

Jaypee University of Information Technology, Waknaghat

TEST-3 Examination - December 2025

B.Tech - VII Semester (ALL)

Course Code/Credits: 22B1WMA731/3

Max. Marks: 35

Course Title: Linear Algebra for Data Science & Machine Learning

Course Instructor: RAD

Max. Time: 2 Hours

Note: (a) ALL questions are compulsory.

(b) Scientific calculators are allowed.

(c) The candidate is allowed to make suitable numeric assumptions wherever required.

Q.No	Question	CO	Marks
Q1	<p>Consider the following vectors:</p> $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$ <p>(a) Show that $\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.</p> <p>(b) Is $\mathbf{w} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$? Justify.</p>	CO-1	5
Q2	<p>Let \mathbf{W} be the subspace of \mathbb{R}^3 spanned by the following vectors:</p> $w_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$ <p>(a) Find an orthogonal basis for \mathbf{W} using Gram-Schmidt process.</p> <p>(b) Determine the <i>orthogonal complement</i> \mathbf{W}^\perp of subspace \mathbf{W}.</p>	CO-2	5
Q3	<p>Consider the <i>singular value decomposition</i> of following 3×2 matrix:</p> $\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 3 & 1 \\ 0 & 2 \end{pmatrix} = \mathbf{U} \Sigma \mathbf{V}^T,$ <p>where</p> $\mathbf{U} = \begin{pmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ 0 & 1 & 0 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 5 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$ <p>(a) Compute the pseudo-inverse \mathbf{A}^\dagger of the rectangular matrix \mathbf{A}.</p> <p>(b) Verify the identity $\mathbf{A}^\dagger \mathbf{A} = \mathbf{V} \mathbf{V}^T$.</p>	CO-2	5

Q.No	Question	CO	Marks									
Q4	<p>Consider the following inconsistent system of linear equations:</p> $\begin{aligned} 2x_1 + 3x_2 &= 5 \\ 4x_1 - x_2 &= 1 \\ 6x_1 + 2x_2 &= 4 \end{aligned}$ <p>(a) Find the <i>least-squares</i> solution $\hat{\mathbf{x}}$ to the given system $\mathbf{Ax} = \mathbf{b}$.</p> <p>(b) Find the <i>least-squares</i> error $\ \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\$.</p>	CO-3	5									
Q5	<p>A tech company tracks the weekly usage time, in hours, of two software tools, Tool A and Tool B, by two of its employees:</p> <table border="1"> <thead> <tr> <th>Features</th> <th>Employee 1</th> <th>Employee 2</th> </tr> </thead> <tbody> <tr> <td>Tool A</td> <td>6</td> <td>9</td> </tr> <tr> <td>Tool B</td> <td>12</td> <td>7</td> </tr> </tbody> </table> <p>The company wants to reduce this dataset to a lower-dimensional representation while retaining most of the variance. Perform <i>principal component analysis</i> (PCA) on this dataset to answer:</p> <p>(a) Compute the covariance matrix \mathbf{S} of the centered data \mathbf{X}.</p> <p>(b) Determine the eigenvalues and eigenvectors of \mathbf{S}.</p> <p>(c) Form the orthogonal matrix \mathbf{P} using the eigenvectors of \mathbf{S}.</p> <p>(d) Project dataset \mathbf{X} onto the first principal component (PC1).</p> <p>(e) What proportion of the total variance is captured by PC1?</p>	Features	Employee 1	Employee 2	Tool A	6	9	Tool B	12	7	CO-3	8
Features	Employee 1	Employee 2										
Tool A	6	9										
Tool B	12	7										
Q6	<p>An AIML research team wants to predict the accuracy of a classification model based on the number of training epochs. The team collects experimental data showing how accuracy (%) improves as training progresses. The training dataset is given below:</p> <table border="1"> <thead> <tr> <th>Epochs (x)</th> <th>Accuracy (y)</th> </tr> </thead> <tbody> <tr> <td>5</td> <td>58</td> </tr> <tr> <td>10</td> <td>67</td> </tr> <tr> <td>15</td> <td>74</td> </tr> </tbody> </table> <p>The objective is to learn the relationship between the number of epochs x and the model accuracy y using linear regression with gradient descent. The prediction model is $\hat{y} = \theta_0 + \theta_1 x$. Assume the learning rate as $\alpha = 0.01$.</p> <p>(a) Define the <i>cost function</i> for this regression task.</p> <p>(b) Perform first iteration of <i>gradient descent</i> with $\theta_0 = 0$, $\theta_1 = 0$.</p>	Epochs (x)	Accuracy (y)	5	58	10	67	15	74	CO-4	7	
Epochs (x)	Accuracy (y)											
5	58											
10	67											
15	74											

* * * * *