ? Justify your answer.		
-			
	b) Compute the standard inner product on M_{22} of the given matrices.		
	$\begin{bmatrix} 73 & -27 & 5-1 & 37 \end{bmatrix}$		
	$U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}, V = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$		
			•
2	c) Let the vector space P_2 have the inner product. Find the following		
111	for $p = p(x) = 1$ and $q = q(x) = x^2$.		
11/1/1/1			
	$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x)q(x) dx$		
%	J-1		
!	· •		
	(i) $< p, q >$ (ii) $d(p, q)$ (iii) $ p $ (iv) $ q $		
			