Dr. Salman T. Rayin

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST 2 EXAMINATIONS - OCTOBER 2016

B.Tech V Semester (ECE)

COURSE CODE: 10B11EC513

MAX. MARKS: 25

COURSE NAME: Electromagnetic Engineering.

COURSE CREDITS: 03

MAX. TIME: 1.5HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Marks are indicated in parenthesis. Assume any missing data.

- 1. The magnetic field intensity in a certain region of free-space is given as $H = \frac{1}{2} a_y + \frac{2}{z} a_z A/m$. Use J to find the total current passing through the surface z = 4, $1 \le x \le 2$ and $3 \le y \le 5$. Verify this calculation using the Stoke's theorem. (5m)
- 2. Give a possible configuration with the circular current carrying metal loops to produce a magnetic field intensity of $a_x + 2a_y A/m$ at the origin. Draw the configuration clearly. (3m)
- 3. Find the potential inside a rectangular trough as shown below if its length is infinite along the z-direction.(5m)

- 4. Find the capacitance persunit area of two infinite cones $\theta_1 = \pi/4$ and $\theta_2 = 3\pi/4$. (Isolation has been provided somehow at the origin.). Plot the variation of electric filed intensity in order to see the field variations as a function of θ and r radial distance. (4m)
- 5. Let the region z < 0 composed of uniform dielectric material for which $\epsilon_r = 3.2$ while the region z > 0 is characterized by $\epsilon_r = 2$. Let $D_1 = -30a_x + 50a_y + 70a_znC/m^2$ in region z < 0. Then find the electric flux density in region z > 0. (3m)
 - Write precisely about the following. (5m)
 - a. Maxwell's equations in point form and integral forms. (2m)
 - b. Conservative field. (1m)
 - c. Differences between scalar electric potential and magnetic scalar potential. (1m)
 - d. Method of images. (1m)