Motif - Gong

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- Dec 2017

B. Tech Vth Semester

COURSE CODE: 10B1WEC515

MAX. MARKS: 35

COURSE NAME: Theory and Application of Control Systems

COURSE CREDITS: 4

MAX. TIME: 2hrs

Note: All questions are compulsory.

1. [10 marks] Consider the system

$$\dot{x} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

- a. Find the eigenvalues of A and from there determine the stability of the system.
- b. Find the transfer function model and from there determine the stability of the system.
- c. Are the two results same? If not, why?
- 2. [6 marks] Consider a double-integrator plant described by the differential equation

$$\frac{d^2\theta(t)}{dt^2} = u(t)$$

- a. Develop a state equation for this system with u as input, θ and θ as the state variables x_1 and x_2 respectively.
- b. Investigate the controllability and observability properties of this model.
- 3. [5 marks] A control system with a PD controller is shown in below figure.

Find the values of Kp and KD so that the ramp-error constant Kv is 1000 and damping ratio is 0.5.

4. [6 marks] State the Nyquist stability criterion and check the stability of a feedback system whose open-loop transfer function is given by

$$GH = \frac{K(s+2)}{s^2(s+4)}$$

- 5. [2 marks each] Write Short Notes on:
- a) Gain margin and Phase margin
- c) Transfer function vs. State-space approach
- b) Mason's gain formulae
- d) Routh-Hurwitz vs Root locus method