Roll	No:
------	-----

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 3 EXAMINATION- DECEMBER 2018

B.Tech V Semester

COURSE CODE: 10B11EC512

MAX. MARKS: 35

COURSE NAME: Digital Signal Processing

COURSE CREDITS: 04

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Assume the data wherever necessary.

- Q1. (a) A discrete time system is described by the following input-output relationship $y[n] = \alpha + \sum_{k=-4}^{4} x[n-k]$ where α is a non-zero constant. Check whether the above system is linear and time-invariant.
 - (b) Explain how FFT is computationally more efficient than DFT for computing of N point DFT.

 CO2 [3]
- Q2. (a) What is meant by linear phase FIR filter? What conditions are to be satisfied by the impulse response of FIR filter to have linear phase?

 CO2 [3]
 - (b) Obtain the cascade and linear phase realization of the following system function:

H(z) =
$$\left(\frac{1}{2} + z^{-1} + \frac{1}{2}z^{-2}\right)\left(1 + \frac{1}{3}z^{-1} + z^{-2}\right)$$
 CO2 [4]

Q3. Design a digital low pass Butterworth filter satisfying the following constraints:

$$|0.9 \le |H(e^{jw})| \le 1$$
 for $0 \le w \le \pi/2$
 $|H(e^{jw})| \le 0.2$ for $3\pi/4 \le w \le \pi$

Apply bilinear transformation with sampling time T = 1 sec.

CO3 [7]

Q4. A digital low pass filter is to be designed with the following desired frequency response:

$$H_d(e^{jw}) = \begin{cases} -e^{-j2w}, & -\pi/4 \le w \le \pi/4 \\ 0, & \pi/4 \le w \le \pi \end{cases}$$

Determine the filter coefficients, system function and frequency response of the designed filter if the rectangular window of length 5 has been used.

CO3 [7]

- Q5. (a) Determine the order of a digital low pass Chebyshev filter that has 1 dB ripple in the passband below the frequency 0.2π and stopband attenuation of atleast 15 dB for frequencies between 0.2π and π .
 - (b) Explain in detail any one of the following:
 - 1. Frequency Sampling Method for FIR filter Design
 - 2. Multirate Digital Signal Processing

CO4 [4]