JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-5th Semester (ECE)

COURSE CODE (CREDITS): 18B1WEC534

MAX. MARKS: 25

COURSE NAME: NETWORK ANALYSIS AND SYNTHESIS

COURSE INSTRUCTORS: Dr Rajiv Kumar

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) The calculator (non-programmable) is allowed to use in examination.

Q.No Question		CO	Marks
			11100110
a) Explain the significance of transmission (ABC)	D) parameters in	CO-4	5
analyzing two-port networks. How do these parame	eters relate to the		•
Q1 inverse transmission parameters?			
b) A two-port network has the following transmission			
$A=2, B=50\Omega, C=0.02\mathrm{S}, L$	O = 1.5		
Verify that A'D'—B'C'=1			
a) For a two-port reciprocal network, show the relation	nship between Z-		
parameters and Y-parameters. Discuss under what con	nditions	CO-4	3+2=5
$Z_{12} = Z_{21}$ and $Y_{12} = Y_{21}$			
b) Explain why Z-parameters and Y-parameters are in	verses of each		
other for a two-port network.			
Explain the fundamental differences betw	een state-space	CO-3	5
representation and transfer function representation of	-		
how each method represents system dynamics		1	

	advantages of using the state-space approach system design.		:
Q4	Consider the second-order linear constant-coefficient differential equation	CO-3	5
	$y''(t) + a_1 y'(t) + a_0 y(t) = b_0 u(t)$ where $u(t)$ is the input and $y(t)$ the output. (a) Formulate a (continuous-time) state-space model in controllable canonical form. (b) Using that state-space model, derive the transfer function		**************************************
Q5	Consider a continuous-time linear system represented in state-space form. Let the state and output vectors are: $\dot{X}(t) = \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} U(t), X(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	CO3	5
	$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} X(t)$ Obtain the time response of the state vector $X(t)$ when the input $U(t)$ is a unit step. Also, determine the output response for the same input.		