Dr. Saurabh Shrivaslara

## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 2 EXAMINATIONS - 2022

B. Tech. - IV Semester (BI)

COURSE CODE: 18B11MA411

MAX. MARKS: 25

COURSE NAME: BIOSTATISTICS

**COURSE CREDITS: 3** 

MAX. TIME: 1 Hour 30 Min

Note: All questions are compulsory. Marks are indicated against each question in square brackets. Scientific calculators are allowed.

Q1. Show that the random process  $X(t) = k\cos(nt + \theta)$  is wide-sense stationary process, if k, n are constants and  $\theta$  is uniformly distributed random variable in  $[0,2\pi]$ . (CO-5)[5]

Q2. Differentiate between strict-sense and wide-sense stationary processes in a tabular form.

Mention at least three points.

(CO-5)[3]

Q3. Define Markov chain. Give one real life example. Draw state diagram for the transition

probability matrix,  $\begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} \text{. Also if initial probabilities are given by,}$ 

 $(0.7 \quad 0.2 \quad 0.1)$ , then find the probabilities after one transition. (CO-5)[1+1+1+2]

Q4. In a production line, items are inspected by quality control manager for defectiveness. The following is a sequence of defective items, D, and non-defective items N, produced by this production line:

D D N D D N N N N D N N N D D D

Determine whether the defectives are occurring at random or not. [Given that: Critical value is 0.157] (CO-3)[2]

Q5. The accompanying data refers to concentration of some chemical samples obtained from five randomly selected sweeteners in each of four different regions.

| Region | 1 | 5.4 | 4.8  | 5.5  | 6.7  | 5.1  |
|--------|---|-----|------|------|------|------|
|        | 2 | 6.1 | 8.9  | 10.2 | 9.5  | 7.8  |
|        | 3 | 4.7 | 4.9  | 7.2  | 5.6  | 4.1  |
|        | 4 | 8.5 | 11.1 | 9.3  | 11.4 | 12.7 |

Test at 0.05 level of significance to see whether true average concentration differs for at least two of the regions. [Given that:  $\chi^2_{0.05,3df} = 7.815$  ] (CO-3)[5]

[P.T.O.]

Q6. Fit a linear regression model for the accompanying data on  $x = \text{current density (mA/cm}^2)$  and  $y = \text{rate of deposition (}\mu\text{m/min)}$  for plating of 60/40 Tin/Lead solder for head termination metallurgy.

| X | 20   | 40   | 60   | 80   |
|---|------|------|------|------|
| у | 0.24 | 1.20 | 1.71 | 2.22 |

Also find the rate of deposition if current density is 50 mA/cm<sup>2</sup>. (CO-1)[4+1]