JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 24B11CI311 (03)

MAX. MARKS: 25

COURSE NAME: COMPUTATIONAL FUNDAMENTALS FOR OPTIMIZATION

COURSE INSTRUCTORS: RBT, VSG

MAX. TIME: 1 Hour 30 Minutes

Note: Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

O.No	Question	co	Marks
Q1	Question	1	2.5°+
	 a) Suppose that you want to find values for a, b, and c such that the parabola y = a x² + b x + c passes through the points (1, 1), (2, 4), and (-1, 1). Find (but do not solve) a system of linear equations whose solutions provide values for a, b, and c. Hew many solutions would you expect this system of equations to have, and why? b) Find the reduced row echelon form of the augmented matrix for the linear system: 		2.5
	$6x_1 + x_2 + 4x_4 = -3$ $-9x_1 + 2x_2 + 3x_3 - 8x_4 = 1$ $7x_1 - 4x_3 + 5x_4 = 2$ Use your result to determine whether the system is consistent and, if so, find its solution.		
Q2	In parts (a)—(e) determine whether the statement is true or false, and justify your answer. (a) The transpose of an upper triangular matrix is an upper triangular matrix.	1	1*5 = 5
	 (b) All entries of an upper triangular matrix are determined by the entries occurring on and above the main diagonal. (c) The inverse of an invertible lower triangular matrix is an upper triangular matrix. (d) A diagonal matrix is invertible if and only if all of its diagonal entries are positive. (e) If A and B are n × n matrices such that A + B is symmetric, 		
Q3	then A and B are symmetric.	2	1 . 2
۷->	a) Let V be an inner product space. Show that if u and v are	2	1 + 2 + 2= 5

orthogonal unit vectors	s in V , then $\ \mathbf{u} - \mathbf{v}\ = \sqrt{2}$.		
b) Let P ² have the inner p	· · · · · · · · · · · · · · · · · · ·		
(p, q	$0) = \int_{-1}^{1} p(x)q(x) dx$		
and let $\mathbf{p} = x$ are	and $q = x^2$. Compute the following:		
	[p]		
c) State and prove Cauch	, , ,		
a) Write the algorithmic b) Find a QR-decomposi	steps for the Gram-Schmidt Process.	3 3	2.5+ 2.5 = 5
$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}, Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$,
	OR		
a) Find a singular val	ue decomposition of the matrix		. "
	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$		
	the following vectors are orthogonal with		
	dean inner product. 1), $v = (2, 1, -2, 9)$		
b) Five fair coins are flipped independent, find the p	the outcome when we roll a fair die. bed. If the outcomes are assumed brobability mass function of the number of	4	2+2 +1= 5
heads obtained. Classify the matrix [31 definite, or indefinite r	21–13232] as positive definite, negative natrix.		
	$\begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 2 & 3 & 2 \end{bmatrix}$		
	$\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$		
L	2 3 21		