

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-3 EXAMINATION - 2025

B.Tech.-III Semester (CSE/IT/CSECS/FSSD/AIDS/AIML/UXUI)

COURSE CODE (CREDITS): 25B11MA314 (4) MAX. MARKS: 35

COURSE NAME: Mathematical Foundations for Artificial Intelligence and Data Science

COURSE INSTRUCTORS: RAD, BKP, SST MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

(c) Use of a scientific calculator is allowed.

Q. No.	Question	CO	Marks																											
Q1	<p>Consider the vectors in \mathbb{R}^3; $v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$. Let $W = \text{span}\{v_1, v_2\}$ be the subspace of \mathbb{R}^3 generated by v_1, v_2.</p> <p>a) Determine whether v_1, and v_2 are linearly independent. b) Find a basis for the subspace W.</p>	1	5																											
Q2	<p>a) Consider the joint density function of X and Y be</p> $f_{XY}(x, y) = \begin{cases} \frac{1}{9}xy, & 0 < x < 2, 0 < y < 3 \\ 0, & \text{otherwise} \end{cases}$ <p>Determine the marginal probability density function $f_X(x)$.</p> <p>b) In a large university network, the probability that a randomly selected computer is infected is 0.06. A security team randomly scans 50 computers for infections. What is the probability that at least 2 computers are infected?</p>	3	5																											
Q3	<p>The response time X in milliseconds (ms) of a cloud server handling user requests is normally distributed with a mean of 120 ms and a standard deviation of 20 ms.</p> <p>a) Determine $P(X > 150)$. b) Find the response time that is exceeded by 5% of the requests.</p>	3	5																											
Q4	<p>A smart city monitoring system records traffic density (vehicles per minute) and the corresponding average waiting time (seconds) at a traffic signal) for 8 peak-hour observations:</p> <table border="1"> <thead> <tr> <th>Observation</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> </tr> </thead> <tbody> <tr> <td>Traffic Density (vehicles/min)</td> <td>20</td> <td>25</td> <td>30</td> <td>40</td> <td>45</td> <td>50</td> <td>55</td> <td>60</td> </tr> <tr> <td>Waiting Time (seconds)</td> <td>25</td> <td>32</td> <td>35</td> <td>48</td> <td>55</td> <td>60</td> <td>65</td> <td>72</td> </tr> </tbody> </table> <p>a) Compute the Karl Pearson's correlation coefficient between traffic density and waiting time.</p>	Observation	1	2	3	4	5	6	7	8	Traffic Density (vehicles/min)	20	25	30	40	45	50	55	60	Waiting Time (seconds)	25	32	35	48	55	60	65	72	2	5
Observation	1	2	3	4	5	6	7	8																						
Traffic Density (vehicles/min)	20	25	30	40	45	50	55	60																						
Waiting Time (seconds)	25	32	35	48	55	60	65	72																						

	b) Interpret whether increasing vehicle density significantly affects the waiting time.																
Q5	<p>A mechanical engineer wants to estimate the fuel consumption of a diesel engine based on its load (kg). The following experimental data was recorded:</p> <table border="1"> <tr> <td>Load X (kg)</td> <td>5</td> <td>10</td> <td>15</td> <td>18</td> <td>22</td> <td>25</td> </tr> <tr> <td>Fuel Consumption Y (lit/hr.)</td> <td>1.2</td> <td>2.3</td> <td>3.1</td> <td>3.6</td> <td>4.2</td> <td>4.8</td> </tr> </table> <p>a) Fit the best-fit regression line using least square estimation. b) Estimate the expected fuel consumption when the load on the engine is 20 kg.</p>	Load X (kg)	5	10	15	18	22	25	Fuel Consumption Y (lit/hr.)	1.2	2.3	3.1	3.6	4.2	4.8	2	5
Load X (kg)	5	10	15	18	22	25											
Fuel Consumption Y (lit/hr.)	1.2	2.3	3.1	3.6	4.2	4.8											
Q6	<p>Solve the following linear programming problem graphically:</p> $\text{Max } Z = 8000 x_1 + 7000 x_2$ s.t. $3x_1 + x_2 \leq 66,$ $x_1 + x_2 \leq 45,$ $x_2 \leq 40,$ $x_1, x_2 \geq 0$ <p><i>(No graph paper will be provided to solve this question. Please draw on the sheet of answer script.)</i></p>	4	4														
Q7	<p>Solve the following linear programming problem by simplex method:</p> $\text{Max } Z = 3x_1 + 2x_2$ s.t. $2x_1 + x_2 \leq 10,$ $x_1 + 3x_2 \leq 6,$ $x_1, x_2 \geq 0$	4	6														

(Standard) Normal Probability Table:

Standard Normal Probability Table											
<i>z</i>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183	
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	
-1.6	.0548	.0537	.0526	.0518	.0505	.0495	.0485	.0475	.0465	.0455	
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	
-1.2	.1151	.1131	.1117	.1093	.1075	.1056	.1038	.1020	.1003	.0985	
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451	