

Roll Number:

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

B.Tech-VII Semester (Open Elective)

COURSE CODE (CREDITS): 18B1WPH731 (03)

MAX. MARKS: 35

COURSE NAME: Nanotechnology

COURSE INSTRUCTORS: Dr. Ragini Raj Singh

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Calculators allowed

Q.No	Question	CO	Marks
Q1	<p>a) What is surface plasmon resonance (SPR)? Explain how the surface plasmon resonance (SPR) of metal nanoparticles depends on size, shape and dielectric environment.</p> <p>b) Describe <i>superparamagnetism</i>. Why does it occur only at the nanoscale for magnetic nanoparticles?</p> <p>c) Explain the force-distance curve in Atomic Force Microscopy and what material properties can be extracted from it.</p> <p>d) Describe X-ray diffraction spectra anatomy. What can be analyzed using XRD?</p> <p>e) With a neat sketch, explain the working of tapping-mode AFM and state why it is preferred over contact mode for soft biological samples.</p>	3	2
Q2	<p>a) Interpret how bandgap varies with size in Quantum Dots.</p> <p>b) Explain how QDs can be tuned for multiplexed bioimaging.</p> <p>c) Why do larger QDs have lower quantum confinement?</p>	4	2
Q3	<p>a) Describe the interaction of electrons with matter in SEM that leads to secondary electron generation.</p> <p>b) Explain electron transmission, diffraction contrast, and lattice imaging in TEM.</p>	4	2
Q4	<p>a) Explain mechanisms of magnetic hyperthermia therapy by magnetic nanoparticles.</p> <p>b) Describe two surface functionalisation strategies for biomedical use for magnetic nanoparticles.</p>	5	2

Roll Number:

Q5	<p>a) A diffraction peak for an FCC metal occurs at $\theta = 35^\circ$ using Cu Kα radiation ($\lambda = 0.154$ nm). If the peak corresponds to the (200) plane, calculate the interplanar spacing (d) using Bragg's law.</p> <p>b) A nanoparticle sample shows an XRD peak at $2\theta = 44^\circ$ with FWHM = 0.18°. Given: K = 0.9; $\lambda = 0.154$ nm. Calculate the crystallite size.</p> <p>c) In tapping mode AFM, the cantilever with spring constant $k = 20$ N/m shows a change in amplitude corresponding to a deflection of 0.5 nm. Find the tip-sample interaction force.</p>	5	2
Q6	<p>Explain how XRD, SEM, TEM, and AFM together provide a complete characterization protocol for a metal nanoparticle sample. Discuss:</p> <ul style="list-style-type: none">i. crystal structureii. particle size & shapeiii. surface roughnessiv. defectsv. elemental contrast	5	5