JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-VII Semester (BT)

COURSE CODE (CREDITS): 18B1WBI731(3)

MAX. MARKS: 25

COURSE NAME: Computational Systems Biology

COURSE INSTRUCTORS: Dr. Raj Kumar

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	An external signal, Signal, binds to and activates a receptor protein, Receptor. The active Receptor then phosphorylates a cytoplasmic protein, Protein A, which converts it into its active form. Next, the active Protein A acts as an enzyme, phosphorylating a second protein, Protein B, thereby activating it. Finally, the active Protein B translocates into the nucleus and binds to a specific region of DNA, promoting the transcription of the Target Gene. Represent Process Description of the above pathway using SBGN.	CO-2	5
Q2	create a stoichiometric matrix for the following network: A(ext) B(ext) P(ext) E(ext) R R R R R R R R R R R R R R R R R R R	CO-2	5
Q3	Calculate the minimum spanning tree for the following graph.	CO-4	4

Q4	Calculate the adjacency matrix for the given graph:	CO-4	3
Q5	Describe the role of ODEs in modeling biological pathways.	CO-3	2
Q6	Describe the following topological properties in biological networks. a) The degree of a network b) Scale-free networks and transitivity c) Centralities	CO-3	2 × 3 = 6