JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT MAKE UP EXAMINATION (NOVEMBER 2025)

B.Tech. - III Semester (ECE-VLSI)

COURSE CODE (CREDITS): 25B11MA312 (2) COURSE NAME: NUMERICAL TECHNIQUES

MAX. MARKS: 25

COURSE INSTRUCTORS: RKB*

MAX. TIME: 1 Hour 30 Mins.

Note: All questions are compulsory. Use of scientific calculator is allowed. The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

Q.No		prootems 	Con
	Question If for a transistor, the node-voltage equation reduces to a polynomialike $2x^3 - 3x - 4 = 0$ after non dimensional in the second of the second o	CQ.	Marks
Q1	polynomial using Newton-Raphson method correct to 3 deciments and the node voltage (normalized) at the DC operating point needed before analyzing small-signal behavior or designing his	al CO-2	5
	In VLSI design, propagation delay of a logic gate is often characterized a discrete load capacitance values. The following table shows the measure propagation delay (in nanoseconds) of a CMOS inverter for different load capacitances. Using Newton's Forward Interpolation, estimate the propagation delay at a load capacitance of 5 pF. Load Capacitance (pF) 2 4 6 8 Propagation Delay (ns) 0.52 0.68 0.90 1.20	d d	5
Q3	Suppose we have a gate delay measured at different input transition times The measured gate delays at three input slews are given: Input Slew (ns) O.1 O.3 O.5 Delay (ns) O.25 Using Lagrange Interpolation, estimate the interpolated delay at input slew O.20.	CO-2	5
Q4	Suppose the following data represents the measured NMOS saturation current (Id) versus gate voltage (Vgs) data: Vgs 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Vg 0.05 0.40 1.10 2.10 3.45 5.10 7.05 Sing the method of least square, fit a linear order equation to alterpolate the value of saturation current at the gate voltage 1.5.	CO-3	5
the Si	Fan analog circuit, the instantaneous current at the gate voltage 1.5. The function $I(t) = 0.3 + 0.5t + 0.4t^2$ (in mA) $0 \le t \le 12 \mu$ s. Using mpson's 3/8 rule with $n = 6$ equal intervals, estimate the total charge $I(t)dt$ (in μ C) delivered during the interval [0, 12].	CO-3	5