B Ekta

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- April, 2022

B.Tech. (CSE, IT) VI Semester

COURSE CODE: 18B1WCI634

MAX. MARKS: 25

COURSE NAME: Machine Learning

COURSE CREDITS: 2

Q3.

MAX. TIME: 1.5 Hrs.

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

a. Using the following dataset, predict the class for the record (Color-Green, Q1. CO-3 legs=2, Height=Tall and Smelly= No) using Naïve Bayes algorithm.

Instanc e	Color	Legs	Height	Smelly	Species
1	White	3	Short	Yes	M
2	Green	2	Tall 🧥	™XX	M
3	Green	3	Short	Yes	M
4	White	3	Short	Yes	M
5	Green	2	Short	No	Н
6	White	2 /	Tall	No	Н
7	White	2	Tall	No	H
8	White	2	Short	yes	H

b. Give any two drawbacks of Naïve Bayes algorithm.

[2]

a. Explain overfitting and underfitting in terms of bias and variance errors. Q2. CO-2

[3] [2]

b. Suppose you build a model which shows a training accuracy of 95% and a test accuracy of 62%. What could be the possible reasons for the gap between these accuracies?

[2]

- a. Differentiate between ID3, C4.5 and CART algorithms.
 - b. Consider the following dataset of training examples:

A	В	Class Label
T	T	C0
T	T	C0
T	F	C1
F	F	C0
F	T	C1
F	T	C1

Compute Gini index for both the attributes (Show all steps clearly). Which attribute should be selected as a root node for building a decision tree on the basis of Gini index?

- Q4. CO-4 a. How does a Support Vector Machine work? Explain with the help of an [3] example.
 - b. Suppose 10,000 patients get tested for flu; out of them, 9000 are actually healthy and 1000 are actually sick. For the sick people, a test was positive for 620 and negative for 380. For the healthy people, the same test was positive for 180 and negative for 8,820. Construct a confusion matrix for the data and compute the accuracy.
- Q5. CO-5 a. Give a method to find the optimal value of k for k-NN algorithm.

b. Given the following dataset, find the class of the test sample using k-NN [3] algorithm. Take k=1 and k=3. Use L2 Norm for distance computations.

[2]

Height (CM)	Weight (KG)	Class
167	51	Underweight
173	64	Normal
172	65	Normal
174	56	Underweight
169	58	Normal
168	53	Underweight

Test Sample.

٠.		**************************************	All III
	Height (CM)	Weight (KG)	Člass
	170	57	?