Jaypee University of Information Technology, Waknaghat

Makeup Examinations, November 2025

B.Tech - VII Semester (ALL)

Course Code/Credits: 22B1WMA731/3

Max. Marks: 25

Course Title: Linear Algebra for Data Science & Machine Learning

Course Instructor: RAD

Max. Time: 90 mins

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

			1 AND
Q.No	Question	CO	Marks
Q1	Determine whether each subset is a subgroup of the given group.	GO-T	4
	Justify your answer.		
	(a) $\mathbf{H}_1 = \{x \in \mathbb{Z} : x \text{ is a multiple of } 3\} \subset (\mathbb{Z}, +).$		
	(b) $\mathbf{H}_2 = \{x \in \mathbb{R} : x > 0\} \subset (\mathbb{R}, \times).$		
Q2	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x) = x$, where	CO-2	4
	$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \\ -2 & 5 \end{pmatrix}. \text{ Find } x \in \mathbb{R}^2 \text{ such that } \mathbf{T}(x) = \begin{pmatrix} 6 \\ 10 \\ -4 \end{pmatrix}.$	•	
Q3	Let $U = \text{span}\{u_1, u_2\}$ be a subspace of \mathbb{R}^4 generated by	CO-2	4
	$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$		
	(a) Find a basis for U.(b) Determine a basis for the orthogonal complement of U.		
Q4	Consider $\mathbf{v} = (2, 1, 0)$ in \mathbb{R}^3 .	CO-2	4
, i		00-2	7
	(a) Identify the subspace W defined by		
	x + y + z = 0,		
	2x - y + 3z = 0.		
1			
4	(b) Find the orthogonal projection of v onto W.		
$\mathbf{Q}5$	Consider the linear transformation $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^4$ defined by $\mathbf{T}(x_1, x_2, x_3) = (2x_1 - x_2, x_1 + x_3, 3x_1 - 2x_2 + x_3, 4x_2 - x_3).$	CO-2	4
	(a) Find the image (range space) of T .		·
	(b) Determine the null space of T .		

Q.No	Question	CO	Marks
Q6	The vectors $\{u_1, u_2, u_3\}$ form a basis for a subspace W of \mathbb{R}^4 :	CO-3	5
	$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$		
	(a) Use Gram-Schmidt process to obtain an orthogonal basis.		
	(b) Normalize the result to get an orthonormal basis.		

The Marie of the State of the S