JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- May-2018

B.Tech. IV Semester

COURSE CODE: 10B12MA421

MAX. MARKS: 35

COURSE NAME: BIOSTATISTICS

COURSE CREDITS: 5

MAX. TIME: Two Hours

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1(i) A study to assess the capability of subsurtace flow wetland systems to remove biochemical oxygen demand (BOD) and various other chemical constituents resulted in the accompanying data on x = BOD mass loading (Kg/ha/d) and y = BOD mass removal (Kg/ha/d). Values of relevant summary quantities are, n = 14, $\sum x_i = 517$, $\sum y_i = 346$, $\sum x_i^2 = 39095$, $\sum y_i^2 = 17454$, $\sum x_i y_i = 25825$. Determine the equation of the estimated regression line.

(ii) Write the formula for simple correlation coefficient and define t-statistic to test the hypothesis that $\rho = 0$. [1+1][CO-2]

2 (i) To find out whether a new serum will arrest leukemia, 9 patients who have all reached on advanced stage of the disease are selected. Five patients receive the treatment and 4 do not. The survival times in years from the time, the experiment commenced are,

Treatment	2.1	5.3	1.4	4.6	0.9
No Treatment	1.9	0.5	2.8	3.1	

Use the *Wilcoxon rank sum test* at the 0.05 level of significance, to determine if the serum is effective. (Given that u(4,5)=1 for 0.05 level of significance) [3][CO-3]

(ii) For the stochastic process $X(t) = \zeta \cos \omega t, -\infty < t < \infty, \omega$ is constant, the amplitude ζ is a random variable with Uniform distribution in the interval (0,1), check whether the process is WSS or not?

[2][CO-4]

3. A student's study habits are as follows: if he studies one night, he is 70% sure not to study the next night. On the other hand if he does not study one night, he is 60% sure not to study the next night as well. In the long run, how often does he study? Also draw the transition state diagram.

[4+1][CO-5]

[P.T.O.]

- 4. Suppose that the blood samples of patients arriving at a pathology unit according to a Poisson's process with a mean rate of 2 samples per minute. Find the probability that in an interval of 5 minutes, the number of blood samples arriving is (i) exactly 3 (ii) less than 3. [2.5+2.5][CO-5]
- **5.** Apply *Agglomerative Hierarchical Clustering algorithm* to find the clusters, if the proximity matrix is as follows;

Subjects	Р	Q .	R	S	Т
P	0	1	3	5	4
Q	1	0	2	3	5
R	3	2	0	1,	6
S	5 .	3	1	Ö	3
Т	4	5	6	3	0

Also draw the **Dendrogram** and find its height.

[3+1][CO-6]

6. Apply K-means algorithm up to only two iterations for the following data;

Items	Α	В	С	D E	% ₋ F	G	Н	I	J
Х	5	5	3	0 2	4	2	2	1	5
Υ	0	2	1	4 1	2	2	3	3	4

[3+3][CO-6]

7. CLARA and CLARANS are algorithms employed for clustering of large database.

Compare their

- (i) Characteristics
- (ii) Advantages
- (iii) Disadvantages

[3+1+1][CO-6]