JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- Oct 2018

B.Tech VII Semester (ECE)

COURSE CODE: 10B1WEC731

COURSE NAME: Mobile Communication

COURSE CREDITS: 3

MAX. MARKS: 25

MAX. TIME: 1 Hr 30 min

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- Q1) Draw the GSM reference architecture model and explain the following GSM subsystem entities (a)
 Radio Sub System (RSS) (b) Network Sub System (NSS) (c) Operation Sub System (OSS) (5)
- Q2) What is the difference Between a physical channel and a logical channel? Describe the important functions of various types of GSM logical channels. (5)
- (a) Compute the worst case C/I value for the mobile receiver located at the boundary of its serving Cell if it is under the influence of interfering signals from two nearest co-channel interfering cells in a cellular system. The system is designed with 3 sector directional antenna cellular system with a reuse pattern of 4. Assume the path loss exponent as 4 in a mobile radio environment.
 - (b) Does this system yield an adequate value of C/I for a practical system which requires 6 dB higher than the theoretical value of C/I = 18dB? (5)
- Q4) A cellular service provider decides to use a digital TDMA scheme which can tolerate a Carrier-to-interference ratio of 15dB in the worst case and a path loss component of $\gamma = 4$. Find the optimal value of K for
 - a) Omni-directional Antennas
 - b) 120° sectoring
 - c) 60° sectoring

Should sectoring be used? if so, which case (60° or 120°) should be used?

(5)

- Q5) Consider a seven-cell reuse cellular system having a total of 395 traffic channels. In this system, an average call lasts for three minutes and the probability of blocking is no more than 1%. Let every mobile subscriber make one call per hour, on average. Assume that blocked calls are cleared so that the call blocking is described by the Erlang B distribution.

 (5) Determine the following:
 - a) The average number of calls made by a mobile subscriber per hour if the system is configured as an omni-directional system.
 - b) The average number of calls made by a mobile subscriber per hour if the system is configured as a 3-sectored antenna configuration. Show that the decrease in trunking efficiency from that of an omnidirectional antenna is 24%.
 - c) The average number of calls made by a mobile subscriber per hour if the system is configured as a 6- sectored antenna configuration. Show that the decrease in trunking efficiency from that of an omnidirectional antenna is 44%.