Dr. PK Sigh

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- October 2017

B.Tech/ 5th Semester

COURSE CODE: 10B11CI511

MAX. MARKS: 25

COURSE NAME: OPERATING SYSTEM

COURSE CREDITS: 03

MAX. TIME: 1Hr 30 Min

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. What is the meaning of the term busy waiting? What other kinds of waiting are there in an operating system? Can busy waiting be avoided altogether? Explain your answer. [3 Marks]
- 2. Compare the circular-wait scheme with the deadlock avoidance schemes (like the banker's algorithm) with respect to the following issues: [3 Marks]
 - a. Runtime overheads
 - b. System throughput
- 3. Explain why interrupts are not appropriate for implementing synchronization primitives in multiprocessor systems. [3 Marks]
- 4. Consider the deadlock situation that could occur in the dining-philosophers problem when the philosophers obtain the chopsticks one at a time. Discuss how the four necessary conditions for deadlock indeed hold in this setting. Discuss how deadlocks could be avoided by eliminating any one of the four conditions.

 [3 Marks]
- 5. Show how to implement the wait() and signal() semaphore operations in multiprocessor environments using the TestAndSet() instruction. The solution should exhibit minimal busy waiting.

 [4 Marks]
- 6. Assume that a system has multiple processing cores. For each of the following scenarios, describe which is a better locking mechanism-a spinlock or mutex lock where waiting processes sleep while waiting for the lock to become available:
- (a) The lock is to be held for a short duration
- (b) The lock is to be held for a long duration
- (c) A thread may be put to sleep while holding the lock.

[4 Marks]

7. Consider the following snapshot of a system:

Processes	Allocation	Max	Available
	A B C D	A B C D	A B C D
P0	2 0 0 1	4 2 1 2	3 3 2 1
P1	3 1 2 1	5 2 5 2	
P2	2 1 0 3	2 3 1 6	
P3	1 3 1 2	1 4 2 4	
P4	1 4 3 2	3 6 6 5	

Answer the following question using the banker's algorithm;

- a. Illustrate that the system is in a safe state by demonstrating an order in which the processes may complete.
- b. If a request from process P1 arrives for (1,1,1,0) can the request be granted immediately?
- (c) If a request from process P4 arrives for (0,0,0,0), can the request be granted immediately?

[5 Marks]

THE END