JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 22M11CI112 (3)

MAX. MARKS: 25

COURSE NAME: INTRODUCTION TO DATA SCIENCE

COURSE INSTRUCTORS: Dr Nancy Singla

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems and use of calculator is allowed.

Q. No.	Question	CQ	Marks
Q1 ·	You are given a CSV file containing monthly sales data from	CO3	[2*4=8]
	multiple regional offices. You notice the following issues:		
	Some rows have missing values in the Revenue and	<i>y</i>	
	Salesperson columns.		
	• The Date column is in multiple formats (e.g., "2025/03/01"		
	and "03-01-2025").		
	• The Region column has inconsistent capitalization (e.g.,		
	"north", "North", "NORTH").		
	a) Describe step-by-step how you would clean and standardize		•
	this dataset.		·
	b) What methods would you use to handle missing data		•
	appropriately?		
	c) How would you detect and treat outliers in the Revenue		
	column?		
	d) Provide one Python or pandas function that could help with each issue.		
	10 Table 2		·
Q2	You are developing a news article classifier that must categorize	CO3	[2]
	articles into topics like Politics, Sports, Technology, etc. The text		
	dataset is large (10 million records). Which method from		
:	stemming or lemmatization would you choose and why? How		
	does your choice impact accuracy and computational time?		50 . 0 . 51
Q3 "^	An environmental agency tracks pollution levels with:	CO4	[3+2=5]
All Marian	A time series chart showing daily AQI (Air Quality Index)		
	over six months.		
	• A heatmap of hourly AQI levels across weekdays. The time series indicates gradual AQI improvement after a ban on	÷	
	certain fuels, while the heatmap shows consistent peaks during		
	morning and evening traffic hours.		
	(a) Explain what each visualization contributes to the overall		
	analysis.		
	(b) How can these findings guide city traffic or pollution control		
	policies?		
	F	L	

			lity that exactly 2 b lity that at most 1 b				
Q5	A marketing manager wants to predict sales (Y, in ₹'000) based					CO6	[2+2+1=5]
	on advertising expenditure (X, in ₹'000). The data for 5 weeks is given below:						
_		Week	Advertising (X)	Sales (Y)	-		
•		1 1	2	4			ð
		2	4	6	40.		
		. 3	6	· 7			
		4	8	9			
	<u> </u>	5	10	11 -		·	
	(c) Interpr	et the slop	s when the advertise of the regression	line.	· · · · · · · · · · · · · · · · · · ·		