Or Salman

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST 2 EXAMINATIONS – October 2018

B.Tech Vth Semester

COURSE CODE: 10B1WEC515

MAX. MARKS: 25

COURSE NAME: Theory and Application of Control systems

COURSE CREDITS: 03

MAX. TIME: 1 HR 30 MIN

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Assume any missing data. Marks are indicated in parenthesis for each question.

- 1. Obtain the time domain specifications for the unit step response of a system with transfer function $T(s) = \frac{2 \times 10^4}{(s^2 + 10s + 100)(s + 200)}$ (5 marks)
- 2. Use Routh-Hurwitz criterion to find the number of poles that are on the right half of the s-plane, and on $j\omega$ -axis for a system with transfer function

$$T(s) = \frac{20}{s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20}$$
 (4 marks)

- 3. Draw the root locus for $-\infty < K < 0$ for the system $G(s)H(s) = \frac{K}{s^2(s+8)^2}$. No need to use graph sheet. (5 marks)
- 4. Draw the Bode-plot(use semilog graph sheet for magnitude and phase plots) for

$$G(s)H(s) = \frac{16 \times 10^{3}(s+2)}{s(s+4)(s^{2}+12s+400)}$$
 (6marks)

5. Write a short note on the following.

(5 marks)

- i. Resonant peak in magnitude response.
- Effect of adding a pole and a zero to transfer function on the bandwidth of the system.
- iii. Pade's approximation.
- iv. Relation between bandwidth and rise time of a system.
- v. PID controller.