JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 25B11CI315 (3)

MAX. MARKS: 25

COURSE NAME: Theory of Computation

COURSE INSTRUCTORS: ARV*, MNK, NSA, RMS, SKS, SMA

MAX. TIME: 1 Hr 30 Min.

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Consider the following grammar (the start symbol is S; the alphabets)	3	5
	are implicit in the rules):		
	$S \rightarrow SS \mid AAA \mid \varepsilon$		
	$A \rightarrow aA \mid Aa \mid b$	İ	
	(a) Describe the language generated by this grammar.		
	(b) Give a left-most derivation for the terminal string abbaba.		
	(c) Show that the grammar is ambiguous by exhibiting two distinct		
	derivation trees for some terminal string		
Q2	Construct a Context Free Grammar for the language given below:	3	5
	$L = \{a^m b^{2n} c^{3n} d^p \mid p > m, \text{ and } m, n \ge 1\}$		
Q3	Simplify the following context free grammars	3	5
	$S \rightarrow ABaC$, $A \rightarrow BC$, $B \rightarrow b \mid \epsilon$, $C \rightarrow D \mid \epsilon$, $D \rightarrow d$		
Q4	Convert the following grammar to CNF	3	5
	$S \rightarrow AACD$ $A \rightarrow aAb \mid \varepsilon C \rightarrow aC \mid a D \rightarrow aDa \mid bDb \mid \varepsilon$		
Q5	Prove that the following language $L = \{a^k b^k : k \ge 1\}$ ig generated by Type 2 grammar.	3	5
	77 - 5		