JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 2 EXAMINATION (October 2025)

B.Tech. - III Semester (ECE-VLSI)

COURSE CODE (CREDITS): 25B11MA312 (2)

MAX. MARKS: 25

COURSE NAME: NUMERICAL TECHNIQUES

COURSE INSTRUCTORS: RKB*

MAX. TIME: 1 Hour 30 Mins.

Note: All questions are compulsory. Use of scientific calculator is allowed. The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

Q.No	Question	Cont	Marks
Q1	Suppose that we are using a computer with a fixed word length of 5 digits. Evaluate the error due to rounding in representing the number 0.00345672. Also compute the relative error.	CO.	2
Q2	Suppose we have the power consumption of a digital circuit measured at different supply voltages. The measured values are: Supply Voltage (V) 1 1.2 1.5 Power (mW) 15 22 35 Using Lagrange Interpolation, estimate the power consumption at V = 1.3.	CO-2	3
Q3	In VLSI design, propagation delay of a logic gate is after characterized at discrete load capacitance values. The following table shows the measured propagation delay (in nanoseconds) of a CMOS inverter for different load capacitances. Using Newton's Forward Interpolation, estimate the propagation delay at a load capacitance of 5 pF. Load Capacitance (pF) 2 6 8 Propagation Delay (ns) 0.52 0.68 0.90 1.20	CO-2	5
Q4	Using Stirling's interpolation technique, evaluate the value of $f(16)$ on the basis of the following observations recorded: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO-2	5
Q5 or	In VLSI cell characterization, both the value of a function (delay) and its slope (sensitivity to input slew) are often required. Suppose the measured propagation delay $f(x)$ of a logic gate (in ns) at different input transition times (slew, in ns) and its slopes are given as:	CO-3	5
Q6	In an analog circuit, the instantaneous current through a transistor is given by the function $I(t) = 0.5 + 0.8t + 0.2t^2$ (in mA) $0 \le t \le 6 \mu s$. Using Simpson's 3/8 rule with $n = 6$ equal intervals, estimate the total charge $\int_0^6 I(t)dt$ (in μ C) delivered during the interval [0, 6].	CO-3	5