JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT Make-up Examination-Nov-2025

COURSE CODE(CREDITS):25B11MA314 (4)

MAX. MARKS: 25

COURSE NAME: Mathematical Foundations for Artificial Intelligence and Data Science

COURSE INSTRUCTORS: RAD, BKP, SST

MAX. TIME: 1 Hour 30 Minutes

Note:(a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

(c) Use of a scientific calculator is allowed.

		· · · · · · · · · · · · · · · · · · ·	
Q. No.	Question	CO	Marks
Q1	Let $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a subspace of \mathbb{R}^3 :	1	5
		•	
	$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$		
	a) Apply the Gram-Schmidt process to the set $\{u_1, u_2, u_3\}$ to obtain		
	an orthogonal basis for W .		
	b) Normalize the resulting orthogonal vectors to obtain an		
	orthonormal basis for W.		
Q2	Consider the following square matrix:	1	· 4
Q2	Consider the longwing square matrix.		7
	. [3 1]		
	$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$		
1	a) Determine the singular values of A.		
	b) Find the matrices U, V, \sum such that $A = U \sum V^{T}$.		
	c) Confirm your answer by reconstructing A from the obtained matrices.		
Q3	Consider an industrial process in the textile industry in which strips	2	4
	of a particular type of cloth are being produced. These strips can be		
Á	defective in two ways, length and nature of texture. It is known from		
3,0	historical information on the process that 10% of strips fail the length		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is		
19 3	selected randomly from the process and a quick measurement		
	identifies it as failing the length test, what is the probability that it is		
	texture defective?	<u> </u>	
Q4	A manufacturing firm employs three analytical plans for the design	2	4
	and development of a particular product. For cost reasons, all three		
	are used at varying times. In fact, plans 1, 2, and 3 are used for		
	30%, 20%, and 50% of the products, respectively. The defect rate is		
	different for the three procedures as follows:		
	P(D P1) = 0.01, P(D P2) = 0.03, P(D P3) = 0.02,		

Page 1 of 2

	where $P(D Pj)$ is the probability of a defective product, given plan j . If a random product was observed and found to be defective, which plan was most likely used and thus responsible?		,
Q5	A continuous random variable X has the probability density function (pdf) given by	2	4
	$f(x) = egin{cases} kx^2, & 0 \leq x \leq 2, \ 0, & ext{otherwise.} \end{cases}$	-	
	 a) Find the value of k. b) Define a new random variable Y = 3X - 2. Evaluate the mean and variance of Y. 		
Q6	The lifetime T (in years) of a certain type of electronic component is modeled as a continuous random variable with the following probability density function (PDF): $f(t) = \begin{cases} 2t, & 0 < t < 1, \\ 0, & \text{elsewhere.} \end{cases}$	2	4
	 a) Verify that f(t) is a valid probability density function. b) Find the cumulative distribution function (CDF) F(t) of the component lifetime. c) Determine P(T < 0.5) and P(0.25 < T < 0.75). 		