JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2EXAMINATION- 2025

B.Tech. -III Semester (CSE/IT/CSE-CS/FSSD/AIDS/AIML/UXUI)

COURSE CODE (CREDITS): 25B11MA314 (4)

MAX. MARKS: 25

COURSE NAME: Mathematical Foundations for Artificial Intelligence and Data Science

COURSE INSTRUCTORS: RAD, BKP, SST

MAX. TIME: 1 Hou: 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

(c) Use of a scientific calculator is allowed.

Q. No.	Question	CO	Marks	
Q1	Let S = Span $\{v_1, v_2, v_3\}$ be a subspace of \mathbb{R}^3 : $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}.$		5	
	 a) Use Gram-Schmidt process to construct an orthogonal basis for S. b) Normalize vectors obtained to form an orthonormal basis for S. 		. *	
Q2	Consider the following 2×2 matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. a) Find the singular values of A. b) Compute the matrices U , Σ , V such that $A = U \Sigma V^T$.	. 1	4	
	c) Verify your decomposition by reconstructing A.			
Q3	The probability that an automobile being filled with gasoline also needs an oil change is 0.25; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and the filter need changing is 0.14. a) If the oil has to be changed, what is the probability that a new oil filter is needed? b) If a new oil filter is needed, what is the probability that the oil has to be changed?	2	4	
Q4 3	A firm is accustomed to training operators who do certain tasks on a production line. Those operators who attend the training course are known to be able to meet their production quotas 90 % of the time. New operators who do not take the training course only meet their quotas 65 % of the time. Fifty percent of new operators attend the course. Given that a new operator meets her production quota, what is the probability that she attended the program?	2	4	

Q6	respectively. a) Find the mean and variance of X. b) Define a new random variable Y=2X+3. Evaluate the mean and variance of Y. A computer network monitors the packet transmission delay T (in milliseconds) for a data packet sent between two servers. The delay is modeled as a continuous random variable with the following probability density function (PDF):	3	74
Q6	 b) Define a new random variable Y=2X+3. Evaluate the mean and variance of Y. A computer network monitors the packet transmission delay T (in milliseconds) for a data packet sent between two servers. The delay is modeled as a continuous random variable with the 	3	74
Q6	milliseconds) for a data packet sent between two servers. The delay is modeled as a continuous random variable with the	3	94
*	$f(t) = \begin{cases} 3t^2, & 0 < t < 1 \\ 0, & elsewhere \end{cases}$		
	 a) Verify that f(t) is a valid probability density function. b) Find the cumulative distribution function of the transmission delay. 		
			,