JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-V Semester (CSE/IT)

COURSE CODE (CREDITS): 20B1WCI531 (2)

MAX. MARKS: 35

COURSE NAME: FOUNDATION FOR DATA SCIENCE AND VISUALIZATION

COURSE INSTRUCTORS: RBT

MAX. TIME 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems. Calculator allowed (non-programmable type only).

Q.No	Question	CO	Marks
Q1	a. What is Multicollinearity.	6	1+2
	b. Discuss the effects of Multicollinearity List techniques to detect	"	+ 2
	and fix Multicollinearity.		. ~
	c. Prove or disprove: Strong Multicollinearity between regressors		
	results in large variance and covariance of regression coefficients.		
Q2	a) Why does logistic regression come under the category of	4	1+2
	classification problems?		+2
	b) The runs scored by a cricket team in a league of 12 matches - 100,		
	120, 110, 150, 110, 140, 130, 170, 120, 220, 140, 110. Draw the		
	box plot. c) How is kNN different from k-means clustering?		
	c) How is kive different noing means clustering?		
Q3	The following data relates, the moisture of a wet mix of a certain	6	1 + 2
	product, to Y, the density of the finished product.	١	+2
			_
	Y_i		
	5 7.4 6 9.3		
	6 9.3		
1	7 10.6		İ
	10 15.4		,
1			
	15 22.2		
	18 24.1		
ļ	20 24.8	İ	
,			
ļ	a. Draw a scatter diagram.	į	ĺ
	b. Fit a linear curve to the data.		

	c. Use gradient descent variant to fit a first iteration only.	linear curve to the data. Show		
Q4	 a) Given a NumPy array, arr = np.array 9]]]), what is the output of the comboning b) What is logit transformation? c) How is scikit-learn used in machine 	mmand, print(arr[0][1])?	CO2	1+2+2
Q5	 a) Minimize f (x1, x2) = 2x₁ - 2x₂ + 2 X1= {0,0}. b) List three ways to read data into a D 	PataFrame from a CSV file?	COS	2+3
Q6	a) A principal component analysis was eigenvalue results were obtained: 2. 0.183, 0.085. How many factors you to retain 45% of variance? b) Find the covariance matrix for this to the covariance matrix for the cov	731, 2.218, 0.442, 0.341 u retain using the eigenvalues	CO3	2+3
Q7-	Fit the model $Y = \beta 0 + \beta 1 \times 1 + \beta 2$ Provide ANOVA table X1: -5 -4 1 2 2 X2: 5 4 1 -3 -2 Y: 11 11 8 2 5 OR Advertisement (X) 1 2 3 4 5 i. Fit the Regression Line ii. Test of Slope: Show if there is a lini iii. Compute coefficient of determin	5 4 Sales (Y) 1 1 2 2 4 tear relationship. (t 0.05, 3 = 3.182)	6	5