JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Make-up Examination-Nov-2025

COURSE CODE (CREDITS):20B1WEC731 (3)

MAX. MARKS: 25

COURSE NAME: Automation and Robotics

COURSE INSTRUCTORS: Dr Emjee Puthooran

MAX. TIME: 1 Hour 30 Minutes

Note: Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CÖ	Marks
Q1	List the various factors that contribute to the cost/unit and overall	CO1	2
i	production time in an industry. Describe how industrial automation		
	can maximize the profit of an industry.		
. Q2	Outline the defining features of batch production systems. Discuss	CO1	3
	how they accommodate product diversity and utilize machinery in		
	contrast to continuous-flow production methods		
Q3	Describe the operational principles of a strain gauge sensor. Using	CO3	5
	appropriate circuit diagrams, illustrate how force is measured with a		
	single-element strain gauge versus a four-element strain gauge setup.		
	Outline the benefits of employing four-element strain gauge sensors.		
Q4	Develop a Python script to model the behavior of the mass-spring-	CO3	5
	damper system depicted below. Generate a plot showing the system's	!	
	response under unity feedback to a unit step input, incorporating a PID		
	controller.		
			!
ļ	m - EU F(t)		
	M → W f(t)		
11/10			
Q5 🔻	For a process control, it is desired to have the process start by turning	CO-2	5
	ON a motor five seconds after a part touches a limit switch. The		
	process is terminated automatically when the finished part touches a		
	second limit switch. An emergency switch will stop the process any		
	time when it is pushed. Design a ladder logic program for PLC and		
	explain its working.		

Q6	(a) Describe the structure of a Distributed Control System (DCS), identifying and briefly explaining the roles of its four primary	CO-2	5
	architectural layers.		
	(b) The Remote Terminal Unit (RTU) is a critical component in		
	SCADA systems. State two main functions of the RTU with respect to		
	field devices and data communication. Furthermore, mention two		
	significant industrial sectors where SCADA systems are widely	4	
	deployed.		
		# ¥"	
		>	
		-	
			•
A. W.			