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Chapter 1

Introduction

In this chapter, the objective of the research work is set and a brief description of
anatomy of Human Brain with characteristic features of brain tumor is presented. Later,
Magnetic Resonance Imaging (MRI) technique and motivations behind this thesis is

discussed briefly. Finally the contribution and outline of the entire thesis is presented.

1.1 Problem Definition

There has been great impact on the field of medical imaging by the advancements in
the computer technology as new and improved techniques of data acquisition, analysis,
processing and visualization have evolved. Magnetic resonance images (MRI) provides
information about potential abnormal tissues necessary for medical follow up. Brain MRI
gets additional importance in medical science as it is the only preliminary method of
diagnosing a brain tumor. The available and upcoming techniques of Artificial Intelligence
can assist the medical practitioners in deciding whether an evident anomaly in a human
Brain MRI is a tumor or not. This thesis addresses the problem of automated detection and
grading of brain tumors and tries to find a novel yet efficient solution for it. The formal
problem definition is enlisted below:

a) To explore possibilities of developing a robust algorithm for classification of Brain

MRIs as normal or abnormal based on the absence or presence of tumor of any

grade.



b) To determine the grade of tumor present in abnormal Brain MRIs.
¢) To study comparatively the applicability and implementation of various medical

image segmentation and classification techniques and finally apply the best one.

1.2 Human Brain: Anatomy and Anomalies

1.2.1 Brain Anatomy

Before dealing with the brain tumors and MR Images, the basic structure of human
brain must be well understood. Following are the main parts of human brain [Martin 2003,
Duvernoy and Vannson 1999]:
a) Brainstem — It is the lower extension of the brain where it connects to the spinal cord.
Neurological functions located in the brainstem include those necessary for survival
(breathing, digestion, heart rate, blood pressure) and for arousal (being awake and alert).
The brainstem is the pathway for all fiber tracts passing up and down from peripheral

nerves and spinal cord to the highest parts of the brain.

) \
/ ® Cerebellum
Brainstem

Fig.1.1. Parts of human brain
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b) Cerebellum - The portion of the brain (located at the back) which helps coordinate
movement (balance and muscle coordination).
¢) Frontal Lobe — 1t is the front part of the brain and is involved in planning, organizing,
problem solving, selective attention, personality and a variety of "higher cognitive
functions" including behavior and emotions.
d) Occipital Lobe —1t is the region in the back of the brain which processes visual
information. It also contains association areas that help in the visual recognition of shapes
and colors.
e) Parietal Lobe - One of the two parietal lobes of the brain located behind the frontal lobe
at the top of the brain.
) Temporal Lobe - There are two temporal lobes, one on each side of the brain located at
about the level of the ears. These lobes allow a person to tell one smell from another and
one sound from another. They also help in sorting new information and are believed to be
responsible for short-term memory.

Most of times in adults tumors develop in the cerebral cortex, area of the brain that
has a role in memory, thought, and more, whereas in case of children tumors often develop
in the brain stem and cerebellum, which is located near the brain stem and affects

movement and coordination.

1.2.2 Brain Tumors: Features and classification
A brain tumor is an abnormal growth of tissue in the brain. Unlike other tumors

spread by local extension and rarely metastasize (spread) outside the brain. A brain tumor
3



develops when abnormal cells multiply for unknown reasons. Glioma is the term used to
refer to the most prevalent primary brain tumors. Gliomas arise from glial tissue, which
supports and nourishes cells that send messages from the brain to other parts of the body.
These tumors may be either malignant or benign [Greenberg and Chandler 1999].
Astrocytomas, ependymomas, and mixed gliomas are three of the most common gliomas.
a) Benign and Malignant brain tumors

Benign tumors are composed of harmless cells and have clearly defined borders.
They can usually be completely removed, and are unlikely to recur. Benign brain tumors
do not infiltrate nearby tissues but can cause severe pain, permanent brain damage, and
death. Malignant brain tumors do not have distinct borders. They tend to grow rapidly,
increasing pressure within the brain and can spread in the brain or spinal cord beyond the
point where they originate. It is highly unusual for malignant brain tumors to spread
beyond the Central Nervous System (CNS).
b) Primary and Secondary brain tumors

Primary brain tumors originate in the brain. They represent about 1% of all cancers
and 2.5% of all cancer deaths. Approximately 25% of all cancer patients develop
secondary or metastatic brain tumors when cancer cells spread from another part of the
body to the brain.
¢) Naming and grading brain tumors

The name of a brain tumor describes where it originates, how it grows, and what
kind of cells it contains. A tumor in an adult is graded or staged according to:

» how malignant it is

» how rapidly it is growing and how likely it is to invade other tissues
4



-

» how closely its cells resemble normal cells. (The more abnormal a tumor cell
looks, the faster it is likely to grow)

Low-grade brain tumors usually have well-defined borders. Some low-grade brain tumors
form or are enclosed (encapsulated) in cysts. Low-grade brain tumors grow slowly, if at
all. They may spread throughout the brain, but rarely metastasize to other parts of the
body.

Mid-grade and high-grade tumors grow more rapidly than low-grade tumors. Described as
"truly malignant," these tumors usually infiltrate healthy tissue. The growth pattern makes
it difficult to remove the entire tumor, and these tumors recur more often than low-grade
tumors. A single brain tumor can contain several different types of cells. The tumor's grade
is determined by the highest-grade (most malignant) cell detected under a microscope,
even if most of the cells in the tumor are less malignant. An infiltrating tumor is a tumor of
any grade that grows into surrounding tissue. World Health Organization grading system
classifies the brain tumors on the basis of rate of growth into four categories, grade I, I, III
and IV [Chaa 2006]. Grade I tumors are the least malignant and grow slowly. But even a
grade I tumor may be life-threatening if it is inaccessible for surgery. Grade II tumors grow
slightly faster than grade I tumors and have a little abnormal microscopic appearance.
These tumors may invade surrounding normal tissue, and may recur as a grade III or
higher tumor. Grade 11l tumors are malignant. The chances of recurrences of these tumors
are quite high. Grade IV tumors are the most malignant and invade wide areas of

surrounding normal tissue.
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1.3 Magnetic Resonance Imaging

Great convenience has been brought by modern clinical imaging techniques in
studying anatomy and in making screening, prognosis, diagnosis and examination of
disorders or diseases present in human body. Clinical imaging techniques can be
categorized on two basis:

a) According to the target position, medical imaging can be classified into cerebral
imaging, cardiac imaging, thoracic/lung imaging, liver imaging, bone / arthral imaging,
vascular imaging and so on; and

b) According to imaging modality, medical imaging can be categorized as one of the
following: Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron
Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT),
Functional Magnetic Resonance Imaging (fMRI), Ultrasound, Diffusion Tensor Imaging
(DTI) etc.

1.3.1 Working of MRI Machines

Due to the importance of brain in human body, brain imaging has always been one
of the focuses of attention for researchers in medical imaging. MRI machines use
magnetetic and radio waves to look inside the human body. It provides an unparalleled
view inside the human body. The level of detail we can see is extraordinary compared with
any other imaging modality. MRI is a popular method for the diagnosis of many types of
injuries and conditions because of the incredible ability to tailor the examination to the
particular medical question being asked. The basic idea of MRI is to calculate the signal
changes of protons caused by a strong external magnetic field and low-energy radio

frequency signal.



In MRI, only the proton in hydrogen interacts with the magnetic field. So, the
hydrogen is also termed as the proton which moves in a wobbling fashion in a static
magnetic field. This movement makes the proton like a tiny magnet; therefore it aligns to
the direction of the magnetic field in a high external static magnet. The direction of the
precession is parallel to the magnetic field and the frequency of the precession is
determined by Larmor equation [Bargmann ez al. , 1959]. The units for measuring the
strength of magnetic field are Tesla and gauss. Currently, 1.5-Tesla is the gold standard for
the clinic diagnosis. Magnetic fields greater than 2 Tesla have not been approved for use in

medical imaging.

1.3.2 Directions in MRI
In MR imaging domain, the plane that parallels to the z axis is called longitudinal
plane, and the one consists of x-y axis is called transverse plane. The orientation of x, vy,

and z axes are defined as:

z axis - from patients’ head to feet.

x axis - from patients’ back to front.

y axis - from patients’ left arm to right arm.

When a patient is placed in a strong magnetic field, the protons in the body precess
along z direction with a precession frequency determined by the Larmor equation. To
generate a magnetic resonance signal, a RF pulse with the same precession frequency is

transmitted to the protons. The protons absorb the transmitted energy and are forced to



precess in the direction perpendicular to z direction. After that, the RF pulse is turned off
and the protons begin to realign to the z direction (longitudinal plane). During this
realignment period, the protons will release the absorbed energy in the form of radio
frequency. These radio frequencies, or signals, are received by a RF receiver and sent to a
computer to reconstruct the final images. The period during which the protons release the
energy is called “relaxation”. Generally, there are two kinds of relaxation times can be

measured, i.e. T1 relaxation time and T2 relaxation time.

1.3.3 T1 and T2 relaxation time

The time that the protons release the absorbed energy to their adjacent tissues
(lattice), and realign to z-direction (longitudinal plane), is called T1 relaxation time, or
spin-lattice/longitudinal relaxation time. Typically, this time ranges from 0.1 to 2 second.

T2 relaxation time measures the time over which the protons release the absorbed
energy to their surrounding protons (spins) in the x-y plane, is called T2 relaxation time, or
spin-spin/transverse relaxation time. This time is usually shorter than or equal to TI
relaxation time. Since different tissues in the human body have different T1/T2 relaxation
times, the records of these times can reconstruct the image of the corresponding tissue.
Most of MRI has three kinds of image contrasts, i.e. T1, T2, and Proton Density (PD)-
weighted images. PD-weighted images are generated by calculating the number of protons
per unit of tissue.
1.3.4 Planes in MRI imaging

In MR imaging, the images are normally acquired in three planes, known as the

sagittal plane, the horizontal (axial) plane, and coronal plane as shown in Figure 1.2.
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Figure 1.3, 1.4 and 1.5 shows the T1-weighted brain images generated in these three

planes, respectively.

Fig.1.2. The spatial demonstration of three planes for MRI (a) Coronal plane (b) Axial

plane (c) Saggital Plane



Fig.1.3. Axial T1 MRI of Normal Brain

Fig.1.4. Coronal T1 MRI of Normal Brain

Figure 1.6 shows a slide of MRI with tumors. The tumor can be seen as the small white

region on the lower right side of the slices.
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Fig.1.5. Saggital T1 MRI of Normal Brain

1.3.5 The advantages and disadvantages of MRI

Following are the advantages of MRI that make it the most preferable image modality:

1.) High spatial resolution

2.) Exceptional description of soft tissues.

3.) Functional brain measurement

4.) No hazard for human body

5) By changing examination parameters, the MRI system can cause tissues in the body to
take on different appearances. This is very helpful to the in determining if something seen
is normal or not. We know that when we do "A." normal tissue will look like "B" -- if it

doesn't, there might be an abnormality.
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Fig.1.6. A slide of MRI of Brain with tumor
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1.4 Motivations

The properties of the problem of automatic tumor detection make it an excellent
research challenge in the fields of medical image analysis and Pattern Recognition, in
general. The main motivations for this research work are as follows:

1) The manual segmentation by qualified professionals has two major drawbacks. The first
drawback is that producing manual segmentations or semi-automatic segmentations is
extremely time consuming, with higher accuracies on more finely detailed volumes
demanding increased time from medical experts. The second problem with manual and
semiautomatic methods is that results are subject to variations. This is due to the fact that
several anomalies in brain appear similar in the MRI. A recent study quantified an average
of 28% + 12% variation in quantified volume between individuals performing the same
brain tumor segmentation task (the variation ranged from 11% to 69%), and quantified a
20% =+ 15% variation within individuals repeating the task three times at 1 month intervals
[Mazzara ef al. 2004].

1i. Accurate automatic segmentation methods could also lead to new applications,
including effective content based image retrieval in large medical databases. This could
allow clinicians to find similar images in historical data based on tumor location, grade,
size, enhancement, extent of edema, similar patterns of growth, or a variety of other

factors.



1.5 Methodology

There are various forms of medical image analysis. Well-known examples include
segmentation, registration, reconstruction, classification, wvalidation, visualization,
interaction, simulation, etc. The methodologies used for the detection of brain tumors in
this thesis are image segmentation and classification. Medical image segmentation means
to divide an image into non-overlapping regions that belong to meaningful objects such as
tissues, organs, anatomical structures, cell colonies and so on. Image segmentation is a
fundamental process in several image processing and computer vision applications. It can
be considered as the first low-level processing step in image processing and pattern
recognition [Cheng ef al. 2001].

Image segmentation divides an image into disjoint homogenous regions. These
homogenous regions should represent objects or parts of them [Lucchese and Mitra 2001].
The homogeneity of the regions is measured using some image property (e.g. pixel
intensity) [Jain ef al. 1999].

Brain image segmentation can be difficult because the target object may be
indistinctive and is hard to extract from the surroundings. Some examples of obstacles to
segmentation are noise corruption, obscure boundaries, interference from irrelevant objects
or background clutter, fusion of target object with other objects, imaging artifacts, etc.
Automatic brain segmentation 1s further compromised by variation of normal and
pathologic anatomy, different image qualities and characteristics resulting from various

acquiring protocols and machine specifications. Therefore, we need sophisticated
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segmentation methods to tackle the problem of cerebral segmentation. There are many
techniques for image segmentation in the literature. In general, these techniques can be
categorized into thresholding, edge-based, region growing and clustering techniques.
These methods are detailed in the next chapter.

Models proposed in this thesis are first presented and discussed. Experimental
results were then obtained using various MR images with known characteristics in order to
show the accuracy and efficiency of the proposed algorithms. The results of state-of-the-
art algorithms when applied to the same test images were also reported to show the relative
performance of the proposed approaches when compared to other well-known approaches.
Due to the stochastic nature of the proposed algorithms, all the presented results are
averages and standard deviations over several simulations. However, due to the
computational expensive nature of the simulations, results were generally taken over 10 or

20 runs.

1.6 Challenges in Automatic Detection

In this section we try to explore why brain tumor detection is more challenging
than other cancers such as mammograms. The automated detection of abnormalities in MR
images is a complicated task. This is due to the following problems With respect to the
MR imaging modality; this thesis will focus on five problems that can complicate the
segmentation task:

1. Local Noise

2. Partial Volume Averaging



3. Intensity Inhomogeneity
4. Inter-slice Intensity Variatoins
5. Intensity Non-Standardization

The differences in the intensities of MR images are present even in controlled
settings. MRIs lack standard interpretation of image intensities. Unlike in other modalities,
MR images taken for the same patient on the same scanner at different times may appear
different from each other due to a variety of scanner-dependent variations and, therefore,
the absolute intensity values do not have a fixed meaning. [Nyul ef al. 2000]. The
acquisition of MR images is therefore not a calibrated measure, and the intensities
represented in the image do not have an exact meaning with respect to the underlying
tissue [Clatz ef al. 2004]. This variation can cause major problems in intensity based
segmentation methods, since differences in a wide variety of factors can lead to different
observed intensity distributions.

Local noise, partial volume averaging, intensity inhomogeneity, and inter-slice
intensity variations can be taken care of by preprocessing or postprocessing steps.
However, intensity nonstandardization represents a major problem in the quantitative
analysis of MR images. Despite the presence of the above challenges for automatic
segmentation of MR images, effective methods for the automatic segmentation of normal
brains into different normal brain tissue classes exist. The design and selection of
algorithms in the classification or segmentation is one of the major challenges. In next
chapter an exhaustive literature survey has been done to find out the algorithms which

have been used so far, for the purpose of Brain MRI Segmentation.
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1.7 Thesis Outline:

This thesis comprises of the following chapters:
Chapter 2 presents an extensive report on historical perspective of this problem.
Chapter 3 details the outline of automated detection and highlights the approach followed
for each step in the process.
Chapter 4 of the thesis presents few standard approaches for the MR image classification.
Chapter 5 introduces Particle Warm Optimization (PSO). It also presents a survey of a few
versions of PSO and experiments with some of them.
Chapter 6 presents three methods based on Particle Warm Optimization (PSO) for MR
image segmentation. Finally, an approach for grading of tumors is also presented in this

chapter.

1.8 Contributions

The main contributions of this study are:

a) Possibilities of developing a robust algorithm have been explored, for classification
of Brain MRIs as normal or abnormal based on the absence or presence of tumor of
any grade.

b) Efficient algorithm for image segmentation and classification algorithm based on
the PSO has been developed for brain tumor detection from MRI, which can be

used for other diseases as well, with little or no modification.
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Chapter 2

Related Works

2.1 Introduction

The important forms of medical image analysis are segmentation, registration,
reconstruction, classification, validation, visualization, interaction, simulation, etc. Out of
these, image segmentation is the most popular technique. The methodologies used for the
detection of brain tumors in this thesis are image segmentation and classification. Medical
image segmentation means to divide an image into non-overlapping regions that belong to
meaningful objects such as tissues, organs, anatomical structures, cell colonies and so on.
Image segmentation is a fundamental process in several image processing and computer
vision applications. Brain tumor detection has been a challenge in the field of brain
computer-aided diagnosis. A large amount of research effort has been focused on the
segmentation of images of the brain in MR images. Segmentation is an important process
in most medical image classification and analysis for radiological evaluation or computer-
aided [Dhawan 1990] diagnosis. It is the process of separating out mutually exclusive
homogeneous regions of interest. The goal of segmentation is to simplify and/or change
the representation of an image into something that is more meaningful and easier to
analyze [Shapiro and Stockman 2001]. Image segmentation is typically used to locate

objects and boundaries (lines, curves, etc.) in images.
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The result of image segmentation is a set of segments that collectively cover the
entire image, or a set of contours extracted from the image. Each of the pixels in a region is
similar with respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the same
characteristic(s). This chapter provides a survey of many of the proposed approaches for
automatic brain tumor segmentation in MR images. The first two types of methods we
examine are unsupervised and supervised methods. These methods do not incorporate
spatial registration. The difference between these two is that supervised methods make use
of training data that has been manually labeled, while unsupervised methods do not. Figure

2.1 summarizes the main methods of image segmentations under study in this chapter.

2.2 Unsupervised segmentation

In unsupervised segmentation the computer selects natural groupings of pixels
based on their spectral properties. An unsupervised classification algorithm still requires
user interaction; however, these occur after the classification has been performed. In
unsupervised classification the user attempts to assign information classes to the spectral
classes the computer has created. Following are the main categories of unsupervised image

segmentation:

2.2.1 Thresholding Techniques :
Thresholding [Gonzalez and Woods 1992; Jain et al. 1995] is the simplest image

segmentation technique. In its simplest version an image is divided into two segments:
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object and background by specifying a threshold. A pixel above the threshold is assigned
to one segment and a pixel below the threshold is assigned to the other segment. For more

sophisticated images multiple thresholds can be used.

2.3.2 Edge-based Techniques
In edge-based techniques [Gonzalez and Woods 1992; Jain et al. 1995; Kwok and

Constantinides 1997], segmentation is achieved by finding the edges of the regions.

2.2.3 Region growing Techniques

In region growing [Gonzalez and Woods 1992; Jain et al. 1995; Fuh et al. 2000], a
set of seed pixels are chosen. Neighboring pixels of a seed are agglomerated if they satisfy
a homogeneity criterion. This is repeated until no more pixels can be added to the region.
This approach has following problems [Turi 2001]:

» The selection of the seed pixels which is not a straightforward task.

 The selection of the homogeneity criterion.

Region splitting and merging divide the image into regions. A region is then split if
it does not satisfy a homogeneity condition. Regions can also be merged if their merging
results in a region that satisfies some condition. This is repeated until no more splitting and

merging can occur [Gonzalez and Woods 1992].
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MEDICAL IMAGE SEGMENTATION
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Fig.2.1. Important methods of Medical Image Segmentation

An unsupervised approach for the segmentation of enhancing tumor pixels from
T1-weighted post-contrast images was proposed by Gibbs ef al. [1996]. This system first
applied an intensity threshold to a manually selected region of interest and then used a
region growing algorithm to expand the thresholded regions up to the edges defined by a
Sobel edge detection filter. A similar approach was proposed by Zhu and Yan [1997] for
the segmentation element of their enhancing tumor boundary detection approach. These
methods represent a clearly justified approach for segmenting image objects that are
different in intensity than their surroundings. A fully unsupervised approach for tumor
segmentation was proposed by Ho e al. [2002]. This system used both the T1- weighted
pre-contrast and the T1-weighted post-contrast images as input, and the first step in this
system was the coregistration of these two volumes. Coregistration refers to the spatial

alignment of two volumes that may not be of the same modality, but that represent a
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(potentially unaligned) measurement of the same underlying object. After this alignment
step, an image was computed that represented the difference between the T1-weighted
images before and after the injection of the contrast agent. A Mixture Model was then
applied to the histogram of this difference image. This method was not subject to many of
the disadvantages of the earlier methods.

The advantages of this system are a) use of a Mixture Model allows the technique
to adaptively find the enhancing area and is thus more robust to differences in intensity
between images and b) non-enhancing areas surrounded by enhancing areas will be
included in the segmentation through the use of the active contour. Some more systems
based on the similar approach were presented by Yoon ef al. [1999], Gosche et al. [1999],

Fletcher-Heath ez al. [2001] etc.

2.3 Supervised Segmentation

The classification problem formulation is a popular method to perform image
segmentation using a supervised approach. The task in classification is to assign a class,
from a finite set of classes, to an entity based on a set of features. Supervised classification
involves a training phase that uses labeled data to learn a model that maps from features to
labels, and a testing phase that is used to assign labels to unlabeled data based on the
measured features. While many unsupervised approaches also use these two phases, the
use of labeled data in the training phase of supervised approaches forces the model to focus
on making discriminations in the feature space that correspond to the desired semantic

discriminations.
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Labels, as normal or tumor are used as classes in the segmentation task. The
training phase under this formulation would consist of learning a model that uses the MR
image intensities to discriminate between normal and tumor pixels. The testing phase
would consist of the use of this model to classify unlabeled pixels into one of the two
classes based on their intensities. A major advantage of using a supervised formulation is
that supervised methods can perform different tasks simply by changing the training set.
The supervised approaches that have been used in medical imaging include kNN, Artificial
Neural Networks (ANN), Maximum Likelihood classifier (ML), Decision Tree Classifier,
Support Vector Machines (SVM) etc. Figure 2.2 shows the basic outline of a supervised
learning framework.

A comparison between Maximum Likelihood (ML) and Artificial Neural Network
(ANN) was done by Clarke [1991] for brain tumor segmentation in MR images. It was
found that the ANN performed better than the ML approach. Training ML classifiers
consists of optimizing the parameters of an assumed model of the features (often assuming
a parametric model such a univariate or multivariate Gaussian) and assigning pixels to the
class that they are statistically most likely to belong to, based on these models. On the
other hand, ANN approaches ‘feed’ the features through a series of nodes, where
mathematical operations are applied to the input values at each node and a classification is

made at the final output nodes.
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Fig.2.2. Supervised Learning Framework: In the training phase labeled data is used to
make a model for classification, whereas in testing phase this model is used to predict

labels of unlabelled images.
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Fig.2.3. Architecture of a Neural Network: Multi-spectral intensities represent the input to
this network, linear combinations of the intensities; the output node values are formed

from linear combinations of the results of the hidden layer transformations.

Figure 2.3 shows the overall architecture of ANN. Training for these models

consists of determining the values of the parameters for the mathematical operations such
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that the error in the predictions made by the output nodes is minimized. ANN approaches
are non-parametric techniques and, with the use of ‘hidden’ layers of nodes, allow the
modeling of non-linear dependencies in the features. In another system developed by
Ozkan et al. [1993] pixel intensities were used in the different channels and patient-
specific training was done. This work also confirmed that Neural Networks outperformed

Maximum Likelihood methods.

In a different work by Schad ez al. [1993] a Decision Tree classifier was used based
on first-order and second-order texture features, that is statistical moments and spatial co-
occurrence features, respectively. Decision Trees are a popular classification technique due
to their ability to model non-linear dependencies in the features, and their intuitive
graphical representation of the learned model (as opposed to, for example, ANNs).
Decision Trees perform classification by making a set of decisions based on the features,
beginning from a root ‘node’ and following decision made to other nodes in the tree where
new decisions are made, leading finally to a ‘leaf” where a classification is made. There are
many methods of automatic Decision Tree learning, including the popular C4.5 classifier

[Quinlan, 1993].

Vinitski ef al. [1997] also presented a supervised method that addressed several
1ssues previously ignored in most automatic systems for tumor segmentation. This method
used several preprocessing steps before the classification in order to improve results. These
steps were step coregistration, anisotropic diffusion filter and intensity inhomogeneity
correction. The classifier used was a k-Nearest Neighbors (kNN) classifier, that assigns
labels to pixels based on the most frequent label among the k closest training points under
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a distance metric applied to the features (referred to as ‘lazy’ learning, since no explicit
model is learned). The kNN algorithm is a simple and effective method for multi-class
classification that is able to model non-linear distributions. Disadvantages of the kNN
algorithm include the dependence on the parameter k, large storage requirements (the
model consists of all training points), sensitivity to noise in the training data, and the
undesirable behavior that can occur in cases where a class is underrepresented in the

training data.

To overcome the need of patient - specific training in supervised methods, a
method was proposed by Dickson and Thomas [1997] which used a set of 50 hand-labeled
MR slices from the same area of the head of different patients with brain tumors, and
learned to automatically label this without patient specific training. The features used in
this system included not only the pixel intensities, but the intensities of neighboring pixels
and the pixel’s location within the image. This work compared the use of a kNN classifier,
a Learning Vector Quantization (LVQ) classifier, and an ANN. The comparative studies
done in this work have provided valuable insights into the problem. These results indicated
that a) the ANN outperformed the other two methods, b) pixel neighborhood intensities
increase classification performance, ¢) the combination of intensity and texture information
performed better than either individually, and d) 1 hidden layer in the network topology
outperformed O or 2 hidden layers. After pixel classification with the ANN, this system
performed an unsupervised segmentation to divide the image into homogeneous regions.

These regions were assigned a label based on the results of the classifier, and were
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processed with morphological operations. A second ANN was used to determine whether

the resulting regions represented tumors based on a feature set.

One more method was presented by [Busch, 1997] that did not require patient-
specific training. This work focused on the segmentation of a specific type of non-
enhancing homogeneous tumor (low-grade astrocytomas) from T1-weighted, T2-weighted,
and coregistered CT (X-ray) images. Recently, a method was proposed by Zhang ef al.
[2004] for automatic tumor segmentation in MR images. This approach used Support
Vector Machines (SVMs), which are currently an extremely popular method for

performing binary classification.

In addition to the supervised learning methods discussed above many methods have
been proposed that use Supervised Segmentation with Advanced Image Modalities. The
advantages of these methods are that they may facilitate an easier automatic segmentation
task and that they may more appropriately characterize the extent of the tumor infiltration.
The disadvantages of these approaches are that they require additional acquisition time and
that the additional modalities are not available for historical data. A method to segment
tumors was evaluated by Soltanian-Zadeh er al. [1998]. The system presented to segment
this large combination of images used patient specific training, and consisted of
coregistration, brain masking, anisotropic filtering, intensity non-uniformity correction,

and finally an eigenimage analysis.
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2.4 Registration-Based Segmentation

Registration-based methods, also known as atlas based method make use of a
segmented image (deformable atlas) which is elastically warped to a new image and tissue
labels are simply transferred. A deformable atlas is usually obtained using one or several
manual segmentations. The main advantage of these methods is possibility to propagate
any brain structure available in the atlas without any additional cost.

The aim of registration of image X to image Y is to find a transformation which
maps any point x in image X to its corresponding point y in image Y. First, the global 12-

parameter affine transformation A(X —7Y) is calculated to perform translation, rotation,
scaling and skewing so that the best possible alignment of the images is achieved [Hajnal
et al. 2001]. Affine registration is often not sufficient due to natural variability in shape
and size of normal healthy brains. One of the ways to model the local component is using
uniform tensor-product 3D cubic B-splines [Rueckert ef al. 1999]. During the iteration step
in both affine and non-rigid registration, Normalized Mutual Information NMI [Studholme
et al. 1998] is used as the similarity metric of the two images, given as follows:

H{X)+H(Y)
HX.Y)

NMI(X.Y)=
where, H( ) denotes the entropy of normalized image histogram. A cost function consisting
of similarity term and in case of B-spline registration also of regularization term to ensure
smoothness is then minimized using gradient descent. The B-spline registration is

performed in multi-resolution framework. The resolution is refined by halving the spacing
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between the B-spline control points and consequently inserting new B-spline control

points. Affine registration is always performed before B-spline registration so we can write

N.Y—»F(X) = A.Y—»F(X) + B.Y—)Y (X) (2.1)

Let R be the reference image and M corresponding manual segmentation of image R. A
new image I can be segmented by transferring the manual segmentation using non-rigid
registration. Let Seg,(1) denote registration-based segmentation of I. Then,

Seg (I)=N, (M) (2.2)

—/

where, transformation of the image means that the transformation is applied to every pixel
of the image. Segmentation approaches based on this idea typically first align a labeled
template (or atlas) image with the image to be segmented, and infer the labels for the new
image by assuming that they correspond to the labels of the aligned template.

The advantage of this type of method is that spatial information is encoded through
the use of the template, as opposed to pixel classification based methods that encode
limited spatial information. The major disadvantage of this method is that the registration
may not be perfect, and that there may be anatomical differences between the template and
the image to be segmented. These disadvantages make template registration methods
inappropriate to apply directly for tumor segmentation, since the template does not have a
tumor, nor is its anatomy affected by the presence of a tumor. However, the ability to use
spatial information derived from the spatial alignment of a template is appealing, and there
has been considerable recent effort focusing on the incorporation of template registration

into methods for tumor segmentation.
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The major work using this approach include those of Kaus ef a/.(2001]. This model
is shown in Figure 2.3. They employed a kNN classification algorithm with patient-
specific training, used a label-based registration algorithm based on principles of optical
flow, and preprocessed images with an anisotropic diffusion filter before analysis. After

preprocessing, the segmentation consisted of performing kNN classifications.
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Fig.2.4. Diagram of the tumor segmentation scheme proposed by [Kaus ez al. 2001]

Gering [2003] proposed a system that used template registration in segmentation.
This method used a database of normal brains as training data. Each normal brain would be
registered with the image to be segmented, and a simple multi-resolution statistic would be
computed for each pixel to determine how significantly it differed from the most similar
normal brain at that location. One of its limitations is that it does not account for the
intensity non-standardization effects that would be present in a large database of normal
brains, while another weakness is the lack of availability of a database of completely

normal brains. In a hybrid approach, Murgasova ef al. [2006] combined intensity based
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and registration based approaches to obtain a robust segmentation method which is

successfully used on healthy and diseased brain MRI of 2-year-old children.

2.5 EM-based segmentation

The expectation-maximization algorithm (EM) [Dempster ef al. 1977] is a general
technique for finding missing data based on observed data and maximum likelihood
parameters estimates. [Leemput ez al. 1999a] presented a model in which observed data are
the image intensities, the missing data are the labels and the parameters are the means and
variances of the Gaussian distribution which is assumed for the intensity distribution of
each tissue class. This is an iterative process which interleaves the calculation of posterior
probabilities of each voxel belonging to each tissue class (usually white matter, gray
matter, cerebrospinal fluid, other) - the expectation step, with maximum likelihood
estimation of the Gaussian distribution parameters the maximization step.

For the task of segmenting head MR images into the three normal brain classes
(gray matter, white matter, and cerebrospinal fluid), Expectation Maximization approaches
have become a popular framework, since they have shown to be robust to both intensity
inhomogeneity and intensity non-standardization. Wells ef al. [1996] was the first group to
formulate the task of normal brain segmentation as an Expectation Maximization problem.
Some other works using this approach are those by Leemput ef al. [1999a, 1999b], Evans

and Collins [1993] etc.
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2.6 Image Segmentation using Clustering

In one more category of unsupervised methods, rather than dividing the image
along anatomically meaningful distinctions, images are divided into homogeneous regions
using image-based features such as intensities and/or textures. Clustering is one method to
this. The main disadvantages of this approach are a) the number of regions often needs to
be pre-specified, b) tumors can be divided into multiple regions, and ¢) tumors may not
have clearly defined intensity or textural boundaries. These disadvantages limit the use of
this approach. Some significant works done using these methods are by Capelle ef al.

[2000] and Sammouda et al. [1996].

Image segmentation can be treated as a clustering problem where features
describing each pixel correspond to a pattern and an image region (i.e. segment)
corresponds to a cluster [Jain ef al. 1999]. It can be inferred from the definitions of the
clustering problem and the image segmentation problem that both the problems are similar
in nature. Therefore, clustering algorithms have been widely used to solve the problem of
image segmentation (e.g. K-Means [Tou and Gonzalez 1974], FCM [Trivedi and Bezdek
1986], ISODATA [Tou and Gonzalez 1974] etc. But since the number of clusters is
usually not known a priori in image segmentation, clustering algorithms that do not require

the user to specify the number of clusters are usually preferred.

In this thesis, the clustering problem and the image segmentation problem are
considered to be similar. Thus, algorithms are proposed for both problems interchangeably.

Image segmentation is a fundamental process in several image processing and computer
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vision applications. It can be considered as the first low-level processing step in image
processing and pattern recognition [Cheng ef al. 2001]. Image segmentation is defined as
the process of dividing an image into disjoint homogenous regions. These homogenous
regions should represent objects or parts of them [Lucchese and Mitra 2001]. The
homogeneity of the regions is measured using some image property (e.g. pixel intensity)

[Jain ef al. 1999]. Image segmentation can be formally defined as follows:

Given an image I and a homogeneity predicate P. The segmentation of image I is

the partitioning of I into K regions, {R, R»,...,Rk}, satisfying the following conditions:

» Each pixel in the image should be assigned to a region.

» Each pixel is assigned to one and only one region.

» Each region satisfies homogeneity predicate P.

Two different regions cannot satisfy the same predicate P.

Y

In this work, the various classification techniques used for the detection of
anomalies in brain MRI are a) Hybrid of Genetic Algorithms and Artificial Neural
Networks b) Adaboost ¢) Support Vector Machine. As the research interest of this work is
to explore the applicability of Particle Swarm Optimization, in chapter 6 the same has been
used for a) segmentation using clustering and b) optimization of feature sets to be input to
existing classifier such as kNN and clustering algorithm K-Means. The supervised
classification stage has two components, a training phase and a testing phase. In the
training phase, pixel features and their corresponding manual labels represent the input,

and the output is a model that uses the features to predict the corresponding label.
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2.7 Conclusion

Several methods of segmentation of brain tumors were discussed. These included
supervised and unsupervised methods, registration and EM based methods. Advantages
and limitations of all the approaches were presented. It can be concluded that the current
state of the art methods for automatic brain tumor segmentation are Expectation
Maximization approaches that use outlier detection due to the robustness to intensity non-
standardization, along with the registration-based method of [Kaus ef al., 2001], due to the
use of non-linear registration and the more extensive use of spatial information to enhance
discrimination and the neural network based methods of [Dickson and Thomas, 1997,
Busch, 1997], due to the use of textural information and more powerful classification
techniques. Many methods make use of two or more of the previously discussed
approaches. These are termed as Hybrid methods, which has been used in the upcoming
chapters. In this work, the use of textural and spatial information has been integrated with
some classification techniques which have not yet been used in brain tumor segmentation.
Particle Swarm Optimization is one such method. Other methods include Support Vector

Machine, kNN, K-Means, Genetic Algorithms etc.
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Chapter 3
MRI Classification Outline

3.1 Introduction

The existing work provides important information needed in designing a new
system. In the previous chapter a variety of methodologies were presented for the detection
of tumors using MRI. This chapter provides a common outline of few new systems for this
purpose. The next section points out some of the steps which can enhance the tumor
detection process and presents a basic model for image preprocessing and segmentation of
MRI. Next section provides brief explanations of all the components of the model. Section
3.4 deals with MRI preprocessing in which each step of the MRI preprocessing has been

detailed.

3.2 Model for Tumor Detection
From the previous chapter, it can be concluded that following are the steps which

can enhance the tumor detection process:

a) Intensity inhomogeneity correction to reduce the effects of intra-volume intensity

inhomogeneity.

b) Inclusion of intensity and texture information to improve discrimination between the

classes.



¢) Inclusion of information about shape, size and symmetry to improve segmentation

results.

As this work 1s aimed at automating a task which is presently performed by human
experts, the methods used by human experts can also be useful in this problem. But human
experts do not make use of an internal intensity-based pixel classifier, and are able to
incorporate much more complex information. This includes knowledge of the expected
appearance, location, and variability of normal anatomy, patient-specific bi-lateral
symmetry, knowledge about the expected intensities of different tissues relative to each
other in a modality and the evaluation of the appearance of regions of pixels and/or shapes

present within the image.

Manual methods consider and combine the above mentioned diverse sources of
information and also consider previous experiences in related tasks. Therefore, when
discrimination between normal and abnormal areas is not trivial those sources of evidences
are used in making a decision. These sources of evidence may be the intensities in different
modalities, the textures observed, bi-lateral symmetry, similarity to a normal brain,
expected tissues or structures at spatial positions, expected and observed shapes of
different structures, assessing normal anatomic variations, assessing variations due to the

presence of a tumor, and evaluating pixel regions.

The main issue involved in designing an automated model is of combining the
sources of these evidences to achieve acceptable result. The shortcoming of the existing
methods lie in the fact that the patterns are complex and involve interactions between the

different sources of evidence. These complex interactions are difficult to be represented by
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a well defined set of manually determined rules. Therefore use of a supervised method is

appropriate as it focuses specifically on finding patterns in large sets of features for

optimizing a performance measure, such as the number of misclassified pixels. Intensity

and texture information or different textural measures can be combined to increase

performance.

According to Egmont-Petersen ef al. [2002] image classification process uses the

following main steps:

a.

Preprocessing - These are filtering operations that give as a result a modified
image with the same dimensions as the original image (e.g., contrast enhancement

and noise reduction).

Data reduction (Feature extraction): Any operation that extracts significant
components from an image (window). The number of extracted features is

generally smaller than the number of pixels in the input window.

Segmentation - Any operation that partitions an image into regions that are
coherent with respect to some criterion. One example is the segregation of different

textures.

Object detection and recognition - Determining the position and, possibly, also the

orientation and scale of specilc objects in an image, and classifying these objects.

Image understanding - Obtaining high level (semantic) knowledge of what an
image shows.
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f. Optimization - Minimization of a criterion function which may be used for, e.g.,

graph matching or object delineation.

The above image processing chain has been described in Figure 3.1.

Noise suppression Compression Texture segregation Template matching Scene analysis
Deblurring Feature extraction Color recognition Feature-based Object arrangement
Image enhancement Clustering recognition
Edge detection
) ) . ubject Image
—P| Preprocessing [P| Data reduction [ ®| Segmentation [P recognion P understanding
A A A A A

Graph matching

Automatic thresholding Optimisation

Fig.3.1.The image processing chain containing the five different tasks: preprocessing, data
reduction, segmentation, object recognition and image understanding. Optimisation
techniques are used as a set of auxiliary tools that are available in all steps of the image

processing chain Genetic Algorithms (Source: [Egmont-Petersen et al. 2002])

As shown in Figure 3.2 the models proposed in this work have following three
main phases: MRI preprocessing, Feature Extraction and Classification. Each of these
phases is explained in the following sections. The goal of MR image segmentation is to
accurately identify the principal tissue structures in these image volumes. In this work
studies and experiments have been done with some of the existing and promising

techniques of MRI classification and then, better models have been developed.
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Fig.3.2. General model of image classification

3.3 MRI Preprocessing

It 1s necessary to process any image before using it for any segmentation or
classification task. Usually the preprocessing involves noise reduction, resampling and
intensity or contrast standardization. These steps are explained in the following

subsections.
3.3.1 Noise Reduction

Noise reduction is done to reduce the effects of local noise, inter-slice intensity
variations, and intensity inhomogeneity. But as the MRI machines nowadays are
specifically designed to reduce these effects, this stage of preprocessing is not of much
importance. This phase yields images with the same or reduced levels of local noise, inter-

slice intensity variations, and intensity inhomogeneity.
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a) Local Noise Reduction

When the signal recorded at each pixel gets corrupted, it is termed as ‘Local
Noise’. Local noise is additive and independent of pixel location but it depends on the

tissue measured at the location.

b) Inter-Slice Intensity Variation Reduction

When sudden changes occur in intensity that can be observed between adjacent
slices, it is termed as Inter-slice intensity variations. The presence of this type of noise
depends on the acquisition protocol used. This effect can be corrected by modeling it as
part of a three-dimensional inhomogeneity field as in [Leemput et al. 1999a], or it can be
corrected by using techniques that standardize the intensities of adjacent slices. The
method used in the present study for reducing inter-slice intensity variations is weighted

least squares estimation method [Schmidt Mark 2005].

c) Intensity Inhomogeneity Reduction

Inhomogeneity of intensities within images can be present due to a variety of
factors. Numerous methods have been suggested to reduce intensity inhomogeneity. Most
common methods for Intensity Inhomogeneity Reduction are a) Non-parametric Non-
uniform intensity Normalization (popularly known as N3) [ Sled ef al. 1998] and b) Bias
Field Corrector (BFC) [Shattuck ef al. 2001]. Some other significant methods have been
suggested by Montillo ef al. [2003] and Lai and Fang [1999]. We shall use N3 is due to its

ease of use and no limitation of skull-stripping, as in case of BFC.
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3.3.2 Registration

Image registration is the process of overlaying two or more images of the same
scene taken at different times, from different viewpoints, and/or by different sensors
[Barbara et al. 2003]. It geometrically aligns two images—the reference and sensed
images. The present differences between images are introduced due to different imaging
conditions. This is done by computing a transformation that maps each location in an input
volume onto a template volume, then ‘re-slices’ the input image such that pixels align
spatially and are the same size as the corresponding pixels in the template image.
Registration methods typically aim to compute a transformation that minimizes a measure
of dissimilarity between the images, or maximizes a measure of similarity. The input to the
Registration phase will be the images produced by the Noise Reduction phase. The method
used for image registration in this work is Advanced Normalization Tools (ANTSs) [Avants,

Tustison and Gang 2010].

3.3.3 Intensity Standardization

The next step of image preprocessing, intensity standardization allows the
intensities to be used without the need of patient-specific training. Three popular methods
available for this technique are histogram-based method, model-based approach and
template based approach. In the first two methods large abnormalities are present due to
interference, so template based method [Studholme ef al. 2004] has been used in this
work. Template-based methods perform registration as a preprocessing step, and estimate a
transformation between the intensities in the image and the intensities in the template,

based on pixels at corresponding locations. The advantage to this type of approach is that
41



spatial information is used, in addition to the intensity distribution used by the other two

approaches.

3.4 Feature Extraction

Shape and texture features have been used for some time for pattern recognition in
datasets such as remote sensed imagery, medical imagery, photographs, etc. The fourth
stage in the framework is the calculation of the features that will be used in pixel
classification. MRI features include intensities and textures, intensities and distances to
labels, intensities and spatial tissue prior probabilities. These feature combinations
comprise a very limited characterization of a pixel within an image that has a relatively
known structure. It would be advantageous to simultaneously use intensities, textures,
‘distances to labels’, spatial prior probabilities, and symmetry. A variety of other features
can also be used, such as features based on histogram analysis, anatomic variability maps

and template comparisons.

The main consideration when selecting features is that the features used should
reflect properties measured at the pixel-level that can aid in discriminating between normal
pixels and tumor pixels. However, there does not necessarily need to be an obvious (or
even linear) relationship between the features used and the likelihood of a pixel
representing a tumor, since the classification stage will learn an appropriate means of
combining the features to perform the task. There are four main sources for the

computation of useful features:

1. Image-based Features: Features that can be calculated directly from the image data.
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2. Coordinate-based Features: Features that take advantage of a standard coordinate

system.

3. Registration-based Features: Features that use one or more registered templates.

4 Feature-based Features: Features formed from subsets or combinations of other features.

Image-based features are the most commonly used feature sets in brain tumor
segmentation and can be used to represent various properties of pixels and their
neighborhoods. The most obvious pixel-level feature of this type is the pixel intensities.

The different image-based features are as follows:

a.. Intensity-based: A pixel’s intensity in each channel, the intensities of the pixel’s

neighbors, and aggregations over the intensities in the pixel’s neighborhood.

b. Histogram-based: The intensity percentile of the pixel within the histogram, the multi-
spectral distances to the intensities of normal tissues, and the number of pixels close to the

pixel’s intensities in the multi-channel intensity space.

c. Texture-based: Explicit calculations of texture features based on a pixel’s neighborhood.
Textural features consist of a set of calculations that can characterize patterns in the
intensities of the region containing a pixel, and have been used previously for tumor

segmentation. Three main types of textural features are as follows:

a) Gray level co-occurrence matrices

b) Wavelets



c¢) Gabor filters.

In this work Haralick textural features [Haralick, Shanmugam and Dinstein, 1973]
have been used. These feature sets characterize texture using a variety of quantities derived
from second order image statistics. Co-occurrence texture features are extracted from an
image in two steps. First, the pairwise spatial co-occurrences of pixels separated by a
particular angle and/or distance are tabulated using a gray level co-occurrence matrix
(GLCM). Second, the GLCM is used to compute a set of scalar quantities that characterize
different aspects of the underlying texture. While these quantities can be interpreted using
intuitive notions of texture, their main benefit is in providing a quantitative description that
can be used for image analysis, such as forming a high-dimensional feature vector to

support content based retrieval.

The choice of Haralick features based on GCM was made considering due to their
proven applicability to analyze objects with irregular outlines [Russ 1995]. The GCMs are
constructed by mapping the gray level co-occurrence probabilities based on spatial
relations of pixels in different angular directions. A GCM P(i,j) reflects the distribution of
the probability of occurrence of a pair of gray levels (i,j) given the spacing between the
pixels is Ax and Ay in the x and y dimensions respectively. Four angles namely 0, 45, 90,
135 as well as a predefined offset distance of one pixel in the formation of symmetric co-
occurrence matrices are considered. From these GCM matrices, set of features are

computed as follows:

a) Entropy: A measure of nonuniformity in the image based on the probability of co-

occurrence values.
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Entropy = —Z Z[P(;;j ) ]log[})(;;j ) ]

=1 j=1

(3.1

where N is the number of gray levels, equal to 256 for images in the present study. R is

equal to the total number of pixel pairs used for the calculation of texture features in the

specified angular direction.

b) Difference moment: A measure of contrast.

Contrast = —Z Z (i— [ P(;zj ) ]

=1 j=1

c) Energy: A measure of homogeneity.

N N i 0\2
Energy = 37 40

i=1 j=1

d) Inverse Difference Moment: A measure of local homogeneity.

N N )
Inverse Difference Moment = ZZ M
1+(i—j)

i=l j=l

e) Correlation: A measure of linear dependency of brightness.

22((ffp(f,j)f1€)—;1_‘,;1_‘__)

=1 j=1

Correlation =

g.,.0

Ay

where,

(3.2)

(33)

3.4

(3.5)



N

N (3.6)

=l =1

=2 J2 PG )R (3.7)
o =D (-, )Y PG, )/ R (3.8)
i=1 =1
) N N
o, => (i—u,) > Pi,j)/R (3.9)
i=1 j=1

In the above expressions, u,,0,,u, 0, arc the mean and standard deviation values of

GCM values accumulated in the x and y directions, respectively.

3.5 Classification

The computed features are used by a classifier to decide whether each pixel
represents a tumor pixel or a normal pixel. The time required for training is an important
factor in choosing a classifier, since each image has a large number of pixels and training
times can grow large as feature sets and the number of training pixels increases. If the
system is to be used in a semi-automatic way, where the user can input additional training
pixels where the system has made mistakes, then a classifier that can be trained
incrementally should be used to prevent the need to completely retrain. For most
classifiers, assigning classes based on a model is computationally efficient, while initially

learning the model can be computationally intensive.
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For deciding the type of approach to be used the advantages and disadvantages of

following three kinds of methods were studied.

Unsupervised Methods: The advantage of these methods is that they do not rely on training
data, and therefore are not subject to any degree of variation due to human interpretation.
These methods have the disadvantage that they have been limited to simple tasks, where
there is an obvious indicator of abnormality such as the presence of a contrast agent.
Another disadvantage of these methods is that significant re-engineering is required in
order to apply these methods to new tasks or to use different modalities than those the

system was designed for.

Supervised Methods: These methods have the advantage that they can be applied to new
tasks or can use different modalities without the need for redesign. One more advantage of
supervised methods is that learning to meaningfully combine different potential sources of
evidence for the presence of tumor can be done automatically. The main disadvantage of
this approach is that methods require patient-specific training. Therefore, these methods

are not fully automatic, and they are also subject to manual variability.

Registration-Based Methods: These methods use spatial patterns and constraints within a
system. This improves results but it incorporating the registration-based information
properly is the prime concern. The details of above four methods have been given in

chapter 2.
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Chapter 4
MRI Classification using

Existing Approaches

4.1. Introduction

In this chapter some existing methods of image classification have been used for
brain tumor detection from MRI. The approaches that have been considered here are 1.
Hybrid of a neural network called Self Organizing Map (SOM) and Genetic algorithms
(GA), 2. Support Vector Machine (SVM) and 3. Adaptive Boosting. Although the choice
of these algorithms is arbitrary, an attempt has been made to pick algorithms from the set
of methods which are popular these days. The registration based methods and expectation-
maximization algorithms have not been implemented as sufficient work has already been

done with these methods as described in chapter 2.

Section 2 of this chapter presents a model based on Hybrid of Neural Network and
Genetic Algorithms. The next section deals with the application of SVM in MRI
classification. This section also presents an overview of the various kernels used in SVM.
Section 4 presents a model based on yet another classifier termed as Adaptive Boosting. In
the next section implementation details of the three models are presented which is followed

by the performance measure description. Finally, results and conclusion are presented.
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4.2 Image classification using Hybrid of Neural Network and Genetic
Algorithm

This method uses a two-step approach to retrieval. In the first step, we propose the
use of a Neural Network called Self Organizing Map (SOM) [Kohonen 2001] for
clustering the images with respect to their basic characteristics. The Self-Organizing Map
(SOM), with its variants, is the most popular artificial neural network algorithm in the
unsupervised learning category. Many fields of science have adopted the SOM as a
standard analytical tool: in statistics, signal processing, control theory, financial analyses,
experimental physics, chemistry and medicine. The SOM is also one of the most realistic

models of the biological brain functions.

In the second step, the Genetic Algorithm (GA)[Goldberg 2003] based search will
be made on a sub set of images which were having some basic characteristics of the input
query image. It was found that this method radically improves the result over the single

feature vector approach.

In the medical-imaging context, the ultimate aim of Content Based Image Retrieval
(CBIR) is to provide radiologists with a diagnostic aid in the form of display of relevant
past cases, along with proven pathology and other suitable information [Ho ef al. 2002].
Statistical pattern recognition methods like the Bayesian discriminant and the Parzen
windows were popular until the beginning of the 1990s. Non-parametric feed-forward
ANNSs [Bishop 1996] are attractive trainable machines for feature-based segmentation and
object recognition. The role of feed-forward ANNs and SOMs has been extended to

encompass also low-level image processing tasks such as noise suppression and image
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enhancement. Hopfield ANNs were introduced as a tool for finding satisfactory solutions
to complex optimization problems. This makes them an interesting alternative to
traditional optimization algorithms for image processing tasks that can be formulated as

optimization problems.

4.2.1 MR Image Data Set

The sources and types of MR Images obtained are shown in table 4.1. The images
under study were acquired using the Siemens 1.5-Tesla MR Systems. A major limitation
with medical and biological data is that special cases or “positive” samples are very less
compared to control or “negative” samples. On the contrary, the reverse is true for some of
the medical imaging data, including brain MRI. Huge difference in the number of positive
and negative cases, therefore, creates an imbalance of the data class distribution [Chawla et

al. 2004]. To control such imbalances, two sets of images were prepared as per table 4.2.

Table 4.1: Image Data Set

Source Normal Tumor Grades of Tumor , if Grade
Images Images known NA
| I 1 v

Kamayani Hospital, Agra, 47 143 30 | 14 28 29 42

India

Silveroak Hospital, Mohali, 31 89 14 11 19 11 34

India

IBSR, Human Brain Project, 60 173 _ B B _ 173

Harward

The Brain Institute, Utah 72 85 B _ _ B 85

University

Total 210 490 44 | 25 47 | 40 334
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4.2.2. Genetic Algorithm

A genetic algorithm is a stochastic based beam search in which successor states are
generated by combining two parent states, rather by modifying a single state [Norvig and
Russel, 2002] It takes its inspiration from natural selection and survival of the fittest in the
biological world.

Table 4.2. Number of Images in the two sets :I1. For Biased training and II. For Unbiased
Training

SET | Training Type No. of Images for Training No. of Images for Testing
Normal Abnormal Normal Abnormal

I Biased Training 36 65 12 21

11 Unbiased 36 36 12 50

GA differs from more traditional optimization techniques in that they involve a
search from a "population" of solutions, not from a single point. Every iteration of a GA
involves a competitive selection that weeds out poor solutions. The solutions with high
"fitness" are "recombined" with other solutions by swapping parts of a solution with
another. Solutions are also "mutated" by making a small change to a single element of the
solution [Goldberg 1993]. Recombination and mutation are used to generate new solutions
that are biased towards regions of the space for which good solutions have already been
seen. Pseudo-code for a genetic algorithm is as follows:

1. Initialize the population
2. Evaluate each chromosome of the initial population
3. Generate new chromosome of the mating current chromosomes, by performing

Mutation and Crossover.
51



4. Remove numbers of population for new chromosomes.

5. Evaluate new population

6. Repeat through Step 3 until some convergence criteria is satisfied.

The block diagram of GA is given in Fig.4.1

.ss . Chromosome
—| Initial Population
Selection Fitness
g . Objective
% Mating Parents Function
e
Mutation /
Crossover Chromosome
| Fitness
Offspring

Fig.4.1. A Genetic algorithm model

Genetic Algorithm is used to select optimal inputs and also to find optimal weights

for the neural network.

4.2.3 Neural Network Design

A neural network (NN) is an interconnected group of artificial neurons that uses a
mathematical or computational model for information processing based on a connectionist
approach to computation. In most cases a NN is an adaptive system that changes its

structure based on external or internal information that flows through the network. In a NN

52



model simple nodes, which can be called "neurons" or "Processing Elements" (PE) are

connected together to form a network of nodes.

In recent years there has been increasing interest in the use of Neural Networks
(NN) in the diagnosis of various types of cancers. Many work were proposed to elaborate
medical images interpretation systems whose majority is based on data- processing tools
present an inspiration of biological and physiological metaphors like the Neural Networks
(NNs), Fuzzy Logic(FL), Expert Systems and the Genetic Algorithms (GAs).
Although these metaphors perform the task of interpretation successfully, they present
much weakness and disadvantages. In a hybrid method, two or more of these methods are
used together to mitigate their disadvantages.

Most NN algorithms are designed to alter the strength (weights) of the connections
in the network to produce a desired signal flow. NNs have been applied successfully in
many medical images interpretation problems where there input layer presented the
relevant descriptions of the various healthy or suspected areas of the image (which present
anomalies), and its output layer gives a decision on the nature of those areas (benign or
malign tumors) [Garcia and Moreno 2004]. A typical model of NN used in the model is

shown in the Figure 4.2.
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Input layer hidden layer output layer error target

Fig.4.2. Model of a typical Neural Network

The three layers NN here is capable of producing a decision function with enough
hidden units. Sigmoid function is used as the transfer function. The NN uses the best

chromosome obtained from the GA as the initial weight vector. It consists of following

steps:

1. Create weight vector from the most suitable chromosome obtained from GA.
2. Compute output of the feed-forward NN.
3. Compute Error between desired output and actual output.

4. Update weight using back-propagation.
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4.2.4. Image segmentation

Some neural-based approaches perform segmentation directly on the pixel data,
obtained either from a convolution window (occasionally from more bands as present in,
e.g., remote sensing and MR images), or the information is provided to a neural classifier

in the form of local features.

Image segmentation based on pixel data

Many ANN approaches have been proposed that segment images directly from
pixel. Several different types of ANNs have been trained to perform pixel-based
segmentation. Some of these ANNs include feed-forward ANNs, SOMs, Hopfield
networks, probabilistic ANNSs radial basis function networks , CNNs [Vilarino 1998] etc.
Red- dick e al. developed a pixel-based two-stage approach where a SOM is trained to
segment multispectral MR images. The segments are subsequently classiled into white

matter, gray matter, etc., by a feed-forward ANN.

Image segmentation based on features

Several feature-based approaches apply ANNs for segmentation of images.
Different types of ANNs have been trained to perform feature-based image segmentation:
feed-forward, recursive SOMs, variants of Radial Basis Function (RBF) networks,
Hopleld ANNSs, Principal Component Networks and a dynamic ANN. Hierarchical
network architectures have been developed for optical character recognition and for

segmentation of range images.



4.2.5 Proposed Model:

The proposed framework is shown in the Figure 4.3. It facilitates to search similar
images in a large scale database of MRI with reasonable computational complexity.
Searching the entire database for similar images will increase the time required to retrieve
similar images. Based on the character of background tissue MR images can be classified
as N= Normal or T= Tumor. Hence, the proposed model is divided in to two stages. In the
first stage, the MR images present in the database is classified as N or T using SOM. In the
second stage, the query image is obtained and the Region of Interest (ROI) is selected by
the radiologist. As and when the ROI is selected the system acquire the length 1 and
breadth b and then the class of the query image is identified using the same SOM network.
Once, the class of query image is identified searches for similar suspicious region in the

corresponding database with the same dimension of the ROI Ixb will be followed.

First stage

| 1y Retrieved
GA similar images

ucry image
Query imge soM [

Select
ROI J

e

Second stage

Fig.4.3. Functional Diagram of the proposed model



Classification of MRIs:

The overall image classification model is shown in Figure 4.4. To classify the MRI
we used the SOM Neural Network. SOM algorithm [Kohonen 1995] is a neural network
algorithm based on unsupervised learning. Basically it performs a vector quantization on
the histogram of the images in the database and simultaneously organizes the quantized
vectors on a regular low-dimensional grid. Histogram of the image is chosen as input to the

SOM since it is very simple to calculate.

While finding, the histogram of a MRI images, the continuous black background as
well as the over exposed white regions will add considerable amount of error in the
histogram output. To overcome this, the pixels which make the MRI shape alone are
considered for calculating the histogram. To achieve this, as a preprocessing the pixels
corresponding to the black background as well as the over exposed white regions were
removed by using a suitable lower and upper threshold and the histogram corresponding to

the remaining pixels were calculated.

Application of GA:

In the second stage, after the classification of the query image and its ROI
identified, every image from the specific class is taken and a random search is performed
using GA over the entire image to locate the suspicious region matching with the ROI. The
initial population for GA consists of chromosomes which represents x and y, the random
position of ROI on the MRIs. Binary chromosomes have been used for this purpose.

Furthermore, the GA makes use of Roulette wheel selection and single point crossover A
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fitness function proportional to correlation has been identified to evaluate the

chromosomes as given in equation 4.1.

Following algorithm was used to obtain the optimal weight and optimal learning
rate:

0 0
oWy )

Step 1: Randomly generate an initial population: W =(w;", w,
Step 2 : Compute the fitness f(w;') of each chromosome in W'
Step 3: Create new chromosome W' of mating current chromosomes, applying
mutation and recombination.
Step 4: Delete numbers of the population to make room for new  chromosomes
Step 5: Compute the fitness of w;', and insert these into population.
Step 6: Increment number of generation.
The above is repeated till the desired fitness value is achieved or for a fixed number of
iterations. The following algorithm was used for image pattern classification:
First Stage
Step 1: Initialize ‘fitness value’ to zero and ‘child chromosome’ as null.
Step 2: Set the objective function (system error for the neural network).
Step 3: Compute fitness value of the child chromosome.
Step 4. Compare the child chromosome with parent chromosome.
Step 5: Select parent using selection
Step 6: Apply Crossover and Mutation and Check fitness value of the child

chromosome.

Step 7: Replace the old population by the new ( best chromosome).
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Second Stage
Step 1: Set the best chromosome as the initial weight vector.
Step 2: Compute the error between desired output and actual output.

Step 3: Update the weights or learning rate using neural network algorithm.

Since, only the x and y are present in the chromosome the remaining coordinates
can be calculated as (x+1, y),(x, y+b),(x+l, y+b) where 1 and b are length and breadth of the

ROI which is fixed. Hence, ROl is always a rectangle with size Ixb.

ZZ(AM'H _E)(‘Bnm - ‘E)
Fitness = = 4.1)

O > (A4, -4’ > (B, -B))

m n m n

where, Anp is a 2D matrix representing the ROI selected by the radiologist, A is the mean
of Apmn . Bun 1s @ 2D matrix representing a portion of the image in the database bounded by
(x, y),(x+H, y),(x, y+b),(x+, y+b) and B is the mean of By,. The initial population consists

of different x and y which correspond to different regions on a single MRI in the database.
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Fig.4.4. The overall image classification model
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4.3 Gaussian RBF kernel based Support Vector Machine

This section presents a model based on classification by SVM which can be used to
identify the tumor pattern from MRL
4.3.1. Proposed model.

Classification is the most widely used strategy used for recognizing the objects
based on its features. Figure 4.5 shows the classification model proposed to identify the
tumors present in brain. Two major parts of the model are feature extraction and
classification. The textural features obtained from the MR images are given as input to the
classification part of the model. The classifier used is the Support Vector Machine (SVM)

with Gaussian RBF kernel.

4.3.2 Overview of SVM:

SVMs are the most well known learning systems based on kernel methods.
First introduced by Vapnik[1995], it is as an alternative to neural networks, and that has
been successfully employed to solve clustering problems, specially in biological
applications. SVM (Support Vector Machine) is a useful technique for data classification.
It performs classification by constructing an N-dimensional hyperplane that optimally

separates the data into two categories.
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Fig.4.5. Proposed model for tumor detection from MR images.

A classification task usually involves training and testing data which consist of
some data instances. Each instance in the training set contains one “target value" (class
labels) and several “attributes" (features). The goal of SVM is to produce a model which
predicts target value of data instances in the testing set which are given only the attributes.
Given a training set of instance-label pairs (x,y)={(x,),(x,,¥,)......(x,,y,)} where

N
x,eR" and y,e{-1,+1}, SVM requires the solution of the following optimization

problem [Boser ef al. 1992]:

1
min %w’w+CZ§}.

w.h.§ i=1

Subjectto y,(w' O(x)+b)>1-§, , §>0. (4.2)

62



Here training vectors X; are mapped into a higher (maybe infinite) dimensional space by
the function ® . Then SVM finds a linear separating hyperplane with the maximal margin
in this higher dimensional space. C > 0 is the penalty parameter of the error term. The
effectiveness of SVM lies in the selection of kernel and soft margin parameters. For
kernels, different pairs of (C, y) values are tried and the one with the best cross-validation

accuracy is picked. Following are the four basic types of kernel functions :
Linear: K( x,X;)= )(iT)v:i (4.3)
Polynomial K( xi,%;)< j./)(iT)(i +rf,y >0 (4.4)
Radial Basis Function (RBF):
K( xi,x)) =exp(-y || x; = |[),y >0 (4.5)
Sigmoid: K( X;,X;)=tanh( yx,'x; +r) (4.6)
Here y , r and d are kernel properties.

The kernel used in the proposed model is termed as Gaussian RBF and given by

K( x,x,) = exp(— X %illy @4.7)
20

Where o = width of kernel in SVM .Our interest is to vary the width o to eliminate the

inconsistency of the coexisting over-fitting and under-fitting in SVM.

4.4 AdaBoost:

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm,
formulated by Yoav Freund and Robert Schapire [1997]. It is a meta-algorithm, and can be

used in conjunction with many other learning algorithms to improve their performance.
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AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor of
those instances misclassified by previous classifiers.It consists of generating an ensemble
of weak classifiers (which need to perform only slightly better than random guessing) that
are combined according to an arbitrarily strong learning algorithm [Friedman]. It has been
applied with great success to several benchmark machine-learning problems using rather
simple learning algorithms such as decision trees or linear regression.

The AdaBoost algorithm takes as input a labeled training set,

N

) =4, ¥, (5, 1, ) (x,,¥,)}where x € R"and y, €{-1,+1} and calls a weak or
base learning algorithm iteratively. At each iteration , a certain confidence weight D, (x,)

is given (and updated) to each training sample . The weights of incorrectly classified
samples are increased so that the weak learner is forced to focus on the hard patterns in the

training set. The task of the base learner reduces to find a hypothesis 4, :x — y for the
distribution D, . At each iteration, the goodness of a weak hypothesis is measured by its

crror

€, =Plh(x) =)= Di (4.8)

Once the weak hypothesis has been calculated, AdaBoost chooses a parameter

a, =(1/2)In((1-€,)/€,)) .The distribution is next updated in order to increase the weight

of samples misclassified and to decrease the weight of correctly classified patterns.
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4.5 Implementation

For the GA-SOM model, experiments were performed for different values of String
Size, Mutation level, and Crossover rate of the GA. The various best parameters came out

to be as follows:
String Size= 40
Mutation level = 0.3
Crossover rate = 0.65.
The threshold level to identify the fittest elements= 0.8.
Selection method used: Roulette wheel selection scheme
Crossover algorithm used: 2-point crossover

Mutation operator: binary traditional mutation scheme with random choice of bits

to be muted.
Offspring replacement scheme used: Selective Breeding

The proposed system was successfully implemented and evaluated using
MATLAB® on a normal 2G.Hz Pentium IV computer with 512 MB RAM. The proposed

algorithm performed well even for moderate number of images.



4.5.1. Feature extraction: For all the MRI 1mages the pixels were extracted and their
spatial coordinates and intensities were used for constructing the Gray Level Co-
Occurrence Matries (GCM). Haralick method [Haralick ef al. 1979] was used for the
extraction of features from MRI. The texture measures computed are

1) Entropy: A measure of nonuniformity in the image based on the probability of co-

occurrence values.

i1) Energy: A measure of homogeneity.

ii1) Difference moment: A measure of contrast.

iv) Inverse Difference Moment: A measure of local homogeneity.

v) Correlation: A measure of linear dependency of brightness.

4.5.2. Performance Measure:

The classification of the images may give four types of results namely, True
Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN). The
contingency table for classification is given in Table 4.3.

Table 4.3. Contingency table

Real Group | Classification Result

Normal | Abnormal

Normal TN FP

Abnormal FN TP
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The most commonly used performance measures in classification are Precision and
Recall. Precision can be seen as a measure of exactness or fidelity, whereas Recall is a
measure of completeness. In a statistical classification task, the Precision for a class is the
number of true positives (i.e. the number of items correctly labeled as belonging to the
positive class) divided by the total number of elements labeled as belonging to the positive
class (i.e. the sum of true positives and false positives, which are items incorrectly labeled
as belonging to the class). Recall in this context is defined as the number of true positives
divided by the total number of elements that actually belong to the positive class (i.e. the

sum of true positives and false negatives).

In a classification task, a Precision score of 1.0 for a class C means that every item
labeled as belonging to class C does indeed belong to class C (but says nothing about the
number of items from class C that were not labeled correctly) whereas a Recall of 1.0
means that every item from class C was labeled as belonging to class C (but says nothing
about how many other items were incorrectly also labeled as belonging to class C)

[Makhoul ef al. 1999]. The formula for precision and recall are given by

Precision= TP / (TP+FP) * 100
Recall= TP /(TP + FN) * 100
Also,
Accuracy= (TP + TN) /(TP + TN + FP +FN) * 100

and Error= 1- Precision
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4.6 Results

The MR images were used for the four models mentioned earlier. The classification

results have been summarised in tables 4.3(a) and 4.3(b).

Tabled4.4 (a) Classification Results for Set 1

Classifier Precision (%) | Recall( %) | Accuracy( %)
GA-SOM 84.6 87.1 86.2
SVM (Gaussian RBF kernel) 93.33 95.28 92.71
AdaBoost 90.25 91.66 89.31

Tabled4.4 (b) Classification Results for Set 2

Classifier Precision % | Recall (%) | Accuracy(%)
GA-SOM 854 86.2 88.2
SVM (Gaussian RBF kernel) 91.62 93.56 91.75
Ada Boost 89.05 90.52 88.26

4.7 Conclusion

As described in section 4.5, two different image sets were taken as biased and
unbiased ones and experiments were performed. The performance of all the three proposed
classifiers were evaluated and compared. The comparative performance results tabulated in
section 4.6 indicate that SVM approach is better than other classifiers. Therefore, it can be
concluded Gaussian RBF kernel based SVM 1is a promising technique for image
classification in a medical imaging application. This automated pattern detection system
can, therefore, be further used for classification of images with different pathological

condition, types and disease status.
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Chapter 5
Particle S warm Optimization

5.1. Introduction

In this chapter the fundamental concepts of PSO is presented. Next section deals
with the introduction to PSO and its basic algorithm. PSO suffers from a serious limitation
of premature convergence. Section 5.3 addresses this and other limitations of using PSO in
image clustering. In the next section 5.4 some proposed improvements in PSO have been
presented. Finally, based on some experimental results, a selection is made as which

version of PSO to be used in the present work and conclusion of this study is presented.

5.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm intelligence optimization technique
that was inspired by the behaviour of flocks of birds [Kennedy and Eberhart,1995]. It is a
kind of intelligence that is based on social-psychological principles and provides insights
into social behavior, as well as contributing to engineering applications. The recent years
have seen tremendous growth in the use of PSO in various areas of computing ranging
from networking, classification, scheduling, and training of artificial neural network to

feature extraction and image processing.

The advantage of PSO over many of the other optimization algorithms is its relative

simplicity and ease of use. PSO shares many similarities with evolutionary computation
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techniques such as Genetic Algorithms (GA) [Goldberg 1993]. The system is initialized
with a population of random solutions and searches for optima by updating generations.
However, unlike GA, PSO has no evolution operators such as crossover and mutation. The
potential solutions, called particles, fly through the problem space by following the current

optimum particles.

In the basic PSO a problem is given, and some way to evaluate a proposed solution
to it exists in the form of a fitness function. A communication structure or social network is
also defined, assigning neighbors for each individual to interact with. Then a population of
individuals defined as random guesses at the problem solutions is initialized. These
individuals are called the candidate solutions. They are also known as the particles, hence
the name particle swarm. An iterative process to improve these candidate solutions is set in

motion. The swarm of individuals (called particles) flies through the search space.

The position of a particle is influenced by the best position visited by itself (i.e. its
own experience) and the position of the best particle in its neighborhood (i.e. the
experience of neighboring particles). When the neighborhood of a particle is the entire
swarm, the best position in the neighborhood is referred to as the global best particle, and
the resulting algorithm is referred to as a ghest PSO. When smaller neighborhoods are
used, the algorithm is generally referred to as a Ibest PSO [Shi and Eberhart, 1998a]. The
performance of each particle (i.e. how close the particle is from the global optimum) is
measured using a fitness function that varies depending on the optimization problem. Each

particle in the swarm is represented by the following characteristics:

x;. The current position of the particle;
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v;: The current velocity of the particle;

yi: The personal best position of the particle.

i’;— .. The neighborhood best position of the particle.

The personal best position of particle 7 is the best position (i.e. the one resulting in the best
fitness value) visited by particle 7 so far. Let / denote the objective function. Then the

personal best of a particle at time step 7 is updated as

[3,(0) if f(x,(1+1) = f(», (1) (5.1)

y,(r+1) = |x, (41 f(x, (4 D) < £, (1)

The ghest model: In this model, the best particle is obtained from the entire swarm by
selecting the best personal best position. The position of the global best particle is given

by,

3 € (. ¥y v, f= minff (g (0). £ (3, (D). £ (3, ()} ©2)

where s denotes the size of the swarm. The velocity of particle i is updated using the

following equation:

v, t+) =wv, () +cn (O, (@0)—x,,; (1) +c,ry (r)(_f.*j (1) —x,; (1))

(5.3)
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Where w is the inertia weight, ¢; and c; are the acceleration constants, and r;_ j and ry; are

factors lying between (0,1).
In the equation 5.3 there are additional three terms defined as follows:

The inertia weight term (w): [Shi and Eberhart 1998b]. This term serves as a memory of
previous velocities. The inertia weight controls the impact of the previous velocity: a large

inertia weight favors exploration, while a small inertia weight favors exploitation.

The cognitive component (yi(t) — x;) : This term represents the particle's own experience as

to where the best solution is.

The social component (y(f) — x;) , which represents the belief of the entire swarm as to

where the best solution is.

The position of particle 7, xi, is then updated using the following equation:

xi(t+1) = xi(t) + vi(t+1) (5.4)

Algorithm 5.1 presents the main steps of basic PSO algorithm. The particles in the
swarm are updated according to equations 5.3 and 5.4. This updation takes place for a
specified number of iterations or when the velocity updates are close to zero. There
have been many versions of PSO proposed time to time on the basis of accuracy, speed or
overall performance. Most important of them are Binary PSO [Kennedy and Eberhart

1997], Gauranteed Convergence PSO (GCPSO), Clamped PSO, Hybrid PSO,
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Coevolutionary PSO, Repulsive PSO, Multi-objective PSO, Adaptive PSO (APSO),

Discretized PSO etc.

Initialize population
Do
For particle i=1 to Swarm size §
ift f(xi) < f(pi), then pi=x;
pe={ pi|minflp)) j=1.2,..N }
For d=1 to Dimension D
Update viq using equation 5.3
If vi > vinax  then vi = viax
else if vj<-vpaxthen vi = -viax
Update x;q using equation 5.4
Next d
Next i

Until termination criteria is met.

Algorithm 5.1 The basic PSO
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5.3 Limitations of PSO

PSO and other stochastic search algorithms have a major drawback of premature
convergence. Although PSO finds good solutions much faster than other evolutionary
algorithms, it usually can not improve the quality of the solutions as the number of
iterations is increased [Angeline 1998]. As the swarm iterates, the fitness of the global best
solution improves (decreases for minimization problem). It could happen that all particles
being influenced by the global best eventually approach the global best, and from there on
the fitness never improves despite however many runs the PSO is iterated thereafter. The
particles also move about in the search space in close proximity to the global best and not
exploring the rest of search space. This phenomenon is called 'convergence'. PSO usually
suffers from premature convergence when strongly multi-modal problems are being

optimized.

The rationale behind this problem is that, for the gbest PSO, particles converge to a
single point, which is on the line between the global best and the personal best positions.
This point is not guaranteed to be even a local optimum. Another reason for this problem is
the fast rate of information flow between particles, resulting in the creation of similar
particles (with a loss in diversity) which increases the possibility of being trapped in local
optima [Riget and Vesterstrom 2002]. If the inertial coefficient of the velocity is small, all
particles could slow down until they approach zero velocity at the global best. The

selection of coefficients in the velocity update equations affects the convergence and the
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ability of the swarm to find the optimum. One way to come out of the situation is to

reinitialize the particles positions at intervals or when convergence is detected.

Numerous techniques for preventing premature convergence have been proposed.
Some research approaches investigated the application of constriction coefficients and
inertia weights. Many variations on the social network topology, parameter-free, fully
adaptive swarms, and some highly simplified models have been created. Most important of

them are discussed in the nest section.
5.4 Improvements in Convergence Behavior of PSO

5.4.1 Inertia weight model: The inertia weight term, co, which was first introduced by Shi
and Eberhart [1998a], serves as a memory of previous velocities. The inertia weight
controls the impact of the previous velocity: a large inertia weight favours exploration,
while a small inertia weight favours exploitation [Shi and Eberhart, 1998b]. The modified

velocity update equation is given by equations 5.3 and 5.4.

5.4.2 Constriction factor model: A constriction factor can be used to choose values for w,
cl and c2 to ensure that the PSO converges. The modified velocity update equation is

defined as follows:

v, (t+1) =y, @)+ (O, () —x,, () +e,r, (O, () —x,, (f)))(s s)

Here, y 1s the constriction factor defined as follows:

(5.6)

2
;t’:
‘2—40—\/403—440‘



and ,

p=c+c,, p>4

Use of the constriction factor and velocity clamping together generally improves both
the performance and the convergence rate of the PSO [Eberhart and Shi 2000].

5.4.3 Guaranteed Convergence PSO (GCPSO)

The basic PSO converges prematurely because the velocity update equation
depends only on the term wv; (t). GCPSO [Van den Bergh 2002] avoids this by using a

different velocity update equation,5.7.

v, 1+ 1) = -x, ()+ _f-'j.(f) +wv, (D+pOA-2r, j(r)) (5.7)

The resulting equation for position update is given by the following the equation 5.8.
x,(t+D) =y (O)+wv,_ )+ p)1-2r (1) (58)

The term p(t) defines the area in which a better solution is searched. The value of p is
given is initialized to 1.0, with p (t+1) defined on the basis of number of successes and

failures.

2p(t) if #sucesesses > s,
p(t+1)= J05p(t) if # failures > f; (59)
p (t) otherwise

Van den Bergh suggests repeating the algorithm until p becomes sufficiently small,

or until stopping criteria are met. Stopping the algorithm once p reaches a lower bound is
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not advised, as it does not necessarily indicate that all particles have converged — other
particles may still be exploring different parts of the search space. It is found that GCPSO

has guaranteed local convergence whereas the original PSO does not.

5.4.4. Attractive and Repulsive PSO (ARPSO)

There are two phases between which ARPSO [Riget and Vesterstrom 2002]
alternates. In the attraction phase, PSO is used for fast information flow, as such particles
attract each other and thus the diversity reduces. In this phase 95% of fitness improvements
can be achieved. This observation shows the importance of low diversity in fine tuning the
solution. In the repulsion phase, particles are pushed away from the best solution found so
far thereby increasing diversity. ARPSO was found to give better results than PSO and GA

in most of the test cases.
5.4.5. Multi-start PSO (MPSO)

Proposed by Van den Bergh [2002] MPSO tries to make GCPSO a global search

algorithm. It works as follows:
1. Randomly initialize all the particles in the swarm.

2. Apply the GCPSO until convergence to a local optimum. Save the position of

this local optimum.
3. Repeat Steps 1 and 2 until some stopping criteria are satisfied.
In Step 2, the GCPSO can be replaced by the original PSO. Several versions of MPSO

were proposed by Van den Bergh [2002] based on the way used to determine the

convergence of GCPSO.
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5.4.6. Techniques using Mutation

Some techniques have been proposed which use a hybrid of PSO with Gaussian
mutation [Higashi and Iba 2003] or hybrid Ibest- and gbest- PSO with a non-uniform
mutation Operator [Esquivel and Coello 2003]. These hybrid techniques have given better
results than PSO and GPSO in all the experiments conducted. One more similar technique
is Dissipative PSO (DPSO) [Xie ef al. 2002] ]that adds random mutation to PSO in order
to prevent premature convergence. DPSO introduces negative entropy via the addition of
randomness to the particles. The results showed that DPSO performed better than PSO

when applied to the benchmarks problems.
5.4.7. Differential Evolution PSO (DEPSO)

DEPSO [Zhang and Xie 2003] uses a differential evolution (DE) operator [Storn

and Price 1997] to provide the mutations. A trait point is calculated as follows:

If (ri(t) < pc OR j =kq ) then

W, ()=, @) +(y5 () =y, (1) (5.10)
2

¥, (0=y,0)+

where r(t), kq, y1 (t), y2 (), y3 (t) and y4 (t) are randomly chosen from the set of personal
best positions. To avoid disorganization of the swarm, yi(t) is mutated instead of x;(t).
DEPSO works by alternating between the original PSO and the DE operator such that
equation 5.3 and 5.4 are used in the odd iterations and equation 5.9 is used is in the even
iterations. The performance of DEPSO has been found to be better than other popular

versions of PSO in case of benchmark functions.
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5.4.8. Fitness-Distance Ratio PSO (FDR-PSO)

A new term was added to the velocity update equation by Veeramachaneni ef al.
[2003]. The new term allows each particle to move towards a particle in its neighborhood

that has a better personal best position. The modified velocity update equation is given by:
Vis (H' 1) =Wy, (1‘) Ty, (,Tj,,- U) X U)) + WZ(.{’; U) X (1‘)) Ty, (.rr;_j ('t) X (f)) ( 5.11 )

where, y1 , y2 and y3 parameters specified by users. Here each y, is chosen in a way such

that the following is maximized.

(f(xi(t)) - f(ya(1))) (5.12)
lynj(t) - xij(t) |

The performance of FDR-PSO is found to be better than PSO, ARPSO, DPSO, SOC PSO
etc. In addition to above techniques, a scoring based method was developed by Chandra ef

al. [2009] to control the convergence of PSO. The following algorithm was used for this

purpose:

5.5 Experimental results

Out of the PSO versions discussed in section 5.4 three promising algorithms on the
basis of previous results [van den Berg and Engelbrecht 2005] were selected and
experimented with some benchmark functions as detailed in table 5.1. These algorithms

are PSO, Attractive and Repulsive PSO (ARPSO), Guaranteed Convergence PSO
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(GCPSO) and Fitness-Distance Ratio based PSO (FDR-PSO). The results are shown in

table 5.2.
Table 5.1 : Some benchmark functions used for testing PSO
Function Definition Type Range Initial
Population
Sphere D Unimodal | [-50.50] [25.40]
fi(0)=2x;
d=1
. Unimodal
Quartic _ D [-20,20] [10,16]
jq (x)= dej
d=1
Unimodal
Rosenbrock | D-1 [-100,100] [50.80]
fh’a (‘x) = zl OO(J{{H] _‘xd')z + (‘x(f - 1)2
d=1
Griewank 1 & . 2 Multi- | [-600,600] | [300.500]
_f;;(X):m .X'f}—l—l COS(X_Jd—)-F]
d=1 d=1 d mOda.l
Rastrigin D Multi- | [-5.12.5.12] | [1.4.5]
Jra(X) =D x7+10(1-cos(27x,))
d=1 modal

5.5.1 Parameter Setting: The various parameters of PSO are to be defined by user. These

parameters include population size, inertia weight, acceleration constants etc. and are vary

from one problem to another.
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Population Size: The PSO researchers have suggested the population size to be 2n to 5n
where n is the number of decision variables. But, most researches have taken it to be
constant. In this study the population size was varied from 20 to 50 and best results were

obtained at population size of 35.

Inertia Weight: A linearly decreasing inertia weight of the order (0.9-0.4) is found to give

good result.
Acceleration Constant: cl=c2=1.8

Initialization of Swarms: The particle swarms were initialized by the Gaussian distribution

. . 1=
iven by, (x)= e’ (5.13)
g y J N
Diversity: Diversity is measured by the following equation:
) 'I H,.
Div(S(1)) = ;z Z (x; (1) —x, )% (5.14)

5 I=1

From table 5.2, it is evident that GCPSO and FDR-PSO give better results than others in
most of the benchmark functions. These two versions of PSO are hybrid with Scoring
based method (SBM) and tested again on the same functions. The results obtained are
shown in table 5.3. From table 5.3 it appears that FDR — PSO, when clubbed with scoring
based method, gives better results in most of the benchmark functions, as long as the

convergence behavior is concerned.
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Table 5.2. Results of PSO, ARPSO, GCPSO and FDR-PSO on benchmark functions
(First row shows mean, second row shows diversity while the third one indicates

deviation). The best mean values are shown in bold.

Function PSO ARPSO GCPSO FDR-PSO
Sphere 1.1956¢-46 0.9566¢-46 0.9566¢-46 1.0956e-46
1.9868¢-18 1.9868¢-18 1.9868¢-18 2.59868¢-18
4.8961¢-8 4.8961¢-8 4.8961¢-8 4.8741¢-8
Quartic 12.3426¢-12 11.4628¢-11 | 28.3426e-14 | 14.4427¢-12
11.6743¢-16 14.7645¢-16 | 21.6743¢-15 | 15.5482¢-16
16.9812¢-6 17.67412¢-6 | 36.9812¢-14 | 19.8773¢-7
Rosenbrock 21.9265 44057 3.9951 9.9928
42378 2.9044 1.8737 2.5279
8.6274¢+03 41212 3.9593 3.1689
Griewank 0.031646 0.0110 0.0116 0.0047
0.000710 0.0008 0.0015 1.6313¢-08
0.025322 0.0191 0.0197 0.01266
Rastrigin 19.2213 26.5612 14.5419 11.6548
0.01002 0.4279 0.0002 0.5437
17.2321 13.3956 11.9854 8.3498

82




Table 5.3 Results of GCPSO and FDR-PSO on benchmark functions by applying scoring

based method.

Function GCPSO + SBM FDR-PSO + SBM
Sphere 0.8956¢-47 0.0756e-48
2.0021e-19 1.2564-18
3.4561e-10 3.7684¢-8
Quartic 13.4526e-15 16.2157e-15
19.3743e-15 15.5482¢-16
31.9812¢-14 19.8773¢e-7
Rosenbrock 1.9954 1.8799
1.0834 24537
2.6955 2.4589
Griewank 0.0111 0.0022
0.0011 0.9314¢-08
0.0112 0.0112
Rastrigin 10.2741 8.6516
0.0001 05125
9.8837 6.7354




5.6 Conclusions

This chapter presented a brief introduction to PSO. Then the some modified
versions of PSO were detailed to tackle the major drawback of PSO, i.e. premature
convergence. The four algorithms namely PSO, GCPSO, ARPSO and FDR-PSO described
in the chapter use different Gaussian initialization scheme for generating the swarm
population. Two best versions were chosen from the preliminary comparative study of
these versions. These versions were then hybrid with SBM to get the best version to be
used in this work. It was found that FDR-PSO, when combined with SBM gives

considerably better results.

84



Chapter 6

PSO Based approaches for Detection of
Brain Tumors

6.1 Introduction

In the previous chapter we have discussed the ongoing research in the field of
Swarm Intelligence and its application to various real life problems. There we also
compared the relative performance of few important versions of Particle Swarm
Optimization. It was found that FDR-PSO, when combined with SBM gives considerably
better results.

In the present chapter three models are proposed based on Particle Swarm
Optimization (PSO). The first model described in Section 6.2, is an image clustering
algorithm based on PSO. This algorithm finds the centroids of user specified numbers of
clusters, where each cluster groups together similar image primitives. Results of this PSO
based clustering is compared with the standard conventional classifier K-Means. In the
second model in Section 6.3, a hybrid of k Means and PSO is used for MR image
segmentation. While the third model is based on the hybrid of kNN and PSO. In section
6.4 the results and performance analysis of the proposed models are presented. A model

for grading of brain tumors is presented in section 6.5.



6.2 PSO based Image Clustering Algorithm

The basis of the classification of MRI images in this model [Chandra 2009, A PSO]
is that different feature types manifest different pixel values based on spectral reflectance
and emittance properties. This type of classification, which is based on pixel-by-pixel

spectral information, is referred to as spectral pattern recognition [Lavine et al. 2002].

Table 6.1 shows the list of variables and their meanings in the proposed algorithm.

Table 6.1 Variables used in PSO based Image Clustering algorithm

Variable Meaning

pi Particle , pi= (mj;, mjz,... mj,..., min) : Represents N cluster centroids.

miy k™ cluster centroid of i™ particle

X; Pattern matrix of i" particle

() Fitness function f(pi) = Widmax(Xi ,pi) *W2(Xmax = dmin(pi))

dmax, dmin | Maximum and minimum Euclidean distances

X a matrix representing the assignment of patterns to the clusters of
particle i.

Ne Number of clusters

W1,W2 User defined constants(weight factors)

Si Silhautte validity index

We propose the following image clustering algorithm which is based on PSO:
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While (S, -1>68)

1. For each particle i
a. For each pattern X,

Compute the Euclidean distance d(X,, m;x) for all clusters C;;..
Assign y to Cjj. Such that d-value is minimized.

b. Calculate fitness of the particle, f(p;)
2. Compute the personal best and global best solution y’(t)
3. Update the cluster centroids.

Algorithm 6.1: PSO based Image Clustering Algorithm

6.2.1 Performance measure: According to the definition of the fitness function, a small
value of fis desirable as it means well-separated clusters. The goodness of a clustering

algorithm can as well be described by Error of Quantization given by,

SIS dx,m)lin,
k=1 Vx,eCy — (6.1)

QG:

where, Cy is the k™ cluster and ny is the number of pixels in Cy.
The fitness function in table 6.1 has as objective to simultaneously minimize the
intra-distance between patterns and their cluster centroids, that is dpy. and to maximize the
inter-distance between any pair of clusters, that is dyi,. So, a smaller value of dy.x and a

higher value of dp;, 1s desirable for good clustering. Another quality measure used in this
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algorithm is the cluster validity which measures goodness of a clustering algorithm. Cluster
validation is very important issue in clustering analysis because the result of clustering
needs to be validated in most applications. In most clustering algorithms, the number of
clusters is set as user parameter. There are a lot of approaches to find the best number of
clusters. In this work silhouette validity index [Rousseeuw 1987] has been used which is

given by,

S, =(b, —a,)/ max(a,,b,) (6.2)

Where a; is the average dissimilarity of i-particles to all other particles in the same
cluster; b; is the minimum of average dissimilarity of i-particles to all particles in other
cluster (in the closest cluster). A silhouette value close to 1 implies a good clustering, and it
means that the pixels are assigned to an appropriate cluster. On the other hand, if silhouette
value is about zero, it means that that sample could be assigned to another closest cluster as
well, and the sample lies equally far away from both clusters. If silhouette value is close to
—1, it means that sample is “misclassified” and is merely somewhere in between the
clusters. The overall average silhouette width for the entire plot is simply the average of the
Si for all objects in the whole dataset. ¢ is the permissible tolerance defined by the user. ¢
value was set to 0.04 in this work. Q. is calculated only after the segmentation has been
done, while fitness function and silhouette index are computed and used in the algorithm

itself.
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6.3 An Image Segmentation Model Based on Hybrid of K-Means and and

PSO

The K-Means algorithm [McQueen 1987] is one of the simplest unsupervised
learning algorithms, which is used for data classification and analysis. It is based on the
minimization of a performance index. The algorithm first chooses K random cluster
centers, and then assigns each sample to a cluster based on the minimum distance to the
cluster centers. Then, it updates the cluster centers with the new average of the values in
each cluster. In image processing, the data set would be a set of pixel vectors. Hence, each
pixel of the image will be classified into a cluster. Steps in the K-Means algorithm are

listed below:
Step 1: Choose K initial cluster centers either randomly or taking from samples.

Step 2: Calculate the distance for each pixel to each of the cluster centers and

assign the pixel to the cluster which has the minimum distance to its center.

Step 3: Update the new cluster center with the average of pixel values in each

cluster.
Step 4: Repeat steps 2 and 3 until the clustering converges.

The K-Means algorithm tends to find the local optimal rather than the global
optimal solutions. When the initial cluster centers are chosen relatively far apart, the result
becomes more acceptable. If the main clusters are close in the feature space, the K-Means
algorithm fails to recognize them with the unsupervised mode. To improve the

performance of the K-Means algorithm, optimization techniques are usually employed. In
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addition, the Fuzzy CMeans algorithm (FCM) [Bezdek ef al. 1984] was proposed to
separate data clusters with fuzzy means and fuzzy boundaries. The FCM is less dependent

on the initial state of clustering.

In this work two efficient versions of PSO namely, GCPSO and FDR-PSO are

proposed for optimization purpose.

6.3.1 GCPSO - K-Means algorithm:

The proposed GCPSO - K-Means algorithm is formulated as follows:

Step 1: Initialize the number of clusters to K and number of particles to m.

Step 2: Initialize m sets of K random cluster centers to be used by m particles.

Step 3: Assign each pixel to a cluster with the minimum Euclidean distance.

Step 4: Calculate new cluster center; if the new cluster centers converge to the old

ones, go to the next step. Otherwise, go to Step 3.

Step 5: Save the best solution found performed by each particle. Call it pbest or

personal best solution.

Step 6: Save the best solution among the m personal best solutions found. Call it

gbest or global best solution.

Step 7: Update cluster centers of each particle according to the cluster center values

of the pbest and gbest solution using equations 5.7 and 5.8.
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Step 8: If the termination criterion is satisfied, go to the next step. Otherwise, go to

Step 3.

Step 9: Output the optimal solution
6.3.2 FDR-PSO - K-Means algorithm:

The proposed PSO-C-K-Means algorithm is presented as follows:
All steps are exactly same as those described in 5.3.1., except for Step 7.

Step 7: Update cluster centers of each particle according to the cluster center values

of the pbest and gbest solution using (5.11) and (5.4).

6.4 An Image Classification Model Based on Hybrid of KNN and PSO

In this section an algorithm based on the hybrid of kNN and PSO is presented for
the classification of MRIs. The k-nearest neighbors algorithm (kNN) is a method for
classifying objects based on closest training examples in the feature space. kNN is a type
of instance-based learning, or lazy learning where the function is only approximated
locally and all computation is deferred until classification. The k-nearest neighbor
algorithm is amongst the simplest of all machine learning algorithms: an object is
classified by a majority vote of its neighbors, with the object being assigned to the class
most common amongst its k nearest neighbors (k is a positive integer, typically small). If k

= 1, then the object is simply assigned to the class of its nearest neighbor.
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The neighbors are taken from a set of objects for which the correct classification is
known. This can be thought of as the training set for the algorithm, though no explicit
training step is required. The k-nearest neighbor algorithm is sensitive to the local structure
of the data. Nearest neighbor rules compute the decision boundary in an implicit manner. It
is also possible to compute the decision boundary itself explicitly, and to do so in an
efficient manner so that the computational complexity is a function of the boundary

complexity [Bremner ef al. 2005].

The best choice of k depends upon the data; generally, larger values of k reduce the
effect of noise on the classification, but make boundaries between classes less distinct. A
good k can be selected by various heuristic techniques, for example, cross-validation. The
special case where the class is predicted to be the class of the closest training sample (i.e.
when k = 1) is called the nearest neighbor algorithm. The accuracy of the kNN algorithm
can be severely degraded by the presence of noisy or irrelevant features, or if the feature
scales are not consistent with their importance. Much research effort has been put into
selecting or scaling features to improve classification. In the proposed model, PSO has

been used for optimizing the feature scaling.

The problem of using highly imbalanced dataset for pattern recognition is that the
classification model built on the training data tends to be biased on preferring the majority
class while ignoring the samples from the minority class. Data sampling method tries to
remedy the skewed class distribution by either increasing the sample size of minority class

or decreasing the sample size of majority class. However, algorithms that modify the
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sample distribution with greedy measures can introduce undesired bias. In this study we re-
apply the techniques in feature selection to data sampling using a PSO based hybrid

system. The schematic flow of the proposed hybrid system is illustrated in Figure 6.1.
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Fig.6.1. Schematic flow of the proposed hybrid system based on PSO and kNN.

6.5 Results and performance analysis

All the images detailed in the image data set table 4.1 were used for the three PSO
based methods. Some of the segmentation results are shown in figure 6.2. Table 6.2

summarizes the average values of Q. , dmax and dmin for the two versions of PSO, K-Means



and PSO-K-Means Hybrid models which been used for the clustering algorithms as
described above.
Table 6.3 shows the values of Q. , dmax and dpi, obtained for GCPSO, K-Means and

PSO — K-Means Hybrid.

Table 6.2 Performance of PSO, K-Means and PSO-K-Means Hybrid

Algorithm Q. Aimax dmin
GCPSO 9.3265 12.2356 20.2356
FDRPSO 8.8862 11.2354 19.8857
K-Means 5.6689 20.2356 12.5742
GCPSO-K-Means Hybrid | 5.5246 17.5832 14.2568

From table 6.2 it is evident that as far as Q. is concerned the K-Means based approaches
give better results. Whereas, the comparative values dyax and dpin show that PSO based
approaches are better. The comparative results of precision, recall and accuracy for all the
three models have been summarized in table 6.3. It appears from table 6.3 that the overall
performance of PSO- kNN Hybrid model is very poor compared to PSO and Hybrid PSO
kMeans, therefore PSO- kNN Hybrid model is not used for experiments hereafter.

Table 6.3 Classification Results for the three proposed algorithms

Classifier Precision | Recall | Accuracy
GCPSO 92.76 96.24 | 94.42
Hybrid PSO kMeans | 93.33 95.28 |96.71
PSO kNN Hybrid 91.12 90.24 | 91.15
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6.5.1 Effect of PSO parameters

In order to achieve best results from PSO it must be fine tuned. For this purpose the
PSO based clustering algorithms were executed with varying values of swarm size,
velocity, inertia weight and acceleration constants. The results obtained for Q., dmax and
dmin against varying values of swarm size, s, have been plotted in figures 6.3(a), (b) and (c)
respectively. The  classification  accuracies of GCPSO and PSO-K-Means Hybrid
methods against different values of iterations and swarm sizes have been plotted in figures
6.4(a) and 6.4(b) respectively. The plots of figures 6.3 and 6.4 reflect that the performance
obtained is the best when swarm size lies between35 and 45. Furthermore, it is also evident
from the plot that in order to get better results, total number of iterations should be around

500-700. Table 6.4 summarises the various values of PSO parameters used.
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Fig.6.2(a). Effect of swarm size on quantization error
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Table 6.4 PSO parameters used

Parameter Value
Size of Particle Population 40
Iteration 500
Update Rule Sigmoid Function
Cognitive Constant 1.6
Social Acceleration Constant 1.5
Inertia Weight 0.7
Velocity Range 0.2-1.1
Fitness Weight 0.34
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Fig.6.3(a). Percentage classification accuracy of PSO and Hybrid PSO against different

iterations.
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Fig.6.3(b). Percentage classification accuracy of PSO and Hybrid PSO against different

values of Swarm size.

6. 6. Grading of Tumors

The main problem in designing an automated tool for grading of tumors is that the
traditional MR imaging is often not adequate in telling the tumor grade. Therefore,
medical practitioners rely on further investigations such as biopsy for determining the
grades of tumors. In this work some features of MRI have been found that may be

suggestive of some grade of brain tumor. Then a model is developed for automated grading

of tumors.

For the grading of tumors we follow the following steps:

1. ROI definition

2. Feature extraction
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3. Feature selection
4. Classification based on hybrid of kNN-PSO coupled with Cross validation by
Leave One Out [Bo e7 al. 2006].

Firstly the heterogeneous regions of brain tumors are explored by combining
imaging features from several sequences. Then morphological and textural characteristics,
such as rotation invariant texture features based on Gabor filtering are extracted and the
significance of each feature is assessed in classification. Multi class classification is
applied for differentiating between the most common brain tumors: metastasis,

meningioma (usually grade I) and glioma (grade II, II and IV).

6.6.1 Feature Extraction:

For feature extraction first of all, appropriate ROIs were manually selected. A number
of features were selected which included tumor shape characteristics, image intensity

characteristics within several regions of interest and Haralick texture features.

1) Shape and statistical characteristics of tumor:

2) Image intensity characteristic.

3) Haralick textural features. [Miyamoto 2005].

6.6.2 Grading Implementation and Results

For grading purpose, 156 images were considered for which the grading had been
confirmed by needle biopsy method. The brain masses were graded on the basis of WHO
standard as grade I, grade II, grade III and grade IV. MR images of different tumor types

are shown in Fig. 8. The results of grading are tabulated below in table 8.
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Table 6.5 Result of Grading of Brain Tumors

Tumor | No. of TP | TN |[FP | FN | Precision | Recall | Accuracy
Type Samples

GL1 44 41 5 5 7 89.1 85.4 793
GL2 25 22 |8 6 8 78.5 73.3 68.1
GL3 47 39 11 7 11 84.7 78.0 73.5
GL4 40 36 |8 6 9 85.7 80.0 74.5

Fig.6.4. Different types of Brain tumors : from L to R: Gradel, 2, 3 &4

6.7 Conclusions

The application of different versions of PSO algorithms to the MR image segmentation
and classification was explored. An algorithm based on PSO was presented for image
clustering. A method using hybrid of K-Means with SBM-PSO was presented for MR
image segmentation. All the proposed methods were implemented and tested with MR
images obtained from various sources. It was found that PSO can be used successfully for

image segmentation as well as for optimizing the clustering algorithm K-Means. Finally,
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one more method using hybrid of PSO and kNN was presented, which was used for
classification of MR images as normal or abnormal, on the basis of absence or presence of
brain tumor. The PSO-K-Means hybrid model was further used in the grading of MR
Images as per WHO scheme of brain tumors. The experimental results showed that the
proposed algorithms have better segmentation results and, in general, larger inter-cluster
distances and smaller intra-cluster distances. Based on the results shown in the
experiments, it appears that the K-Means algorithm can be improved by the PSO technique.
The combination of PSO and the K-Means algorithms performed better and had better
stability than the K-Means algorithm or PSO based method alone. The “not so good” results
of grading concluded that the present MRI technique is not sufficient enough for the

grading purpose.
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