JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech- III Semester (CSE/IT)

COURSE CODE (CREDITS): 24B11CI311 (03)

MAX. MARKS: 35

COURSE NAME: COMPUTATIONAL FUNDAMENTALS FOR OPTIMIZATION

COURSE INSTRUCTORS: RBT, VSG

MAX. TIME 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

(c) Use of a scientific calculator is allowed.

Q.No	Question	CO	Mark
Q1		5	s 1+1
	a. Differentiate between probability and odds for an event through a suitable example.		+1+1+1+1
	b. For the customer service data, the proportion of customers who would recommend the service in the sample of customers is p = 0.84. Therefore, the odds of recommending the service department are		
	c. What Is Maximum Likelihood Estimation (MLE) in Logistic Regression?		
	d. Consider the following logistic regression model:		
	$P(Purchase = 1 Age) = \frac{1}{1 + exp(-(-6.0 + 0.1 \times Age))}$		
	Compute the probability of purchase for an individual aged 20 years. (Use exp(4) ≈ 54.6). e. What is the difference between covariance and correlation?		
Q2	a What happens if the learning rate is too high or too low?	4	1+2+2
	What happens if the learning rate is too high or too low?What are main advantages of dimensionality reduction in machine learning?	į	1 2
	c. Hayden was taking a nap on the hill, only to realize that he has to run back to the campus for his next class in two minutes. He		
:	approximates the height h of the hill at position (x, y) as $h = x^2 - 3y^2$, and guesses that his current position is $(x, y, h) = (-1, 0, 1)$. Which direction should he take to go down the hill as fast as possible?		

			0.5
Q3	 a. Compare and contrast Gradient Descent and Stochastic Gradient Descent approach. b. Fit the linear curve for the following data points: (1, 1), (2, 2), (3, 2), (4, 2), (5, 4). Use Gradient descent algorithm with β₀ = β₁ = 0 (initially), η = 0.1. Show first iteration only. 	4	2.5 + 2.5
Q4	 a. Use the gradient descent algorithm to find the minimum of the function 3 x² + 5 x + 7 starting with x₀ = 10 and learning rate η = 0.01 Perform single iteration. b. Find a singular value decomposition of A. A = [1 -1] 1	3	2.5 +
Q5	Write short notes on the following (ANY TWO): a. Backpropagation b. Dimensionality reduction c. Univariate versus Multivariate optimization	4	2.5 + 2.5
Q6	Suppose you have two classes of data: class1: (2, 3), (3, 3), (2, 4) and class2: (6, 7), (7,7), (7,6). Use Linear Discriminant Analysis (LDA) to classify the data points.	4	5
Q7	Illustrate the concept of Principal Component Analysis (PCA) with an appropriate example. OR Find an LU-decomposition of A $A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 7 \\ 1 & 3 & 7 \end{bmatrix}.$	3	5