JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

Ph.D.-1st Semester (Civil Engineering)

COURSE CODE (CREDITS): 18P1WGE101 (3)

MAX. MARKS: 25

COURSE NAME: Research Methodologies Incl Quantitative Metds & Comp Appls

COURSE INSTRUCTORS: Dr. KAUSHAL KUMAR

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems. (c) Scientific Calculator is allowed.

Q.No	Question	\mathbf{CO}'	Marks
01	Using Bogue's equations, calculate the percentage of C ₃ S, C ₂ S,		
	C ₃ A, and C ₄ AF for a cement sample whose oxide composition is:		,
Q1	$CaO = 64\%$, $SiO_2 = 21\%$, $Al_2O_3 = 5\%$, $Fe_2O_3 = 4\%$, $SO_3 = 2\%$.		4
	Interpret the type of cement based on the result.		
	Give a detailed explanation of Alkali-Silica Reaction (ASR) and		
02	Alkali-Carbonate reaction, including reactive minerals, chemical		
Q2	reactions, damage mechanism, and methods to identify and prevent		4
	these reactions in concrete structures.		
	Discuss how Fly Ash, GGBS, Silica Fume, and Metakaolin		
Q3	contribute to concrete performance in terms of pozzolanic reactivity,		,
	microstructure refinement, strength development, and durability		3
	improvements.		
	Fresh concrete undergoes phenomena such as segregation, bleeding,		
Q4	and plastic shrinkage. Explain the mechanisms behind these		3
	phenomena and discuss methods for minimizing each in practice.		
	Explain the formation and significance of the interfacial transition		
Q5	zone in hardened concrete and discuss how it influences strength,		4
	stiffness, and durability.		
	Describe the mechanisms of alkali-silica reaction and alkali-		
Q6	carbonate reaction, comparing their causes, expansion mechanisms,		3
	and preventive strategies		
	Describe the mechanism of sulphate attack on concrete, including		
	chemical reactions involving gypsum, ettringite, and magnesium		,
Q7	sulfate, and explain the resulting deterioration and preventive		4
	measures.		