JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 18B1WCI734 (2)

MAX. MARKS: 25

COURSE NAME: Cryptography and Network Security

COURSE INSTRUCTORS: Dr. Ramesh Narwal

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	°CO	Marks
Q1	Show with an example that two different plaintexts M ₁ and M ₂ can		5
	result in the same ciphertext if the modulus n or exponent e are chosen		
	incorrectly. Take small values (e.g., $n = 33$, $e = 3$) and find M_1 , M_2		
	(with $0 \le M_1$, $M_2 < n$) such that $M_1^e \equiv M_2^e$ (mod n). Explain your	İ	
	steps.		
Q2	Discuss the standards used for digital signatures such as:	4, 6	5
	a) DSS (Digital Signature Standard)		ļ
	b) ECDSA (Elliptic Curve Digital Signature Algorithm)		
	Explain how these differ from RSA-based signatures.		
Q3	Explain how AI or LLM-based systems can be used for malware	1	5
	identification. Also mention the challenges in detecting zero-day		
	attacks.		
Q4	Explain the RSA algorithm with below example.	2	5
	Given: $p = 11$, $q = 17$		
	Public key exponent e = 7°		ĺ
	Find:		ļ·
	a) Private key d.		
	b) Enerypt message M = 19.		
	c) Decrypt to obtain the original message.		
Q5	Differentiate between authentication and authorization. Explain how	5	5
	X509 Authentication Service ensures user authenticity in secure		
	communication.		