JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 3 EXAMINATION (December 2025)

B.Tech. - III Semester (Civil Engg)

COURSE CODE (CREDITS): 18B11MA311 (3) COURSE NAME: NUMERICAL METHODS

MAX. MARKS: 35

COURSE INSTRUCTORS: RKB*

MAX. TIME: 2 Hours.

Note: All questions are compulsory. Use of scientific calculator is allowed. The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

Q.No	Owells) N
- X-1-10	Question A small nonlinear support (a gardinal de la contraction d	CQn,	Marks
Q1	A small nonlinear support (e.g., a soil spring with cubic stiffening) at a structural node lead, after nondimensionalization, to the equilibrium equations for the normalized displacement x. The countries are left to the normalized displacement x.	COn	th the
	for the normalized displacement x . The equation reduces to a polynomial like $x^3 + 5x - 4 = 0$. Solve the polynomial using Newton-Raphson method correct to 3 decimal places.	COM	5
Q2	The rainfall intensity (in mm/hr) on a construction site varies over time and is modeled by the function: $R(t) = 0.5 + 0.8t + 0.2t^2$, $0 \le t \le 6$. Using Simpson's 3/8 rule with $n = 6$ equal intervals, estimate the total rainfall $\int_0^6 R(t)dt$ (in mm) over the period of 6 hrs.	CO-3	5
Q3	In a certain characterization, both the value of a function (deax) and its slope (sensitivity to input slew) are often required Suppless the measured propagation delay $f(x)$ of a logic gate (in ns) at different input transition times (slew, in ns) and its slopes are given as: x $f(x)$ 1 0 1	CO-3	5
Q4	Solve for x, y and z using 10 decomposition. 2x + y + z = 7 $x + 2y + z = 8$ $x + y + 2z = 9$	CO-3	5
Q5	A 3-node spectural system (e.g., a simplified analysis of axial forces in connected dissiplies or equilibrium at nodes of a grillage structure) leads to the following system of linear equilibrium equations for joint displacements: $ 15x_1 - 3x_2 - x_3 = 10 $ $ -3x_1 + 10x_2 - 2x_3 = 5 $ $ -x_1 - 2x_2 + 8x_3 = 7. $ Using Gauss Seidel iterative method, solve this system. Using Runge-Kutta method of order 4, solve the initial value problem.	CO-3	5
Q6 ;] ($\frac{dy}{dx} = x^2(1+y); y(0) = 1$ finding y for $x = 0.1, 0.2$ and 0.3.	CO-4	6
Q7 1	Use Milne Predictor and corrector formula to estimate the value of y for $x = 0.4$, based on the values of $y(0.1)$, $y(0.2)$, $y(0.3)$ obtained in question no 6.	CO-4	4
