Dr. EKta

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- October 2018

B.Tech. (CSE, IT, BI) III Semester

COURSE CODE: 10B11CI312

MAX. MARKS: 25

COURSE NAME: Database Systems

COURSE CREDITS: 3

MAX. TIME 1.5 Hrs.

[3]

[3]

[2]

[4]

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- Q1. CO-1 Describe three-schema architecture for the database management system with necessary [5] diagram. Why do we need mapping between schema levels?
- Q2. CO-2 i) Discuss the problems caused due to redundancy in the database. Also give examples.
 - ii) Let R(A,B,C,D,E,P,G) be a relational schema in which the following functional dependencies are known to be hold.

AB->CD, DE->P, C->E, P->C, B->G

List all the candidate keys of R. Also find the highest normal form of R.

Q3. CO-3 i) What is a complete set of relational operations? Give example.

ii) On the basis of the given Publication Database State, answer the following questions.

MILLION	Mar that faire	
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

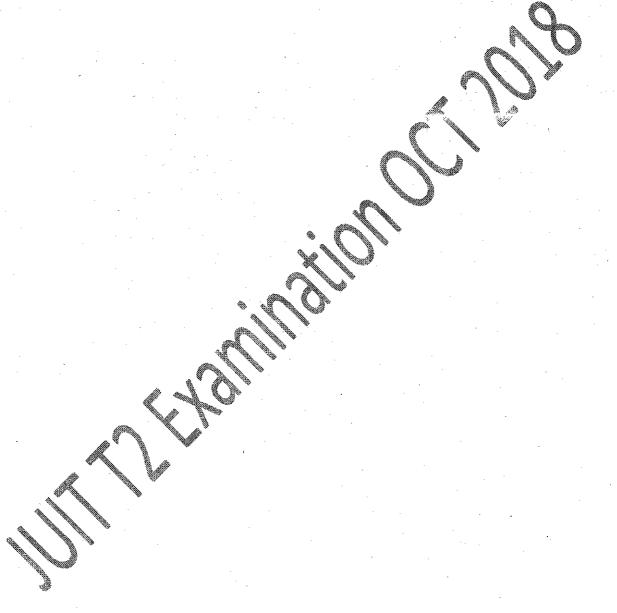
7.	Perry	White		
8	Moshe	Vardi		
9	Roy	Batty		
r(book)	lett. Geblechtle	i in the second second		* Sedicor :
1	CACM	April	1960	18
2	CACM	July	1974	8
3	BST .	July	1948	2
4	LMS	November	1936	7
5	Mind	October	1950	NULL
	ANTO		*500	*40175

(autho	in mile	distantina di Santanti	
1	1	1	ADDV-AND
2	2	1 1	
3	2	2	
4	3	1	
5	4	1	
5	5	1	
6	6	i	

District Contract	THE RESERVE OF THE PARTY OF THE PARTY.	をかりられ
1.	LISP	1
2	Unix	2
3	Info Theory	3
4.	Turing Machines	4
5	Turing Test	5
6	Lambda Calculus	6

- Write a relational algebra expression that returns the name of all authors who are book editors.
- b. Write a relational algebra expression that returns the name of all authors who are not book editors.
- c. How many tuples are returned by the following relational algebra expression? author \bowtie author_id=editor book
- d. Write the tuples that are returned by the following relational algebra expression. author \bowtie author_id=editor book

Q4. CO-4 Suppose the relational schema R(A,B,C,D,E) holds following FDs.


A->BC, CD->E, B->D, E->A.

R is decomposed into R1(A,B,C) and R2(A,D,E). Check whether this decomposition is:

- i) Lossy/Lossless decomposition
- ii) Dependency preserving/Not dependency preserving

Q5. CO-5 What is indexing? Differentiate between primary and cluster indexing.

[3]

