Dr. Naveen Taglan

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- Sep 2018

B.Tech 5th Semester

COURSE CODE: 17B11EC512

MAX. MARKS: 15

COURSE NAME: Microwave Devices & Antenna Design

COURSE CREDITS: 4

MAX. TIME: One Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1. At 15 GHz, an air-filled 5cm× 2cm rectangular waveguide placed with its axis along z-direction has:

 $E_z = E_{0z} \operatorname{Sin}(40\pi x) \operatorname{Sin}(50\pi y) e^{-j\beta_g z} V / m$

Calculate the mode of propagation.

[CO-1; 2 Marks]

- 2. Show the top view and side view of the behaviour of electric and magnetic fields with in a rectangular waveguide for dominant mode. [CO-1; 2 Marks]
- 3. Explain why TEM mode does not exist in rectangular waveguides but exists in parallel plane waveguides? [CO-1,2; 2 Marks]
- 4. Derive the expressions of Electric and Magnetic field components for TE mode in circular waveguide. [CO-1; 5 Marks]
- 5. The cross section of a rectangular waveguide is 20cm× 5cm. Find six lowest order modes which will propagate in the waveguide and their cut-off frequencies. [CO-2; 2 Marks]
- 6. A TE₁₁ mode is propagating through a circular waveguide. The radius of the guide is 5 cm, and the guide contains an air-dielectric:
 - (a) Determine the cut-off frequency.
 - (b) Determine the wavelength λ_g in the guide for an operating frequency of 3 GHz.
 - c) Determine the wave impedance Z_g in the guide.

[CO-2; 2 Marks]