JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATIONS- 2025

B.Tech-III Semester (BI)

COURSE CODE (CREDITS): 25B11BI311

MAX. MARKS: 35

COURSE NAME: Biological Computation

COURSE INSTRUCTORS: Dr. Shikha Mittal

MAX. TIME 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	You are given a sequence with 40% identity to a template. Predict	[IV,	(5)
	whether homology modeling will be reliable. Explain.	VI	
Q2	Describe the principle of minimum free energy (MFE) models in	[VI]	(5)
	RNA secondary structure prediction. How do algorithms like the		(-)
	Nussinov and Zuker algorithms work?		
Q3	Explain in brief –	[II,	(10)
	A. Define torsion angles (phi, psi, omega) in proteins	ШÝ,	
	B. What is a Ramachandran plot, and how is it used?	VI]	
	C. BLAST Variants	_	
	D. HMM		
	E. Genome specific databases		
Q4	Compare UPGMA and Neighbor Joining, including the concept of	[III,	(4)
	ultrametric assumption	VI]	` '
Q5	Explain how to calculate the alignment score using affine gap penalty	[I, II]	(3)
	with the help of an example.	_	, ,
Q6	List the applications of MSA in Bioinformatics.	[II,	(4)
		III]	,
Q7	a. Given an mRNA of 300 nucleotides: How many amino acids	[III,	(4)
	will the protein have? (Stop codon not included)	IV]	
6	b. Match = +1		
er Se	Mismatch = -1		
AN CONTRACTOR	Gap = -2		
3	Align:		
194	Seq1: A G C		
	Seq2: A – C		
j	Calculate total alignment score		