JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION-OCTOBER 2017

B.Tech 5thSemester

COURSE CODE: 10B1WEC515

MAX. MARKS:15

COURSE NAME: THEORY AND APPLICATION OF CONTROL SYSTEM

COURSE CREDITS: 4

MAX. TIME: 1Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Make assumptions incase if find any information missing.

1. [5 marks] The block diagram of an electric train control is shown in Fig. below. The system parameters and variables are

 $e_r(t)$ = voltage representing the desired train speed, V

v(t) = speed of train, ft/sec

 $M = \text{mass of train} = 30,000 lb / \text{sec}^2$

K = amplifier gain

 $K_t = \text{gain of speed indicator} = 0.15 V / ft / \text{sec}$

To determine the transfer function of the controller, we apply a step function of 1 volt to the input of the controller, that is, $e_c(t) = u_s(t)$. The output of the controller is measured and described by the following equation:

$$f(t) = 100(1 - 0.3e^{-6t} - 0.7e^{-10t})u_s(t)$$

- (a) Find the transfer function $G_c(s)$ of the controller.
- Derive the forward path transfer function V(s)/E(s) of the system. The feedback path is opened in this case.
- (c) Derive the closed-loop transfer function $V(s)/E_r(s)$ of the system.
- (d) Determine the value of K for which steady state error to unit step input is less than 5 ft/sec.
- 2. [2 marks] Give two examples of feedback control systems in which human acts as a controller.

3. [5 marks]Use block-diagram algebra or Mason's rule to determine the transfer function between R(s) and Y(s) in Fig. below.

4. [3 marks] An electrical system and its signal-flow graph representations are shown in the figure (a) and (b) respectively. Find the values of G_2 and H in the given SFG.

figure (b)