JAYPEE UNIVERSITY OF INFORMATRION TECHNOLOGY, WAKNAGHAT T-1, Examination, September, 2017

B.Tech, V Semester

COURSE CODE: 10B11EC512

MAX. MARKS: 15

COURSE NAME: Digital Signal Processing

COURSE CREDITS: 04

MAX. TIME: 1 HRs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

	of unique mounds.	
Q.1	Write the properties of Z-transform:	2
	(a) Correlation property	
	(b) Initial value theorem	
	(d) Final value theorem	
	(d) Differentiation property	
Q.2	Find the even and odd part of the $x(n) = [1 \ 1 \ 1 \ 1]$	01
Q.3	Find the convolution of the sequences $x(n) = 0.5^n u(n)$ and $h(n) = 3^n u(-n)$	using Z- 03
0.4	transform.	2.5
Q.4	Find the convolution of the sequences $x(n) = a^n u(n)$ and $h(n) = b^n u(n)$	02
Q.5	Obtain the linear convolution of the sequences -	
	$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2, 3\}$ using	04
	1. Overlap save method.	
	2. Overlaps add method.	
Q.6	Find the unit step response of discrete time system which is represented by a di	fference 03
	equation is $y(n) = \frac{1}{2}y(n-1) + 2x(n)$.	