Jaypee University of Information Technology, Waknaghat TEST-3 Examination - December 2017

Course Title: Probability and Statistics

Course Code: 10B11MA311

Semester: III

Program: B.Tech (BI/BT)

Marks: 35 marks

Time: 2 hours

Instructions: ALL questions are compulsory and carry equal marks. Statistical tables are supplied

1. The combined percentages of carbon monoxide (CO) and ozone (O3) emissions from different sources are listed in the following table.

Transportation	Industrial process	Fuel combustion	Solid waste	Miscellaneous
(T)	(I)	(F)	(S)	(M)
63%	10%	14%	5% 🦸	8%

Construct a pie chart and interpret the data.

- 2. Wool fibre breaking strengths are normally distributed with mean $\mu = 23.56$ Newtons and $\sigma = 4.55$. What proportion of fibres would have a breaking strength of 14.45 or less?
- 3. An educator believes that new directed reading activities in the classroom will help elementary school pupils improve some aspects of their reading ability. She arranges for a third-grade class of 21 students to take part in these activities for an eight-week period. A control classroom of 23 third-graders follows the same curriculum without the activities. At the end of the eight weeks, all students are given a Degree of Reading Power (DRP) test, which measures the aspects of reading ability that the treatment is designed to improve. Assume that $t_{0.01} = 2.31$.

Group	n	$\overline{x}_{\mathcal{S}}$	្ត
Treatment	21	51.48	11 .01
Control	23	41.52	17.15

Can you conclude that treatment (Group 1) is better than the control (Group 2) at $\alpha = 0.01$?

4. In a period of 100 minutes there were a total of 190 arrivals at a highway toll booth. The accompanying table shows the frequency of arrivals per minute over this period.

Number of arrivals	0	1	2	3	4 or more
Observed frequency	10	26	35	24	5

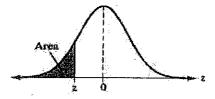
Test the null hypothesis that the population distribution is Poisson.

5. Find the value of Karl Pearson's correlation coefficient for the following set of data obtained by reading seven torque values (x) from an electric motor using current (y):

Experiment	1	2	3	4	5	6	7
x-value	16	14	12	10	8	6	4
y-value	12	8	16	14	4	10	6

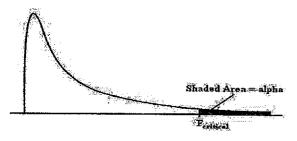
6. Five applicants for a job are rated by two officers, with the following results:

Applicant	A	В	C	D	\mathbf{E}_{\perp}
Rater 1	4	1	3	2	5
Rater 2	3	2	5	1	4


Determine the Spearman' rank correlation coefficient. Interpret your finding.

7. In order to study the effect of automobile size on the noise pollution, the following data are randomly chosen from the air pollution data. The automobiles are categorized as small, medium, large, and noise level reading (decibels) are given in table below.

Size of automobile										
Small	Medium	Large								
820	840	785								
820	825	775								
825	815	770								
835	855	760								
825	840	770								


At the $\alpha=0.05$ level of significance, employ one-way ANOVA to test for equality of population mean noise levels for different sizes of the automobiles.

Standard Normal Distribution:

Z	.09	.08	.07	.06	.05	.04	.03	.02	.01	.00
-3.4	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
-33	*********	0004	,0004	0004	3.0004	0004	0004	tioos	#6005#	0005
- 3.2	.0005	.0005	.0005	.0006	.0006	.0006	.0006	.0006	.0007	.0007
-31	.000%		-0008	OUGR	- 0008	(000	= 0009	- 2000	#.0009	0010
-3.Q	.0010	.0010	.0011	.0011	.007.1	.0012	.0012	.0013	.0013	.0013
		.0014	.0015	0015	CO16	in (tir) let	00174	((());	cinib):	0010
-2.8	.0019	.0020	.0021	.0021	.0022	.0023	.0023	.0024	.0025	.0026
22.0	## #1026 #	.0027	0078	0029	(00:10	4473	10057	X1133	(10.24)	0035
-2.6	.0036	.0037	.8600.	.0039	.0040	.0041	.0043	.0044	.0045	.0047
25;	#20 49 /	0049	40051	0022		.0055	eiere.	(1)	olono .	0052
~2.4	.0064	0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0082
i - 24 ii	.0084	-0087	10093	0091	2.0094	LOOM;	1000	91(02)	in to I	(107
2.2	.0110	.0113	.0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139
-21	(O) #3 h	0,46	0150		(0158	Φ162	0166	(1)(7(1)	0174	0170
2.0	.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228

<u>F-Distribution</u>:

d.fo:									α	= 0,05	<u> </u>			
Degrees of freedom,							C	d.f. _N : Degrees of freedom, numerator						
denominator	1	2	3	4	5	6	7	8	g	10	12	15	20	
	161.4	199.5	215.7	224.6	230,2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	
	18318.51 .	19.00	1916	1925	1930	10.13	1935	1937	11020	1940	1941	ELCI C	CONTRACTOR OF THE PARTY NAMED IN COLUMN	
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	
and a second	1/1	694	6.59	639	626	6.164	1609	6,04	10600	506	951	S TA		
5	6.61	5.79	5.41	5,19	5.05	4.95	4.88	4.82	4.77	4.74	全国联系部外 公理	4.62	4.56	
	7.99	514	476	453	189	4 78	3421	4/3	1270	rad.	436	400		
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3,73	3.68	3.64	3.57	3.51	3.44	
6	332	14.46	407	384	3,69	413.58	18330	A SAA	110		306			
ģ	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	
	496	410	111	148	100			707	11565	2.08		111762		
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	
34.312	475	3 89	3.10	1726		3.00	291	285	280	777	269	262		
13	4.67	3,81	3A1	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2 <i>A</i> 6	
1966	4.60	374	334	HIPS THE TOTAL AND THE	296	# 2.8S	776	762763	265	200	753	246	1939	
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	