

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/M&C)

COURSE CODE (CREDITS): 25B11MA113 (4)

MAX. MARKS: 35

COURSE NAME: MATHEMATICS-I

COURSE INSTRUCTORS: PKP*,NKT,RKB,MDS

MAX. TIME: 2 Hours

Note: (a) All 12 questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

(c) Answer the questions in ascending order (i.e., 1,2,3,4,5,6,7,8,9,10,11,12).

Q.No.	Question	CO	Marks
Q1	Suppose a signal is given by $f(t) = \begin{cases} 3t-1, & t < 1 \\ 2t+3, & t \geq 1 \end{cases}$ Check the continuity of the function at $t = 1$.	CO1	2
Q2	To model a procedural surface, a computer graphics shader employs a height function $f(x, y) = \sin x \cos y$. Compute the directional derivative of $f(x, y)$ at the point $(\pi/2, 0)$ in the direction $\vec{u} = i + 2j$.	CO2	3
Q3	Using the double integrals, compute the area enclosed between a parabola $y = x^2$ and a straight line $y = 2 - x$.	CO3	3
Q4	Find the work done by the vector field $\vec{F}(x, y, z) = x\hat{i} + 3xy\hat{j} - (x + z)\hat{k}$, on a particle moving along the line segment that goes from $(1, 4, 2)$ to $(0, 5, 1)$.	CO3	3
Q5	A surface is given by $F(x, y, z) = xe^{yz} + y - 4 = 0$. At the point $(1, 0, 4)$ find: (i) The unit normal vector to the surface. (ii) The tangent plane in vector form.	CO3	3
Q6	Solve $(4D^2 + 12D + 9)(D^2 + 4)y = 0$.	CO4	3
Q7	Solve the differential equation $\frac{d^2y}{dx^2} + 4y = e^x + \sin 2x$	CO4	3
Q8	Find the Laplace transform of $t(\cos at - \cos bt)$.	CO4	3
Q9	Using Convolution theorem evaluate $L^{-1} \left\{ \frac{1}{(s+a)(s+b)} \right\}$.	CO4	3

Q10	In a machine learning workflow, the feature correlation matrix of a dataset is represented by $A = \begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{pmatrix}$. Determine the rank of this matrix.	CO5	2
Q11	Using Gauss elimination method, solve the following system of linear equations: $x + 3y - 2z + 5t = 4; 2x + 8y - z + 9t = 9, 3x + 5y - 12z + 17t = 7.$	CO5	4
Q12	A dataset's covariance structure is represented by a 3×3 covariance matrix $C = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. Compute the eigenvalues of the matrix C .	CO5	3
