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ABSTRACT OF THE DISSERTATION 
Artemisinins are the most potent antimalarials available, rapidly killing all asexual 

stages of P. falciparum. They are sesquiterpene lactones, widely used to treat multidrug-

resistant malaria. Thus it has been the objective of numerous studies to prepare better and 

safer anti-malarial drugs. However, the mode of action of this antimalarial is not fully 

understood. Artemisinins act via mechanisms that are distinct from other antimalarial classes, 

including those that inhibit well defined targets such as enzymes of folate biosynthesis, the 

DOXP reductase pathway or the cytochrome electron transport system. The peroxide within 

the 1,2,4-trioxane system of artemisinins is essential for antimalarial activity. Therefore, the 

peroxide structure becomes a focus for considerable chemical analysis aimed at trying to 

understand how artemisinins work. There have been two mechanism of action of artemisinin 

proposed. One the activated artemisinins form adducts with heme and leads to inhibition of 

heme polymerization. Secondly as shown recently, artemisinins, but not quinine or 

chloroquine, inhibit the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) orthologue 

(PfATP6) of P. falciparum. PfATP6 is essential for P. falciparum calcium homeostasis.  

However the mechanism of interaction as well as the binding affinity of artemisinin with 

heme and PfATP6 has not yet known. In this regards the molecular modeling study could be 

very helpful to explore the mode of interaction. Docking, binding free energy and quantitative 

structure activity relationship (QSAR) are computational ways to explore the binding 

structure, binding affinity, interaction of ligand/receptor and development of activity model. 

In the work, several computational approaches were used to explore the binding of 

artemisinin and its structural derivatives in heme and PfATP6. 

 

An automated docking protocol has been established in this study to explore the 

binding interaction of artemisinin with heme. Several ab initio atomic charge schemes (HF/6-

21G, HF/6-21G* and HF/6-21G**) for both artemisinin and heme structures were applied in 

the simulations and their effects on the docking results were investigated. Artemisinin 

structures taken from various optimization methods and three heme models were employed 

for this purpose. The docking results depended on the structures of both artemisinin and 

heme. Moreover, the atomic charges of heme have a significant effect on the docking 

configurations.  A library of artemisinin analogues has been designed consisting of 144 
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analogues. The combined approaches of docking-molecular mechanics based on generalized 

Born/surface area (MM-GB/SA) solvation model showed that artemisinin and its structural 

derivatives approaches heme by pointing O1 and O2 at the endoperoxide linkage toward the 

iron center, a mechanism that is controlled by steric hindrance. A linear correlation was 

observed between the Fe-O distance and Glide score & binding free energy with correlation 

coefficient (R2) of 0.658 and 0.707. Quantitative structure activity relationships were 

developed between the antimalarial activity (pIC50) of these compounds and molecular 

descriptors like docking score and binding free energy. Using Glide score and binding free 

energy the R2 were in the range of 0.714 to 0.763 and 0.718 to 0.763 indicating that the 

predictive capabilities of the models were acceptable. Low level of root means square error 

for the majority of inhibitors which establish the docking and prime MM-GB/SA based 

prediction model as an efficient tool for generating more potent and specific inhibitors of 

heme by testing rationally designed lead compounds based on artemisinin derivatives.  

 

 The antimalarial activity of artemisinin derived drugs appears to be mediated by an 

interaction of the drug’s endoperoxide bridge with intraparasitic heme.  The binding affinity 

of artemisinin analogues with heme were computed using a linear interaction energy (LIE) 

method with a surface generalized Born (SGB) continuum solvation model. A training set of 

101 artemisinin analogues with known in vitro antimalarial activity was used to build the 

SGB-LIE model utilizing molecular dynamics (MD) and hybrid Monte Carlo (HMC) 

sampling techniques. For the test set of 57 compounds the SGB-LIE model was able to 

predict their activity with an overall root mean square (RMS) error of 0.348 and 0.415 

kcal/mol respectively with respect to experimental data. Low levels of RMS error establish 

the structure-based LIE method as an efficient tool for generating more potent inhibitors of 

heme by testing rationally designed lead compounds based on artemisinin derivatization. The 

developed LIE method demonstrates to be a powerful tool to estimate binding affinity of a 

large set of ligands within a reasonable computer time and is a promising approach in  

computeraided rational drug design. 

  

 A quantitative structure-activity relationship (QSAR) analysis has been performed on 

a data set of 194 artemisinin analogues for antimalarial activity. Several types of descriptors 
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including topological, spatial, thermodynamics, information content, lead likeness and E-state 

indices have been used to derive a quantitative relationship between antimalarial activity and 

structural properties. A systematic approach of zero tests, missing value test, simple 

correlation test, multicollinearity test and genetic algorithm method of variable selection was 

used to generate the model. Statistically significant model (r2 = 0.845, q2
cv = 0.799, F-test = 

53.40) was obtained with the descriptors like molecular connectivity indexes, E-state index, 

length-to-breadth ratio of compounds, MLog P, HOMO, electron density, Balabans 

topological index and strain energy of the molecules. The robustness of the QSAR models 

was characterized by the values of the internal leave one out cross-validated regression 

coefficient (q2
cv) for the training set and determination coefficient in prediction, q2

test for the 

test set. The value of q2
test = 0.876 for the test set; revealed good external predictability of the 

QSAR model. Also for an external data set (validation set) of 4 artemisinin analogues the 

QSAR model was able to predicts the antimalarial activity with very well in comparison to 

experimental values. The model was also tested successfully for external validation criteria. 

QSAR model developed in this study shall aid further design of novel potent artemisinin 

derivatives.  

 

 In addition to heme bio-molecular system, docking simulations and binding free 

energy calculation were carried out to explore the binding properties of artemisinin with 

PfATP6 of Plasmodium falciparum. The 3D structure of PfATP6 was constructed by 

homology modeling. A library of artemisinin analogues has been designed consisting of 154 

analogues. Their molecular interactions and binding affinities with modeled PfATP6 protein 

have been studied using the docking, molecular mechanics based on generalized Born/surface 

area (MM-GBSA) solvation model and eMBrAcE. Docking and binding free energies scores 

show good relation with in vitro antimalarial activities. The main binding source of 

artemisinins to the PfATP6 is hydrophobic inbteraction and biologically important peroxide 

bonds were exposed to outside of the binding pocket. The study suggests binding of 

artemisinin to PfATP6 precedes activation of peroxide bond by Fe2+ species. Quantitative 

structure activity relationships were developed between the antimalarial activity (log RA) of 

these compounds and molecular descriptors like docking score and binding free energy. For 

both the cases the r2 was in the range of 0.538–0.0.688 indicating good data fit and r2
cv was in 
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the range of 0.525–0.679 indicating that the predictive capabilities of the models were 

acceptable. In addition, a scheme similar to Linear Response was used to develop a free 

energy of binding (FEB) relationship based electrostatic (∆Gele), van der Waal (∆GvdW) and 

surface accessible surface area (SASA), which can express the activity of these artemisinin 

derivatives. It can be seen that ∆GvdW has most significant correlation to the activity (log RA) 

and electrostatic energy (∆Gele) has less significant correlation to the activity. It indicates that 

the binding of these artemisinin derivatives to PfATP6 is almost hydrophobic. ∆GvdW may be 

a major drive force to their binding and contribution to their activity. Low levels of root mean 

square error for the majority of inhibitors establish the docking, Prime/MM-GBSA and 

eMBrAcE based prediction model as an efficient tool for generating more potent and specific 

inhibitors of PfATP6 by testing rationally designed lead compounds based on aremisinin 

derivatization. Docking score as well as binding free energy calculated based on EmBrace and 

Prime MM-GB/SA show good relation with in viro antimalarial activities. The main binding 

source of artemisinins to the PfATP6 is hydrophobic interaction and biologically important 

peroxide bonds were exposed to outside of the binding pocket. This study suggests binding of 

artemisinin to PfATP6 preceeds activation of peroxide bond by Fe+2 species.  

 

 

 

 
 
 

 



 i 

CHAPTER 1 

Introduction 
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1.1 Epidemiology of malaria 

 Malaria is a deadly disease threatening half of the global population. It is caused by 

protozoan parasites of the phylum Apicomplexa and the genus Plasmodium. There are more 

than 100 Plasmodium species that can infect mammals, birds and reptiles. Five Plasmodium 

species can infect humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium 

malariae, Plasmodium ovale and Plasmodium knowlesi. P. knowlesi, whose natural host is 

macaque monkeys, was recently suggested to be the fifth species that can infect humans 

(White, 2008). It has been shown to be a major cause of malaria in Malaysia (Cox-Singh et. 

al., 2008). P. falciparum and P. vivax are the most common human species, while P. 

falciparum causes most severe disease and death. It has been estimated that malaria 

transmission occurs in 109 countries putting 3.3 billion people at risk. In 2006 there was an 

estimated 247 million malaria cases, resulting in nearly 900000 deaths. This makes P. 

falciparum one of the leading causes of death worldwide, from a single infectious agent. The 

malaria burden is greatest in African children as 90% of the deaths occur in sub-Saharan 

Africa and 85% of the mortality affects children under five years. Although the number of 

deaths is similar to that of 2004, amelioration of the malaria situation has been achieved in 

seven African regions, where malaria control measures have resulted in 50% or more 

reduction in malaria incidence and mortality since 2000, and further 22 countries in the world 

have reached similar effects (WHO, 2008a-c). Morbidity and mortality are not the only 

consequences of malaria infection. The disease is estimated to be responsible for an average 

annual reduction of 1.3% in economic growth for countries with the heaviest malaria burden 

(Sachs & Malaney, 2002). The great variation in malaria burden between different 

geographical regions can be driven by several factors. Moreover, the parasite is becoming 

resistant to commonly used antimalarial drugs. 

 

1.2 Life cycle of P. falciparum 

 For Plasmodium falciparum, mosquito is always the vector, and is always a female 

Anopheles mosquito. There are 380 species of Anopheles mosquitoes, but only 60 can 

transmit malaria. With the exception of P. malariae (which may affect the higher primates), 

the other three species of Plasmodium that infect man are obligate parasites of human beings. 

The life cycle of Plasmodium parasite is very complex and requires two different hosts, a 
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vertebrate host (man) and an invertebrate host, the female Anopheles mosquito (vector) 

(Figure 1.1). The different stages were named on the basis of their morphology such as 

merozoite, trophozoite, gametocyte found in humans and zygote, ookinete and sporozoite 

found in mosquitoes (Wirth, 2002).  

 
 
Figure 1.1 Various stages in the life cycle of malaria parasite involving human host and the 
vector, mosquito (Adapted from http://www.cdc.gov/malaria/lifecycle).  
 
The cycle in man begins with the bite of a female Anopheles mosquito harboring sporozoites 

in its salivary gland during its blood meal. The sporozoites travel through the punctured skin 

into the blood stream. The sporozoites in the blood stream travel to the liver and invade 

hepatocytes within 30 minutes of being released by the mosquito. In the liver cells they reside 

for 9-16 days and then start multiplying asexually within the cells. Asexual reproduction 

(exoerythrocytic schizogony) in the liver releases thousands of merozoites, which are the first 

stage of the 48-hour asexual reproduction cycle in the red blood cells (erythrocytic 

schizogony). The blood stages constituting this cycle, studied by light and electron 

microscopy (Bannister et. al., 2000) are the merozoite, the ring, the trophozoite and the 

schizont (Figure 1.1). Schizont ruptures to release around 8-32 merozoites which are ready to 
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invade fresh red blood cells. The erythrocytic schizogony is the time when the human host 

suffers periodic cycles of clinical symptoms like fever and chills. While the merozoites 

continue invading fresh RBCs and continue asexual reproduction, some of them exit the 

asexual reproduction cycle and mature to male and female gametocytes by a process known 

as gametogenesis. Upon a subsequent mosquito bite, these gametocytes are taken up into its 

gut, where sexual reproduction takes place. In the gut the gametes undergo exflagellation and 

the macrogametocytes are fertilized. The resulting ookinete penetrates the wall of a cell in the 

midgut, where it develops into an oocyst. Sporogony within the oocyst produces many 

sporozoites and when the oocyst ruptures, the sporozoites migrate to the salivary gland, for 

injection into another host and thus the cycle continues (Sherman, 1998). 

 
1.3 Treatment of malaria – Current antimalarials  
1.3.1 Quinine related drugs 

 Quinine is one of the four main alkaloids found in the bark of the Cinchona tree. Till 

date the actual mechanism of action of quinine has not been unequivocally worked out. Over 

many decades, different variants of quinine (most often, the structural analogues) such as 

chloroquine (4-amino-quinoline), mefloquine (quinoline methanol), primaquine have been 

used for malaria treatment (Surolia et. al., 2002). But the anti-malarial efficacy of each of 

these has been far from satisfactory due mainly to two major factors: (1) these drugs act on 

the targets whose biochemical structure/function overlaps with that of the human host 

(Milhous and Kyle, 1998) (2) evolution of resistant strains of the parasite within the last two 

decades due to indiscriminate usage of the drugs (Padmanaban and Rangarajan, 2001). 

Chloroquine is a lysomotropic drug. It is a weak base, uncharged at neutral pH and gets 

positively charged at acidic pH. Owing to this property, chloroquine is selectively 

accumulated inside lysosomes. The uncharged compound rapidly diffuses through the plasma 

and lysosomal membranes, while once charged the compound becomes trapped inside the 

acidic lysosomal compartment of the parasite (Homewood et. al., 1972). This may lead to the 

generation of concentration gradient of several orders of magnitude. The intracellular 

trophozoite feeds on the hemoglobin of the red blood cell that serves as a source of amino 

acids. Digestion of the globin protein takes place inside the Plasmodium lysosome resulting in 

the generation of free heme (ferriprotoporphyrin IX, FP). The latter is insoluble and 

precipitates in the form of a black malaria pigment inside the lysosomes. Chloroquine in the 
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lysosome interferes with pigment formation and the FP-chloroquine complex is highly toxic 

to the parasite.  

 

1.3.2 Drug resistance in P. falciparum malaria 

 Globally the control of malaria is deteriorating. Key factor contributing to the 

increasing malaria mortality and morbidity is the wide spread resistance of P. falciparum to 

the conventional antimalarial drugs such as chloroquine, sulfadoxine-pyrimethamine (SP) and 

mefloquine (Figure 1.2) (Ridley, 2002; Ronn, 1996; Sowunmi et. al., 1998; vvn Agtmael et. 

al., 1999). Multidrug-resistant P. falciparum malaria is prevalent in Southeast Asia and   

 
Figure 1.2. Global status of resistance to chloroquine and sulfadoxine/pyrimethamine. Data 
are from the WHO. 
 

South America. Now Africa, with the highest burden of malaria, is also being affected 

(Wensdorfer, 1994; Wesdorfer et. al., 1991). Antimalarial drug resistance is usually a result 

either of changes in drug accumulation or efflux (chloroquine, quinine, amodiaquine, 

mefloquine, halofantrine resistance) (Whit, 1998) or reduced affinity of the drug target 

resulting from point mutations in the respective genes encoding the target (pyrimethamine, 

cycloguanil, sulphonamides, atovaquone resistance) (Foote et. al., 1994; Ward et. al., 1995). 
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The resistance occurs when the drug concentrations are sufficient to reduce the susceptible 

parasite population, but inhibit less or do not inhibit multiplication of the mutants (Chawira et. 

al., 1987). Resistance causes drug failures when, because of reduced susceptibility, drug 

levels that would normally eliminate the infection can no longer do so. However, fully drug-

sensitive parasites can still cause a recrudescent infection if the plasma concentrations of the 

drug are insufficient (White, 1999a). Increasing multidrug resistant P. falciparum in many 

parts of the world has aggravated the problem of deciding which antimalarial to use, 

particularly in countries where P. falciparum has developed resistance to chloroquine, 

mefloquine primaquine, antifolates such as Fansidar (Sulphadoxine-Pyrimethamine) and, to 

some extent, quinine which previously was effective in the treatment of severe and 

complicated malaria (Olliaro et. al., 1995). 

Further proliferation of drug resistance is closely related to (Kondrachine, 1997): 

• Massive population movements. 

• Inadequate health services. 

• Improper use of antimalarial drugs. 

• Limited resources and operational difficulties in implementing malaria control activities. 

  

1.4 Artemisinin and its derivatives as antimalarial drugs 
 
1.4.1 The plant Artemisia annua 
  

 The Chinese herb Qing Hao (blue green herb) has been used for two millennia in 

Traditional Chinese Medicine (1979; 1992; van Agtmael et. al., 1999). The earliest reference 

to the plant goes back to “52 prescriptions”’ found in the Mawangudi Tomb in an era dating 

back to 206 BC-AD23. The first prescription of Qing Hao for treatment of related symptoms 

is found in “The handbook of Prescriptions for Emergencies” by Ge Hong, who lived during 

AD 281- 340 (Wu and Li, 1995). Active moiety Artemisinin (qinghaosu) was isolated by 

Chinese scientists in 1972 from the aerial parts of Artemisia annua L (Journal Report; 

Klayman, 1985; Liu, 1979). The compound showed good in vitro and in vivo antimalarial 

activity. Several studies showed artemisinin to be an exceptional antimalarial agent with 

negligible toxicity and high efficacy against human malaria parasites, including those malaria-

resistant to conventional antimalarials (Li et. al., 1994).  
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1.4.2 Chemical structure and metabolism 
 Artemisinin is structurally different from the previously known antimalarials. The 

compound is an unusually stable sesquiterpene lactone with an endoperoxide ring (empirical 

formula C15H22O5) (Figure 1.3). Presence of the endoperoxide moiety is the key to its 

antimalarial activity (Brossi et. al., 1988; Klayman, 1985; Lee et. al., 1990; Luo et. al., 1987). 

 
 

    Figure 1.3. Artemisinin and its derivatives. 
 

The white needle crystals of artemisinin are hardly soluble in water or oil therefore 

formulations other than oral and rectal are not in clinical use. However, since the peroxide 

bridge is stable under certain chemical reactions, several more soluble artemisinin derivatives, 

arteether, artemether, sodium artesunate, sodium artelinate and dihydroartemisinin (DHQ) 

have been synthesized for the treatment of malaria (Figure 1.3). DHQ is the first metabolite of 

artemether, arteether and artesunate. DHQ is the most effective compound of this class (Janse 

et. al., 1994. Artesunate can be regarded as a pro-drug of DHQ.  

 

1.4.3 Antimalarial activity 

 Now artemisinin and its derivatives have been recognized as a new generation of 

powerful antimalarial drug for combating the most popular infectious disease malaria 

worldwide. Artemisinin and its derivatives induce more rapid reduction of parasitemia (van 

Agtmael et. al., 1999), decreasing the number of parasites faster than any other known drug. 
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As a consequence they are of special interest for severe malaria (Hien and White, 1993). The 

fast decline in the number of parasites is also beneficial in combination therapies. Most of the 

antimalarials work at late trophozoite and schizont stages of the malaria parasite but 

artemisinins also act at early trophozoites and ring stages (van Agtmael et. al., 1999). 

Artemisinins do not affect liver-stage parasites or stages within the mosquito (Price et. al., 

1996). Artemether and artesunnate were approved by the Chinese authority and collected in 

the “Essential Medicine List” by WHO. These derivatives have been successfully applied to 

remedy several million malaria-suffering patients since their advent. Meanwhile many 

research papers have been published to record rapid progress of artemisinin research from 

different disciplines of botany, chemistry, pharmacology, and clinical medicine etc. Qinghao 

has been used as a traditional medicine for at least 2000 years in China (Wallaart, 2000). 

Since then a series of Chinese medicine books including the most famous book “Compendium 

of Medical Herbs” (Bencao Gangmu) by Li Shizen in 1596, have described the application of 

qinghao for fever remedy. In the phytotaxonomy qinghao is Artemisia annua L. Composites, 

so Qinghaosu is also named as artemisinin or seldom as arteannuin.  

 

1.4.4 Artemisinin derivatives 

 From indigenous Artemisia annua L., continuous phytochemical studies by Chinese 

researchers in the early 1980s led to the excavation of another 10 sesquiterpenes including 

deoxy-artemisinin (Tu et. al., 1981), artemisinin D (Tu et. al., 1981), artemisinin F (Zhu et. 

al., 1984), artemisinin E (Wu et. al., 1984), artemisinin A (Tu et. al., 1981), epoxyarteannuinic 

acid (Wu et. al., 1984), artemisinic acid (Deng et. al., 1981; Tu et. al., 1981), artemisinic acid 

methyl ester (Zhu, 1982) artemisinol (Zhu, 1982) and arteannuin B (Tu et. al., 1981). From 

biogenetic viewpoint, artemisinic acid or its11, 13- dihydroanalogue, dihydro-artemisinic acid 

which was isolated later from A. annua is late precursors in the biogenesis of qinghaosu. By 

the year 1991, 16 closely related sesquiterpenes had been isolated from aerial part of A. annua 

and briefly summarized by Zaman and Sharma (1991). A bisnor-sesquiterpene, norannuic 

acid was reported in 1993 (Misra et. al., 1993) and three more sesquiterpenes were isolated 

and reported by Misra et al. (1994). Sy et. al., (1998) isolated seven new sesquiterpenes in 

1998. Two amorphane sesquiterpenes, deoxyarteannuin B and dihydrodeoxyarteannuin B 

were introduced to sesquiterpene family isolated from aerial pars of A. annua in 2001. 
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Recently, the first phytochemical investigation of natural products from the seeds on A. annua 

led to discovery of fourteen new sesquiterpenes (Sy et. al., 2001). In addition, two 

sesquiterpene plant hormones, abscisic acid and its methyl ester were found in an Indian 

growing A. annua (Tewari et. al., 2003). Apart from sesquiterpenes from A. annua, essential 

oils are another active research interest as it could be potentially used in perfumery, cosmetics 

and aromatherapy. Depending on its geographical origin, the oil yield in A. annua ranges 

between 0.02-0.49% on fresh weight basis and 0.04-1.9% on dry weight basis (Bagchi et. al., 

2003; Bhakuni et. al., 2001; Jain et. al., 2002; Rasooli et. al., 2003; Liu et. al., 1981). Other 

chemical compounds in A. annua includes carbohydrates, traces of glycosides, resins etc. 

 

1.4.5 Pharmacology 

 Antimalarial drugs derived from natural Artemisia annua L. have many advantages: 

quick reduction of fevers, fast clearing parasites in blood (90% of malaria patients recovered 

within 48 hrs) and no significant side effects. Experimental and clinical studies reveal that 

artemisinin, Artemether and artesunnate are not only the potent antimalarial drugs but also the 

useful agents for other disease, especially as antiparasitic agent. In 1970s, Artemether and 

artesunnate were confirmed to be more active than artemisinin in animal models (Le et. al., 

1980; Le et. al., 1982; Wu et. al., 1995). Some components of A. annua Such as qinghaosu, 

artemisinin B, artemisinic acid, artemisitene, flavonoids and other terpenoids, showed 

antitumor activities at varying concentrations against L-1210, P-388, A-549, HT-29, MCF-7 

and KB in vitro (Zheng et. al., 1994; Jung, 1990; Jung, 1997). It was found that 

dihydroartemisinin can selectively kill cancer cells in presence of holotransferrin, which can 

increase intracellular iron concentrations, and normal breast cells (HTB 125) and lymphocytes 

had non-significant changes. It seems the mechanisms of anticancer action and of antimalarial 

activity are similar (Lai et. al., 1995; Moor, 1995; Singh, 2001). As a response to increasing 

levels of antimalarial resistance, WHO recommends that all countries experiencing resistance 

to conventional mono therapies should use combination therapies preferably those containing 

artemisinin derivatives (ACTs- Artemisinin based Combination Therapies) for falciparum 

malaria. WHO currently recommends the following therapeutic options:  

• artemether 

• artesunate + maodiaquine 



 9 

• artesunate + sulphdoxine/ pyremethamine 

• artesunate + mefloquine 

• amodiquine + sulphaodxine-pyrimethamine 

Malaria is a highly treatable disease, and very effective treatments available in the form of 

Artemisinin based Combination Therapies (ACTs). WHO call on all “Roll Back Malaria 

(RBM) “ partners to unite in a global coalition to enable countries to accelerate access to 

ACTs and make these lifesaving medicines affordable to the people in need (WHO, 1998). 

 

1.4.6 Artemisinin drugs in the treatment of Plasmodium falciparum malaria in India 
 The National Anti Malaria Drug Policy envisages treatment of uncomplicated 

Plasmodium falciparum (suspected and laboratory diagnosed) with choloroquine and 

primaquine and in five provinces by the co-administration of artesunate and sulphoxine 

pyrimethamine (http://namp.govt.in). In this connection, the article on artemisinin-based 

combination therapy (ACT) by Sushil Kumar and Srivastava is timely (Kumar et. al., 2005). 

In 2003, the National Vector Borne Disease Control Programme, NVBDCP in short (formerly 

National Anti Malaria Programme), reported 1.87 million cases of malaria (including 0.86 

million P. falciparum cases) and 1006 deaths. In 2004, the largest number of malaria cases 

was reported from Orissa, followed by Gujarat, Chhattisgarh, West Bengal, Jharkhand, 

Karnataka, Uttar Pradesh and Rajasthan (http://namp.govt.in). The epidemic has been 

occurring with increasing frequency, killing and demoralizing the affected population; and 

pushing people below the poverty line. For example, in India, 90% P. falciparum cases occur 

in states below the poverty line (Sharma, 2003). Such epidemics prevent national 

development in all walks of life and retard the gross domestic product (GDP) (Sachs et. al., 

2002). Recent examples of malaria epidemics reported by the NVBDCP include inter alia 

Rajasthan, Haryana (1976), Gujarat, Goa, West Bengal (1997), Goa, Maharashtra (1998), 

Andhra Pradesh, Assam, Bihar, West Bengal (1999), Uttar Pradesh, Madhya Pradesh, 

Karnataka (2000), and Rajasthan (2003) 

(http://w3.whosea.org/EN/Section10/Section21/Section1987.htm). Obviously, the disease 

burden in the country is hugely under-estimated. This is also reflected by the fact that India’s 

chloroquine consumption in 1976 was 61 metric tons (mt) to treat 6.45 million cases; and in 

2005 cases have reduced by 70% but antimalarial usage has increased ten fold (Department of 
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commerce, Government of India, New Delhi, 2004). Based on environment determinants, the 

World Health Organization (WHO) estimates 100 million cases in the South East Asia Region 

(SEARO) (WHO, 2004), 70% of these contributed by India (WHO, 2004). P. falciparum, the 

killer parasite accounts for 45–50% malaria cases. Control of P. falciparum is important but 

difficult, as was evident from the failure of the Swedish International Development Agency 

(SIDA) supported Indian P. falciparum Containment Programme (1977–88) (Sharma, 1998). 

P. falciparum parasite is present all over the country, but its distribution is highly uneven. It is 

the major cause of infection in the Northeast, Orissa, tribal settlements across the country and 

forests. In the plains of India, Plasmodium vivax peak is followed by P. falciparum and in all 

other endemic areas P. falciparum predominates. P. falciparum abounds in communities 

lacking awareness, resources and suffering from endemic poverty (Sharma, 2003; Sharma, 

1996; Sharma, 1999; Anon, 1987). With the national antimalaria drug policy of sequential 

monotherapies and serious compromises in vector control, drug resistance against chloroquine 

and sulphodoxine pyrimethamine (SP) is on the rise, and more areas are coming under 

multidrug-resistant malaria1 (Anon, 1987). Drug pressure is selecting for mutations, for 

example, Pfcrt K76T mutation, an important determinant of chloroquine resistance is present 

in 95% of the isolates studied (Vathsala et. al., 2004). A direct consequence of drug resistance 

is the rise in malaria morbidity and mortality, and steep rise in treatment cost by a factor of 

40–50 compared to chloroquine (Gupta et. al., 2005). 

 

 ACT is a scientific approach to tackle this problem. It is a combination of artemisinin 

derivative drug with one or more long acting antimalarial drug having different modes of 

action and different drug targets (Lee, 2002; White, 1999). Artemisinin drugs have a short 

half-life of 1–4 h or so, but because of their strong anti-plasmodial activity, they reduce 

biomass of the existing parasites by about 10–4 or say by 95% at each dosage of 

administration, and also kill the sexual stages of the malarial parasite. Residual parasites, if 

any, and the recrudescences are eliminated by the long acting antimalarial and the host 

immunity (International Artemisinin group, 2004; Davis et. al., 2005).  
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 1.5 Mechanism of action 

 Although artemisinin has been on the market for more than 30 years little is known to 

date about its biological targets (Wu, 2002). One of the main reasons is that artemisinin does 

not exert its lethal effect through the whole intact molecule, but rather, through some transient 

species generated after cleavage of the peroxy bond (Wu, 2002). Artemisinin is hydrophobic 

and passes biological membranes easily (Augustijns et. al., 1996). In vitro studies have 

suggested an uptake of artemisinin by both healthy and malaria infected red blood cells 

(Asawamahasakda et. al., 1994). During the blood stage phase of the parasite, more than 70% 

of the hemeoglobin within the infected erythrocyte is digested (Francis et. al., 1997). Heme is 

released which is toxic for the parasite and neutralized by polymerization into hemeozoin or 

“malaria pigment” in the form of a crystalline, insoluble, black-brown pigment. The heme 

polymerization pathway is specific to the malarial parasite and offers a potential biochemical 

target for the design of antimalarials. Heme or iron (II) salts triggers reductive cleavage of the 

peroxide bond in artemisinin to form oxygen centred radicals. Oxy radicals then form carbon 

centred radicals (Kamchonwongpaisan et. al., 1996) (Figure 1.4). These radicals cause 

oxidative stress and damage to the parasite’s membrane systems like mitochondria, rough 

endoplasmic reticulum and plasma membranes (Asawamahasakda et. al., 1994; Cumming et. 

al., 1997; Maeno et. al., 1993). Recent studies have shown that artemisinin taken up by the 

malarial parasite growing in vitro was selectively concentrated in the parasite food vacuole 

and was associated with hemozoin (Hong et. al., 1994). Artemisinin also interacts with heme, 

forming covalent adducts (Hong et. al., 1994; Meshnick et. al., 1991). However, it has also 

been reported that the artemisinin heme complex does not possess any antimalarial activity 

(Meshnick et. al., 1991). Further studies related to structural and mechanistic aspects of the 

interaction of artemisinin with heme may yield important information for the design of better 

antimalarials. 
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Figure 1. 4. Mechanism of action of artemisinin. Formation of free radicals. 

 

 
1.5.1 PfATP6, a target for artemisinin 
 

 More recently, an alternative mechanism of action for artemisinins based on inhibition 

of the malarial parasite’s calcium ATPase (sarco endoplasmic reticulum calcium ATPase, 

SERCA) has been suggested. Only one P. falciparum SERCA orthologue, PfATP6, has been 

identified (Kimura et. al., 1993; Varadi et. al., 2003). It was demonstrated that the SERCA 

inhibitor thapsigargin could induce calcium release into the cytosol from intracellular stores, 

probably endoplasmic reticulum (ER), by inhibition of the PfATP6, suggesting that PfATP6 

is essential for P. falciparum calcium homeostasis (Varadi et. al., 2003) and that PfATP6 is 

functionally related with higher mammal homologues. The SERCA inhibitor thapsigargin is a 

sesquiterpene lactone, as are artemisinin. From these structural similarities the hypothesis 

emerged that ART act by inhibiting PfATP6. This was supported by the demonstration that 

artemisinin specifically inhibited PfATP6 expressed in Xenopus laevis, as thapsigargin. The 

two drugs showed an antagonistic interaction in P. falciparum cultures and similar 

localization in the parasite. Hence PfATP6 was suggested to be a target of ART (Eckstein-

Ludwig et. al., 2003). However the mechanism of interaction as well as the binding affinity of 
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artemisinin with PfATP6 has not yet known. In this regards the molecular modeling study 

could be very helpful to explore the mode of interaction. 

 

1.6 Computational studies and its utility in drug design 

 Using computational methods to solve chemical and biological problems has been one 

of important branches in current scientific research and has been approaching into more and 

more areas with the rapid development on computer ability and speed. The supercomputers as 

well as personal computers become more and more powerful. The new computer technique 

enables many computational researches, which were thought formidable before as they 

requires too many computer resources. Applications of computational methods in bio-

interested problems produce a new way to explore the bioactivities of chemicals and bio-

macro molecules. These insights on these biological systems, protein, nuclear acid and others, 

obtained from computational work help us a lot to understand these activities and to solve 

problems in biological area. 

 

 While they are carried out to explore some fundamental problems in the chemical and 

biological systems, computational researches also are applied to help on drug development. 

They can be used in two aspects to help drug development: One is that by exploring the 

biologic system, the computational research provides a lot of insights on enzyme functions 

and interaction of enzymes with active agents. This knowledge give research a unique chance 

to learn how these enzymes function in biologic condition and how an agent affect an enzyme 

and finally helps them to design a suitable agent to affect the function of an enzyme. Other 

way is to directly use computational methods to select and screen out the lead drug 

candidates. This will decrease the experimental work required to synthesize and test large 

number of possible candidates.  

 

 With the help of variety computational methods, traditional drug development has 

benefited a lot from the computational research. It is believed that expense and the 

development period for a new drug has been decreased since computational rational drug 

design was used in traditional drug development as computational methods can dramatically 

decrease the number of candidates of a drug which need to be synthesized and tested. 
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Computer-aided drug design has been integrated into major drug design groups (labs). It is 

one of important applications of computational researches. Although it has made a lot of 

progress in academic research and industrious drug developments, generally speaking, the 

computer-aided drug design is still in its early stage. There are lots of fundamental problems 

need to be solved before the method can produce thoroughly and accurately enough results. 

 

1.6.1 Structure-based virtual screening methods for computer-aided drug discovery 

 One of the major challenges in drug discovery is to identify novel compounds with 

biological activity. Computer-aided drug discovery technology has become an essential and 

powerful platform for the discovery of new lead compounds, as an alternative from, and 

complement to experimental approaches. As the number of high resolution structures of 

potential therapeutic targets and small molecules has grown, the significance of in silico 

experimental approaches has become increasingly important as demonstrated in recent studies 

by making use of public data (Cherkasov et. al., 2006; Cleves and Jain, 2006; Yoon et. al., 

2005a; b).  

 

 Virtual high throughput screening (Klebe, 2006; Oprea and Matter, 2004), which is a 

method to rapidly identify biologically active compounds in silico, can be roughly divided 

into two categories; ligand centric and receptor centric. Ligand centric methods essentially 

focus on the comparative analysis of the structural shapes and chemical complementarities 

between compounds and known ligands. A knowledge of the experimentally selected active 

compounds is a prerequisite when using this approach (Stahura and Bajorath, 2004). Receptor 

centric methods predict the interaction of given compounds with a target receptor, and hence 

they do not require experimental data about the structure of the ligand. Molecular docking is 

one of the key methodologies for receptor centric virtual screening. It is a technique for 

predicting the best binding mode for a given compound that fits into a target receptor, and 

evaluating its binding affinity. The docking approach has become a primary technique used in 

many drug discovery programs (Kitchen et. al., 2004; Sousa et. al., 2006). 

 

 The docking process involves a conformational search for a compound which 

complements a target binding site, with the aim of identifying the best matching binding pose. 
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A common computational strategy is to use a suitable scoring function to theoretically 

evaluate the binding affinities of thousands of molecules in a compound library for a target 

protein. An accurate rank ordered prediction of the compound binding affinities using the 

scoring function is an invaluable step. Most of scoring functions used in docking programs are 

designed to predict binding affinity by evaluating the interaction between a compound and a 

receptor. However, it should be noted that ligand receptor recognition process is determined 

not only by enthalpic effects but also by entropic effects. Moreover, the scoring functions 

have a simplified form for the energy function to facilitate high throughput evaluation of a 

large number of compounds in a single docking run. These functions may be problematic 

when used with contemporary docking programs, and can result in a decrease of virtual 

screening accuracy. To overcome this problem, more precise but time consuming 

computational methodologies are necessary. 

 

 There have been a number of reports evaluating the efficiency of various virtual 

screening approaches, including the evaluation of docking programs (Warren et. al., 2006), 

machine learning methods for ligand based descriptors (Chen et. al., 2007) and comparison of 

shape matching with docking (Hawkins et. al., 2007).  

 

 Docking, modeling, molecular simulation, QSAR, virtual screening, free energy 

calculations and data mining etc. methods have been used directly in rational drug discovery 

projects to speed development and help to find good agents. These methods produce a lot of 

information in variety of drug related researches. They benefit basic scientific activities as 

well as industrious efforts. But most of these computational tools have their own limitations 

and they need further development on some basic, methodological, and application problems. 

A lot of applications have demonstrated that if a proper tool and suitable approach are chosen 

on a specific research, good results can be produced to solve targeted problems. 

 

1.6.2 Overview of the works 

 In the work, we tried to use computational methods to explore the binding structures, 

binding affinity and inhibition mechanism of active ligands in their corresponding receptors. 

Two bio-systems were used in the work: heme polymerization and PfATP6. By studying 
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these two systems, we want to produce more information for researcher to understand their 

biological function affected by inhibitors, how a ligand affect its receptor and what type of 

ligand will better inhibit the biosystems. Also we tried to develop approaches to calculate the 

activity of a set of ligands by ways of free energy of binding (FEB) and quantitative structure-

activity relationship (QSAR). These ways should be convenient approaches, which can be 

used to normal set of compounds to benefit ligand activity evaluations in a rational drug 

design. 

 

In most QSAR approaches, such as CoMFA and CoMSIA, the QSAR models are built 

on the variety of calculated properties of ligands alone. However, despite statistically 

excellent and offer good predictive performance, CoMFA and CoMSIA are inherently limited 

to the need to align with the database molecules correctly within 3D space. The determination 

of the ‘active’ conformation that each compound will retain is a critical issue due to 

unavailability of X-ray structure. We should have some knowledge or hypothesis regarding 

active conformations of the molecules under study as a prerequisite for structural alignment. 

Neverthless, especially for structurally diverse molecules, unambiguous 3D alignment to 

initiate the CoMFA process is still a difficult task. We, as well as other researchers, were 

motivated to explore possible alternatives that would use alignment free descriptors derived 

from 2D or 3D molecular topology and thus alleviate frequent ambiguity of structural 

alignment typical of 3D QSAR methods. They are liganded-based computer-aided drug 

design approach. On the other side, in molecular modeling and docking, etc. ligands are 

modeled into a given active site. The shape of the active site of a receptor is the key element 

used to design a new ligand. These methods focus on the steric and energetic fitting of ligand 

into a corresponding active site. They are type of receptor-based ligand design approach. In 

the work, we have applied both structure based and ligand based approaches in building 

QSAR models.  

 

 The binding structure of a ligand in its receptor is important to understand the 

interaction between ligand and receptor. The binding structure of a ligand in its receptor is 

also a basis for many other studies, such as binding affinity calculation, new ligand   

improvement to fit a binding site better, and MD simulation to explore the ligand effect on 
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receptor dynamic properties, etc. Docking is one of the ways to explore binding structures of a 

ligand in a receptor. According to the way it treats a ligand and a receptor during a docking 

simulation, docking methods can be grouped into three categories: rigid dock, flexible dock 

and flexible receptor dock. A rigid dock treats both ligand and receptor rigidly during docking 

simulation. It is first generation of docking simulation. It searches best fit for a given 

conformation of a molecule. It is important to correctly predict a conformation of molecule in 

order to get a satisfactory result in this type of docking. The method requires the least 

computer time compared to other two methods. A flexible dock treats a ligand flexible to 

allow the molecule conformation change, but keep receptor fixed. This method is most used 

currently in research. Several new dock methods have been developed to treat receptor 

partially flexible while treat ligand flexible, in which some side chains of a receptor around 

active site are allowed to rotate. The method can sample more possible binding structures than 

other two methods. As the methods have just been developed for short time and limited 

application are available up to the research started to evaluate their advantages over others. 

So, in this work, we used flexible docking simulation (Glide, Schrodinger) to predict binding 

structures of ligands in their receptors. 

 

 Two bio-molecular systems, heme and PfATP6, were studied in the work. In humans, 

malaria parasites digest more than 70% of the hemoglobin within the infected red blood cell, 

giving globin and heme as the products. The globin is hydrolyzed to give amino acids, which 

are used in protein synthesis by the parasite. The toxic heme is mostly detoxified by a specific 

mechanism of heme polymerization into hemozoin. The heme polymerization is a target for 

antimalarials and many inhibitors have been developed, such as chloroquine that inhibits this 

process. The study by Peters et. al. (1986) revealed that artemisinin also inhibits heme 

polymerization. The chloroquine-resistant strain of Plasmodium berghei that lacks hemozoin, 

possibly because heme polymerization does not occur, is also resistant to artemisinin (Peters 

et. al., 1986). This supports the view that inhibition of heme polymerization is the mode of 

action of artemisinin. It is very possible that artemisinin interacts with heme and hence 

inhibits the polymerization process.  
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 In the work, we studied artemisinin binding in heme: the binding structures and modes 

as well as the activity of different heme structure with artemisinin interaction. To learn the 

bound structures of artemisinin in heme will help to understand the interaction of artemisinin 

with heme and enable other studies. In the work, the bound structures of artemisinin in heme 

were explored using flexible docking. The results were used to study their interaction and 

binding affinity in heme. The activity model produced a way to evaluate the activity of 

interested inhibitors. Also the QSAR of a set of inhibitors was built based on the obtained 

binding structures using structure based approaches. Free energy of binding will be used to 

study a set of artemisinin analogues in heme. These computations will provide structural and 

energetic information of these artemisinin and also can be used to predict their binding 

affinity with heme.  

 

 PfATP6 an orthologue protein of SERCA is also proposed to be an important target of 

artemisinin. The SERCA inhibitor thapsigargin is a sesquiterpene lactone, as are ART. From 

these structural similarities the hypothesis emerged that ART act by inhibiting PfATP6. This 

was supported by the demonstration that artemisinin specifically inhibited PfATP6 expressed 

in Xenopus laevis, as thapsigargin. The two drugs showed an antagonistic interaction in P. 

falciparum cultures and similar localization in the parasite. Hence PfATP6 was suggested to 

be a target of ART (Eckstein-Ludwig et. al., 2003). PfATP6 functionally very important for 

the survival of P. falciparum as it regulates calcium homeostasis (Varotti et. al., 2003). 

(Varotti et. al., 2003). Calcium has been shown to regulate several processes in apicomplexan 

parasites including host cell invasion and motility (Nagamune et. al., 2008). In Plasmodium it 

has been suggested that similar mechanisms may be involved in host cell invasion (Billker et. 

al., 2004, Green et. al., 2008). Calcium may also be important for Plasmodium gametocyte 

differentiation (Billker et. al., 2004) and for synchronization of the parasite life cycle in 

response to the host melatonin production (Garcia et. al., 2008). Here in this work also 

attempt has been taken to study the mechanism and mode of interaction of artemisinin 

analogues in the binding site of PfATP6. Further prediction model of antimalarial activity has 

been developed based on structure based approach. 
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 By the work, we want to explore the two bio-molecular systems to learn the binding 

structures and modes of variety of ligands in the proteins to elucidate the inhibition of the 

inhibitors to enzymes by studying the interaction between ligand and receptor. We hope the 

knowledge of these two systems will help to understand other similar biologic systems. The 

information from this work will provide helps to other related research, especially those 

works that try to develop new agents to cure malaria. Meanwhile, we try to develop an 

approach to calculate and evaluate the binding affinity of ligand in its receptor that is used to 

predict the activity of interested ligands in a reasonable computer requirement for a normal set 

of molecules.  

 

 Each of the four pieces of work has distinct characteristics as well as they are related 

to one another. To clearly and coherently demonstrate the goal, results, and conclusion of 

each piece of work, we arrange each work in each chapter in a publishing format. The format 

will benefit reader to clearly and well understand the idea development, conclusion 

coherence, and whole significance, as each one will be a consistent full manuscript for 

background to conclusion in publication stage. A final summary will link the four parts 

together and give a general conclusion of the whole work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

CHAPTER 2 

Computational and molecular modeling evaluation of the antimalarial 
activity of artemisinin analogues: Molecular Docking and rescoring using 
prime/MM-GBSA approach 
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Abstract 

 Artemisinin a class of sesquiterpene endoperoxide, have been the objective of 

numerous studies to prepare better and safer anti-malarial drugs. We report here an automated 

molecular docking of artemisinin to heme. The effects of atomic charges, and ligand and 

heme structures on the docking results were investigated. Several charge schemes for both 

artemisinin and heme, artemisinin structures taken from various optimization methods and X-

ray data, and three heme models, were employed for this purpose. The docking results also 

depended on the structures of both artemisinin and heme. Moreover, the atomic charges of 

heme have a significant effect on the docking configurations. The combined approaches of 

docking-molecular mechanics based on generalized Born/surface area (MM-GB/SA) 

solvation model showed that artemisinin and its structural derivatives approaches heme by 

pointing O1 and O2 at the endoperoxide linkage toward the iron center, a mechanism that is 

controlled by steric hindrance. A library of artemisinin analogues has been designed 

consisting of 144 analogues. A linear correlation was observed between the Fe-O distance and 

Glide score & binding free energy with correlation coefficient (R2) of 0.658 and 0.707. 

Quantitative structure activity relationships were developed between the antimalarial activity 

(pIC50) of these compounds and molecular descriptors like docking score and binding free 

energy. Using Glide score and binding free energy the R2 were in the range of 0.714 to 0.763 

and 0.718 to 0.763 indicating that the predictive capabilities of the models were acceptable. 

Low level of root means square error for the majority of inhibitors which establish the 

docking and prime MMGBSA based prediction model as an efficient tool for generating more 

potent and specific inhibitors of heme by testing rationally designed lead compounds based on 

artemisinin derivatives. The effects of atomic charges and ligand and heme structures on the 

docking results were investigated. Several charge schemes for both artemisinin and heme, 

artemisinin structures taken from various optimization methods and three heme models were 

employed for this purpose. The docking results also depended on the structures of both 

artemisinin and heme. Moreover, the atomic charges of heme have a significant effect on the 

docking configurations.   
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2.1 Introduction 

 Malaria is one of the most common diseases in tropical countries. It is one of the most 

widespread and prevalent endemic diseases; it threatens approximately 40 percent of the 

world's population in more than 90 countries. Over 300 million new malaria infections and 

millions of deaths due to malaria occur world wide each year. This tremendous prevalence 

might be partly because of the resistance of malaria parasites to most antimalarial agents, e.g. 

chloroquine, quinine, and mefloquine (Moore et. al., 1961; Mockenhaupt 1995). Because a 

vaccine for malaria is not available, it is essential to find new antimalarial drugs and 

understand their antimalarial mechanism for treating patients. Artemisinin (qinghaosu) 

(Figure 2.1), a sesquiterpene endoperoxide isolated from Artemisia annua is however, a 

remarkable life saving antimalarial compound, effective against drug-resistant Plasmodium 

falciparum and cerebral malaria (Cumming et. al., 1997; Haynes and Vonwiller, 1997; Jung, 

1994; Klayman, 1985). Artemisinin and its derivatives induce more rapid reduction of 

parasitemia, decreasing the number of parasites faster than any other known drugs. As a 

consequence they are of special interest for severe malaria. The first decline in the number of 

parasites is also beneficial for combination therapies. Artemisinin has a unique structure 

(Figure 2.1a) bearing a stable endoperoxide lactone (1,2,4-trioxane) totally different from 

previous antimalarials in its structure. Its unusal structure might be indicative of a different 

mode of action from those of the other antimalarial drugs and hence, the high potency against 

the resistant strains. This has led to tremendous interest in the mechanism of action (Cumming 

et. al., 1997), chemistry (Haynes and Vonwiller, 1997) and drug development (Jung, 1994) of 

this novel class of antimalarials. Although the mechanism of its antimalarial activity is still in 

doubt, there is general agreement on the significance of the endoperoxide group of artemisinin 

to the antimalarial activity (Klayman, 1985; Rafiee et. al., 2005). This is evident from the 

inactivity of the deoxyartemisinin (Fig. 2.1b) compound that lacks the endoperoxide moiety 

(China Cooperative Research Group 1982). In addition, in-vitro experiments revealed that 

iron is required for artemisinin to have antimalarial activity (Meshnick et. al., 1991; Meshnick 

et. al., 1993; Posner et. al., 1994). 

 

 The high selectivity in the killing of parasites by artemisinin may be due to its 

interaction   (Meshnick et. al., 1991)  with  heme  which  accumulates  in  high   quantities  in  



 23 

 

Figure 2.1 The structure of (a) artemisinin and (b) deoxyartemisinin with atom numbering. 
 

parasitised red blood cells as a by-product of hemoglobin lysis by the malarial parasite 

(Goldberg et. al., 1990). The globin is hydrolyzed to give amino acids, which are used in 

protein synthesis by the parasite. The toxic heme (Fig. 2.2) is mostly detoxified by a specific 

mechanism of heme polymerization into non-toxic and insoluble polymer called as hemozoin 

which accumulates as a crystalline pallet in the cytosol of the erythrocytes (Goldberg et. al., 

1990). The heme polymerization is a target for some antimalarials, such as chloroquine, that 

inhibit this process (Slater, 1993). A recent study reported that artemisinin also inhibits heme 

polymerization (Pandey, 1999). The chloroquine-resistant strain of Plasmodium berghei that 

lacks hemozoin, possibly because heme polymerization does not occur is also resistant to 

artemisinin (Peters et. al., 1986). This supports the view that inhibition of heme 

polymerization is the mode of action of artemisinin. It is very possible that artemisinin 

interacts with heme and hence inhibits the polymerization process. 

 

Figure 2.2 The structure of heme. 
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 From studies with model systems, Jefford and co-workers (1996) suggested that 1,2,4-

trioxanes structurally related to artemisinin form a complex with FeII of heme and generate 

oxyl radicals, whereas Posner and co-workers (1996) proposed that Fe-catalyzed 

decomposition of artemisinin leads to reactive carbon centered free radicals, high valent iron–

oxo species, and electrophiles. The chemical behavior of artemisinin in the presence of heme 

and non-heme iron(II) and iron(III) has been studied and artemisinin decomposition products 

of such reactions have been identified by Haynes and Vonwiller (1996). Two reaction scheme 

have been proposed that heme iron attacks the endoperoxide linkage of artemisinin either at 

the O1 (Jefford et. al., 1996) or O2 position (Posner et. al., 1996) (Fig. 2.3). In pathway A, 

heme iron attacks the compound at the O2 position and produces a free radical at the O1 

position. Later it rearranges to form the C4 free radical. In pathway B, heme iron attacks the 

compound at the O1 position and produces a free radical at the O2 position. After that the C3–

C4 bond is cleaved to give a carbon radical at C4. It has been suggested that the C4 free 

radical in both pathways is an important substance in antimalarial activity (Posner et. al., 

1994). 

 

Figure 2.3 The proposed mechanism of action of artemisinin. 
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 The mechanism of action of any drug is very important in drug development. 

Generally, the drug compound binds with a specific target, a receptor, to mediate its effects. 

Therefore, suitable drug–receptor interactions are required for high activity. Understanding 

the nature of these interactions is very significant and theoretical calculations, in particular the 

molecular docking method, seem to be a proper tool for gaining such understanding. The 

docking results obtained will give information on how the chemical structure of the drug 

should be modified to achieve suitable interactions. Hence, this could bring about the 

development of new and more effective drugs. However, it is quite important to have an 

accurate model for the heme–artemisinin complex, because this knowledge can be used to 

design better and more potent antimalarial drugs. 

 

 Prompted by the clinical successes of the artemisinin, significant efforts have been 

focused on identifying new analogues that have a similar mechanism of action yet superior 

activity. A consistent number of structural modifications have been introduced in the original 

structure of artemisinin in order to overcome the solubility as well as neurotoxic problem 

associated with its utilization as antimalarial drug. The study and assessment of these have 

permitted the clinical development and their usage in the treatment of malaria. Since the 

discovery of the therapeutic properties of artemisinin, new findings related to its activities, its 

mechanism of action and pharmacological properties have been unveiled. The great diversity 

of the artemisinin analogues, the huge number of assays carried out on them, and the different 

mechanisms of action observed in the different series make it difficult to clearly define the 

minimum structural requirements necessary for their biological activity. Additionally, the 

results available have been obtained by different authors, at different times and using different 

technologies and on very diverse types of cell lines. For all these reasons, greater 

systematization would be required to obtain definitive conclusions.  

 

 In this study, automated docking calculations were performed to eliminate the bias in 

selecting preferred configurations (orientations). Thus, all possible configurations between 

heme and artemisinin were explored. The crystallographic X-ray structure of artemisinin was 

used for the docking simulation. In addition, because few crystallographic X-ray structures of 

artemisinin derivatives are available, it is worth establishing a suitable geometry optimization 
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scheme to determine structures of artemisinin derivatives for further investigations 

(Tonmumphean et. al., 2000). For the heme iron, accurate ab initio calculations were 

performed to obtain its atomic charge (and those of artemisinin) instead of using a crude 

approximation for the charge of iron, and specific parameters for iron were used in the 

docking calculations. The effects of different heme structures were also considered. Thus, 

three heme structures taken from the literature were studied. The knowledge obtained from 

this study has been used as a guide for series of docking experiments between heme and 

artemisinin derivatives.  Further in this work we created a virtual library of artemisinin 

analogues which are collected from different sources and screened them for heme binding 

based on the optimized docking protocol. Prediction models for predicting the antimalarial 

activity of these compounds were developed based on binding interaction with heme as 

descriptor. This prediction model was used for predicting the antimalarial activity of these 

derivative and we found a very pronounced relationship between their binding energies and 

antimalarial activity. We have used the molecular modeling techniques such as molecular 

docking and rescoring using Prime MMGB/SA.   

 

2.2 Materials and methods 

2.2.1 Receptor  preparation 

 The X-ray structure of three heme structures i.e., heme-pdb, heme-deoxy and heme-

oxy were taken from the Protein Data Bank. These structures are all different owing to the 

source of heme and the oxidation state of iron. The first structure heme-pdb (PDB ID: 1CTJ) 

has planar heme structure with a strong positive charge on its central iron atom, which lies 

slightly above the porphyrin plane (Figure 2.4a).  In the process of hemoglobin degradation 

by the malaria parasite, the proximal ligand may possibly still be attached to the heme iron 

and, therefore, it is very possible that the histidine remains with the heme structure. As a 

result, the fourth and the fifth structures, heme-deoxy and heme-oxy, respectively, were 

obtained from the modifications of deoxy and oxy forms of hemoglobin which contain 

histidine as the proximal. Both deoxy and oxy forms of hemoglobin were taken from the 

Protein Data Bank (ID: 1A3 N and 1HHO, respectively). In the heme-deoxy, the histidine 

pulls the Fe atom to lie below the protoporphyrin plane and gives it a basin-like structure 

(Figure 2.4b). In the oxy hemoglobin structure, there are six coordinations for heme iron, i.e. 
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with four N atoms in the protoporphyrin ring, with the proximal ligand (histidine), and with 

O2. Thus, for docking purposes, the O2 coordination was deleted while maintaining the 

coordinates of the rest; this modified structure was taken as the receptor structure. As in 

heme-deoxy, the protoporphyrin plane has a basin-like structure, because of the attraction to 

the heme iron by histidine. Interaction with O2 causes the Fe atom to be drawn up above the 

plane (Figure 2.4c), however, and thus results in a structure which is markedly different from 

the heme-deoxy.    

    

         

Figure 2.4. The structures of three heme compounds: (a) heme-pdb, (b) heme-deoxy and (c) 
heme-oxy. 
 
 Charge on the iron was assigned as +2 but the structure was kept the same. Hydrogens were 

added to the model automatically via the Maestro interface leaving no lone pair and using an 

explicit all-atom model. The multi step Schrodinger’s protein preparation tool (PPrep) has 

been used for final preparation of receptor model. The structure was energy minimized using 

(a) (b) 

(c) 
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OPLS_2005 force field and the conjugate gradient algorithm, keeping all atoms except 

hydrogen fixed. The minimization was stopped either after 1000 steps or after the energy 

gradient converged below 0.01 KJ/mol.  

 

2.2.2 Atomic charge calculations 

 To investigate the effect of the atomic charge on docked configurations, atomic 

charges of both artemisinin and heme obtained at various levels of theory were used. For 

heme the HF/3-21G and HF/6-311G** atomic charges were calculated. For artemisinin, 

atomic charge calculations were performed at HF/3-21G, HF/6-31G* and HF/6-311G**. All 

quantum chemical calculations were carried out using Jaguar (Schrodinger, Inc. 2000). It has 

been seen that all the 3 atomic charges (HF/3-21G, HF/6-31G* and HF/6-311G**) used for 

artemisinin gave similar results. Thus for the sake of saving CPU times, the HF/3-21G 

charges were choosen for atomic charge calculation and complete geometry optimization of 

all the artemisinin analogues used in the study.  

 

2.2.3. Preparation of ligands 

 An initial dataset of 144 artemisinin analogues were collected from published data 

(Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 1995; Avery et. al., 

1996; Pinheiro et. al., 2001) in which several different ring systems were represented. All of 

the analogues were either peroxides or trioxanes, which should act via similar mechanisms of 

action and were categorized into 10 classes (Table 2.1). Each of these compounds had 

associated in vitro bioactivity values (IC50 values reported in ng/ml) against the drug resistant 

malaria strain P. falciparum (W-2 clone). The log value of the relative activity (RA) of these 

compounds was used for analysis and was defined as: 

Log(RA) = log[(artemisinin IC50/analogue IC50)(analogue MW/artemisinin MW)]       (1) 

Molecular models of the artemisinin and its analogues (Table 2.1) were built using the Builder 

feature in Maestro (Schrodinger package) and energy minimized in a vacuum using Impact.  

Each structure was assigned an appropriate bond order using ligprep script shipped by 

Schrödinger and optimized initially by means of the OPLS 2005 force field using default 

setting. Complete geometrical optimization of these structures was carried out with the HF/3-

21G method (in this work) using the Jaguar (Schrodinger Inc.). In order to check the 
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reliability of the geometry obtained, we compared the structural parameters of the artemisinin 

1,2,4-trioxane ring with theoretical (Leban et. al., 1988) and experimental (Lisgarten et. al., 

1998; Fersht 1984) values from the literature. All calculations reproduced most of the 

structural parameters of the artemisinin 1,2,4-trioxane ring seen in X-ray structures (Table 

2.2). This applies especially to the bond length of the endoperoxide bridge which seems to be 

responsible for the antimalarial activity.    

 

Table 2.1. Artemisinin analogues with antimalarial activities against the drug-resistant 
malarial strain P. falciparum (W-2 clone) used in the work.  

O
O R1

R
O

R2

O

O

 
 

Compounds R R1 R2 log (RA) IC50 (ng/ml) 
1 CH3 CH3 H 1.00 0.040 
2 C4H8Ph H H 0.45 0.194 
3 CH3 H 2-Z-Butenyl -1.10 5.750 
4 CH3 H H 0.79 0.065 
5 CH3 Allyl H 0.34 0.550 
6 CH3 C4H9 H 0.17 0.311 
7 C4H8Ph C4H9 H -0.32 1.310 
8 CH2CH2CO2Et C4H9 H 1.36 0.025 
9 C4H9 C4H9 H -0.48 1.568 

10 CH3 C2H5 H 1.40 0.017 
11 CH3 C6H13 H 0.86 0.069 
12 CH3 i- C6H13 H -0.04 0.547 
13 CH3 i-C5H11 H 0.07 0.408 
14 C3H6(p-Cl-Ph) H H 0.10 0.457 
15 C4H9 H H -0.74 2.416 
16 CH2CH2CO2Et H H 0.37 0.214 
17 CH3 C3H6(p-Cl-Ph) H 1.37 0.025 
18 CH3 Br CH2Br -1.64 27.24 
19 CH3 =CH2 - -0.89 3.083 
20 CH3 CH2CH3 - -0.36 1.053 
21 CH3 -CH2CH2- - -0.94 3.632 
22 CH3 C5H11 H 1.02 0.046 
23 CH3 C4H8Ph H 0.63 0.133 
24 CH3 C4H8Ph H 0.12 0.400 
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Table 2.1(continued). 10-Substituted artemisinin derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O
O R1

O
O

R

R2

R3  
Compounds R R1 R2 R3 log (RA) IC50 (ng/ml) 

25 CH3 CH3 H H 0.75 0.068 
26 CH3 CH3 H OH 0.55 0.114 
27 CH3 CH3 H OEt 0.34 0.202 
28 CH3 CH3 H OH 0.96 0.051 
29 CH3 H Br H 0.28 0.248 
30 CH3 CH3 Br NH-2-(1,3-thiazole) 0.66 0.134 
31 CH3 CH3 Br p-Cl-aniline 0.79 0.105 
32 CH3 CH3 Br aniline 0.18 0.397 
33 CH3 Br CH3 NH-2-pyridine -0.09 0.768 
34 CH3 CH3 Br NH-2-pyridine -0.77 3.667 
35 CH3 CH3 H α -OEt 0.32 0.212 
36 CH3 C4H9 H H 1.32 0.021 
37 CH3 C2H5 H H 0.67 0.086 
38 CH3 C3H7 H OEt -0.04 0.529 
39 CH3 H H OEt 0.43 0.157 
40 CH3 CH3 H C3H6OH 0.78 0.077 
41 CH3 CH3 H C4H9 0.06 0.400 
42 CH3 CH3 H OCH2CO2Et 0.52 0.158 
43 CH3 CH3 H OC2H4CO2Me 0.10 0.433 
44 CH3 CH3 H OC3H6CO2Me -0.03 0.605 
45 CH3 CH3 H OCH2 (4-PhCO2Me) -0.07 0.720 
46 CH3 CH3 H (R)-OCH2CH(CH3)CO2Me 1.79 0.009 
47 CH3 CH3 H (S)-OCH2CH(CH3)CO2Me 2.25 0.003 
48 CH3 CH3 H (R)- OCH(CH3)CH2CO2Me 0.87 0.073 
49 CH3 CH3 H (S)-OCH(CH3)CH2CO2Me 1.70 0.011 
50 CH2CH2CO2Et H H H 0.70 0.096 
51 C4H9 H H H 0.75 0.075 
52 C4H8Ph H H H 0.58 0.139 
53 CH3 -OCH2- - OOH -0.62 1.857 
54 CH3 -CH2O- - OOH -0.57 1.655 
55 CH3 =CH2 - OOH -0.99 4.131 
56 CH3 C5H11 H H 0.16 0.318 
57 CH3 C3H6Ph H H 1.40 0.021 
58 CH3 CH3 H OOt-C4H9 0.92 0.061 
59 - CH3 OH α-OH -0.89 3.303 
60 - CH3 H CH2CHF2 0.11 0.366 
61 - CH3 OH OCH2CF3 0.33 0.243 
62 - CH3 OH OEt -0.44 1.281 

All R3 substituents are β except where noted. 
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Table 2.1(continued). Artemisinin derivatives lacking the D-ring with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 
 

O
R1 R3

O
O

R4

R2
    

O

R2
R4

R3 R5

O
O

R1OMe  
     
  (63-74)                (75-79)  
      
 

Compounds R1 R2 R3 R4 log (RA) IC50(ng/ml) 

63 O CH3Ph H H H -0.09 0.530 

64 O CH3 H C2H4O2CNEt H -0.65 0.118 

65 H O CH3 C2H4OCH3 H -0.39 0.996 

66 H O CH3 C2H4OCH2Ph H 0.75 0.091 

67 H O CH3 C2H4O-allyl H 0.40 0.184 

68 H O CH3 C2H4O2Ph H -0.59 2.086 

69 H O CH3 C2H4O2C(4-PhCO2Me) H 0.27 0.343 

70 H O CH3 C2H4O2C(4-PhCO2H) H -0.81 3.856 

71 - O CH3 - - 1.70 0.398 

72 H O CH3 C2H4O2C(4-PhCO2C2H4NMe2) H 0.25 2.790 

73 H O CH3 C2H4O2CCH2NCO2-(t-C2H9) H -0.04 0.670 

74 H O CH3 C2H4OCH2 (4-N-Me-pyridine) H -0.90 4.439 

 
Compounds R1 R2 R3 R4 R5 log (RA) IC50(ng/ml) 

75 C2H4OH H CH3 H H -1.80 26.849 

76 C2H4OH CH3 H H H 0.23 0.251 

77 C2H4OH CH3 CH3 H H -1.80 28.102 

78 C2H4OCH2Ph CH3 CH3 H H -1.80 36.157 

79 C2H4OCH2(4-py) - - - - 0.14 0.373 
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Table 2.1(continued). Miscellaneous Artemisinin derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

Compounds structure log (RA) IC50 (ng/ml) 

80 O

O

O
O

 

0.78 0.063 

81 O

O

O
O

 

-1.20 6.340 

82 O

O

O
O

H
 

-0.79 2.344 

83 
O

O

O
O

H  

-0.64 1.573 

84 O

O

O

O
O

O
O

 

-2.09 56.889 

85 O

O

O

O
O

O

 

-2.49 123.612 

86 
O

O
O

O

O

CH3
CH3

 

-0.80 2.309 

87 O

O

O

O

O

CH3

O

 

0.16 0.320 

88 
O

O
O

O

O

H

H

CH3

CH3

 

-0.60 1.525 

89 
O

O
O

O

O

H

CH3

CH3

CH3

 

-1.27 6.762 

90 O

N
H

O

H

O
O

R

 

0.328 0.400 
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Table 2.1(continued). 9-Substituted Artemisinin derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

Compounds Structure log (RA) IC50 (ng/ml) 

91 O

O

O
OCH3

CH3

OOH  

 
-0.739 
 

2.320 

92 O

O

O
OCH3

CH3

O

H

CH3

H

 

 
-0.197 
 

0.657 

93 O

O

O
OCH3

CH3

O

H

O

 

 
-2.298 
 

79.429 

94 O

O

O
OCH3

CH3

O

Br

H
Br
H

 

 
-1.487 
 

19.143 

95 O

O

O
OCH3

CH3

O

O
H

H
OH  

 
-0.460 
 

1.286 

96 O

O

O
OCH3

CH3

O
OH

O
H
H

 

 
-0.409 
 

1.143 

97 O

O

O
OCH3

CH3

O
H
H

OH  

 
-0.361 
 

0.971 
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Table 2.1(continued). Dihydroartemisinin derivatives with antimalarial activities against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

 

O

O

O
O

H
CH3

CH3

CH3

OR

H

H

H

H

 
 

Compounds R log (RA) IC50 (ng/ml) 

98 OR = H 0.487 0.123 

99 (S)-CH2CH(CH3)COOCH3 2.104 0.004 

100 (S)-CH(CH3)CH2COOCH3 0.599 0.137 

101 1-adamantylmethyl 0.007 0.020 

102 (S)-CH2CH(CH3)COOH -0.658 0.603 

103 (S)- CH(CH3)CH2COOH -0.608 2.123 

104 (R)-CH(CH3)CH2COOH -0.383 2.380 

105 OR= =O -0.269 0.743 

106 CH2PhCOOH 0.176 0.394 

107 (R)-CH2CH(CH3)COOCH3 1.524 0.016 

108 (R)-CH2CH(CH3)COOH -0.463 1.520 
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Table 2.1(continued). Tricyclic 1.2.4 – trioxanes derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

Compounds structure log (RA) IC50 (ng/ml) 

109 O

O

O
O H

H

H

O

O

OH

O  

 
-0.475 
 

1.886 

110 O

O

O
O H

H

H

O

O

N
CH2

CH2

CH3

CH3

 

 
0.995 
 

0.057 

111 O

O

O
O H

H

H

OS
O

O
O OCH3

 

 
-0.413 
 

1.771 

112 
O

O

O
O H

H

H

O
CH 2

 

 
0.968 
 

0.057 

113 
O

O

O
O H

H

H

O
CH 2

C H
C H 2  

 
0.905 
 

0.057 

114 
O N

O

O

O
O H

H

H

O
CH 2

C H 3CH 3

 

 
0.991 
 

0.057 

115 O

O

O
O H

H

H

O

OO

O

 

 
0.660 
 

0.143 

116 O

O

O
O H

H

H

O

O

N
CH3

CH3  

 
0.787 
 

0.086 

117 

CH2

O

O

O
O H

H

H

OP
O

OC
H2

CH3

CH3

S
 

 
0.717 
 

0.057 

118 O

O

O
O H

H

H

OS

O

O

CH3  

 
0.434 
 

0.229 

119 O

O

O
O H

H

H

O
CH3  

 
0.129 
 

0.314 



 36 

Table 2.1(continued). 3C- substituted artemisinin derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O

O RH

O

H

O
O

R'

 
Compounds R1 R log (RA) IC50 (ng/ml) 

120 CH3 H 0.049 0.357 
121 CH3 CH2 H 0.828 0.062 
122 CH3CH H -0.347 0.977 
123 EtO2CCH2 H 0.365 0.216 
124 C6H5CH2 H -2.000 50.78 
125 p-ClC6H4(CH2)2 - 0.104 0.453 
126 C6H5 (CH2) 3 H 0.449 0.195 
127 CH3 CH3 (CH2) 3 0.410 0.187 
128 CH3(CH2) 2 CH3 (CH2) 3 -0.481 1.573 
129 C6H5CH2 CH3 (CH2) 3 -2.000 58.72 
130 p-ClC6H4(CH2)2 CH3 (CH2) 3 -0.276 1.239 
131 C6H5(CH2) 3 CH3 (CH2) 3 -0.319 1.306 
132 EtO2CCH2 CH3 (CH2) 3 1.359 0.025 

 
Table 2.1(continued). Deoxy artemisinin derivatives with antimalarial activities against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O

O R1

R
O

H

H
R2

 
Compounds R R1 R2 log (RA) IC50 (ng/ml) 

133 CH3 CH3 OEt -4 4198.58 
134 CH3 CH3 OH -4 3801.42 
135 CH3 C4H8Ph - -4 5248.23 
136 CH3 C3H7 - -4 3971.63 
137 CH3 CH3 - -4 4567.37 
138 CH3 C4H9 H -4 4170.21 
139 CH2CH2CO2Et H H -4 4652.48 
140 C2H4Ph H - -4 3574.47 
141 CH2CH3 H - -4 3574.47 
142 CH3 C2H4Ph - -4 4851.06 
143 CH3 C3H6Ph - -4 5049.64 
144 CH3 CH3 - -4 3773.05 
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Table 2.2 Experimental and theoretical values of the 1,2,4-trioxane ring parameters in 
artemisinin (bond lengths in Å; bond angles and torsional angles in degrees). 
 
 

 Theoretical Experimentalc Experimentald 
Parametersa 3-21Gb 3-21G** b 6-31Gb   
O1-O2 1.463 1.462 1.447 1.475(4) 1.469(2) 
O2-C3 1.441 1.440 1.435 1.417(4) 1.416(3) 
C3-O4 1.436 1.436 1.435 1.448(4) 1.445(2) 
O4-C5 1.407 1.408 1.403 1.388(4) 1.379(2) 
C5-C6 1.529 1.530 1.533 1.528(5) 1.523(2) 
C6-O1 1.478 1.477 1.469 1.450(4) 1.461(2) 
O1-O2-C3 106.9 107.070 108.800 107.600(2) 108.100(1) 
O2-C3-O4 107.0 107.310 106.760 107.200(2) 106.600(2) 
C3-O4-C5 115.6 115.700 117.300 113.500(3) 114.200(2) 
O4-C5-C6 112.0 112.030 112.280 114.700(2) 114.500(2) 
C5-C6-O1 111.1 111.589 110.910 111.100(2) 110.700(2) 
C6-O1-O2 111.2 111.286 113.240 111.500(2) 111.200(2) 
O1-O2-C3-O4 -74.9 -74.680 -71.840 -75.500(3) -75.500(2) 
O2-C3-O4-C5 31.8 32.150 33.390 36.300(4) 36.000(2) 
C3-O4-C5-C6 29.4 28.400 25.320 24.800(4) 25.300(2) 
O4-C5-C6-O1 -51.8 -50.769 -49.410 -50.800(4) -51.300(2) 
C5-C6-O1-O2 10.1 9.792 12.510 12.300(3) 12.700(2) 
C6-O1-O2-C3 50.8 50.522 46.700 47.700 47.800(2) 

 
a Atoms are numbered according to Figure 2.1; b This work; cValues from Ref. (Lisgarten et. 
al., 1998) (experimental estimated standard deviations in brackets); dValues from Ref. (Fersht, 
1984) (experimental estimated standard deviations in brackets) 
 
2.2.4 Docking of the ligands 

 All the ligands were docked to the heme receptor using Glide. After ensuring that 

protein and ligands are in correct form for docking, the receptor-grid files were generated 

using grid-receptor generation program, using van der Waals scaling of the receptor at 0.4. 

The default size was used for the bounding and enclosing boxes. The grid box was generated 

at the centroid of the heme receptor. The ligands were docked initially using the “standard 

precision” method and further refined using “xtra precision” Glide algorithm. For the ligand 

docking stage, van der Waals scaling of the ligand was set at 0.5. Of the 50,000 poses that 

were sampled, 4,000 were taken through minimization (conjugate gradients 1,000) and the 30 

structures having the lowest energy conformations were further evaluated for the favorable 

Glide docking score. A single best conformation for each ligand was considered for further 

analysis. 
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2.2.5. Rescoring using Prime/MM-GBSA  

 For each ligand, the pose with the lowest Glide score was rescored using Prime/MM-

GBSA approach (Lyne et. al., 2006). This approach has been used to predict the free energy 

of binding for set of ligands to receptor. The docked poses were minimized using the local 

optimization feature in Prime and the energies of complex were calculated using the OPLS-

AA force field and generalized-Born/surface area (GB/SA) continuum solvent model. The 

binding free energy (∆Gbind) is then estimated using the equation: 

∆Gbind = ER:L – (ER + EL) + ∆Gsolv + ∆GSA                 (2) 

where ER:L is energy of the complex, ER + EL is sum of the energies of the ligand and 

unliganded receptor, the outcome of the use of OPLS-AA force field, ∆Gsolv (∆GSA) is the 

difference between GBSA solvation energy (surface area energy) of complex and sum of the 

corresponding energies for the ligand and unliganded protein. Corrections for entropic 

changes were not applied in this type of free energy calculation. 

 

 In order to explore the reliability of the proposed models we used the cross validation 

method. Prediction error sum of squares (PRESS) is a standard index to measure the accuracy 

of a modeling method based on the cross validation technique. The r²cv was calculated in 

accordance with the PRESS and SSY (Sum of squares of deviations of the experimental values 

from their mean) using the following formula. 

 

2.3. Results and Discussions 

2.3.1. Effect of atomic charges  

 In docking calculations, the electrostatic potential is built from atomic charges. 

Therefore, the choices for atomic charges of both the ligand and receptor would have an effect 

on the docking results. Using charges obtained from HF/3-21G, and HF/6-311G** levels of 

theory for heme-pdb, the docking to the artemisinin with HF/3-21G charges was performed. 

The results in Table 2.3 showed that the docking configurations depend on the heme-pdb 
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atomic charges and especially the charge of Fe. All docking calculations agree that the heme 

iron binds with endoperoxide oxygens, where the O1–Fe distance is the shortest. Among these 

calculations, docking with HF/6-311G** charges yielded the shortest O1–Fe distance of 2.04 

Å. This O1–Fe distance is markedly much shorter than those predicted using HF/3-21G (2.39 

Å) charges. For the binding energy, the docking with HF/6-311G** charges gave the lowest 

energy. Thus, the employed charge scheme for heme does have a profound effect on the  

 
Table 2.3. Results for docking of heme-pdb with different atomic charges and the artemisinin 
with HF/3-21G charge. 
 
Heme-pdb 
charge 

Fe 
charge 

Docking 
score 

O1-Fe 
distance (Å) 

O2-Fe 
distance (Å) 

O13-Fe 
distance (Å) 

O11-Fe 
distance (Å) 

HF/3-21G 1.371 -2.24 2.39 3.22 5.43 5.68 
 

HF/6-311G** 1.589 -2.35 2.04 3.06 5.14 5.51 
 

docking result. It is, however, quite difficult to judge which charge scheme leads to the most 

accurate result, because there is no supporting experimental evidence. Theoretically, HF/6-

311G** is the most accurate level of theory employed. It is, therefore, reasonable to choose 

atomic charges from HF/6-311G** for heme in further docking calculations. To study the 

effect of atomic charges of artemisinin, the docking calculations using various charge 

schemes, i.e., HF/3-21G, HF/6-31G*, and HF/6-311G** for the artemisinin and HF/6-

311G** charges for heme-pdb structure were performed. The docking results are given in 

Table 2.4 and the atomic charges of four oxygen atoms in artemisinin for each charge scheme 

are listed in Table 2.5. From Table 2.4, the dockings with ab initio charges (HF/3-21G, HF/6-

31G*, and HF/6-311G**) gave similar results. Thus, for the sake of saving CPU times, the 

HF/3-21G charges were chosen for artemisinin.  

Table 2.4. Results for docking of heme-pdb with HF/6-311G** charge and the artemisinin 
with different atomic charges. 
 

Artemisinin 
charge 

Docking 
score 

O1-Fe 
distance (Å) 

O2-Fe 
distance (Å) 

O13-Fe 
distance (Å) 

O11-Fe 
distance (Å) 

HF/3-21G -2.24 2.39 3.22 5.43 5.68 

HF/6-31G* -2.25 2.34 3.19 5.46 5.68 

HF/6-311G** -3.73 2.53 3.03 5.10 5.42 
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Table 2.5. Atomic charges of four oxygen atoms in artemisinin for all charge schemes. 

Artemisinin 
atomic charges 

O1 charge O2 charge O13 charge O11 charge 

HF/3-21G -0.372 -0.348 -0.668 -0.715 

HF/6-31G* -0.410 -0.371 -0.710 -0.672 

HF/6-311G** -0.352 -0.305 -0.541 -0.463 

 

2.3.2. Effect of artemisinin structure 

 Artemisinin was geometry-optimized at various levels of accuracy using ab initio 

HF/3-21G, HF/6-31G* and HF/6-31G**. Comparison of these optimized geometries with the 

crystallographic X-ray structure (Lisgarten et. al., 1998) showed that HF/3-21G gave 

geometry parameters in good agreement with those of crystallographic X-ray data, especially 

for the bond length of the endoperoxide linkage, whereas HF/6-31G* and HF/6-31G** 

yielded an O–O bond distance that was too short. The HF/3-21G method is, therefore, 

recommended for the optimization of artemisinin derivatives. This recommendation is, 

however, based on geometrical criteria only, which does not necessarily guarantee good 

docking results. To validate the use of this optimized artemisinin structure, the docking 

calculations between heme-pdb with HF/6-311G** atomic charges and the HF/3-21G, and 

HF/6-31G* optimized structures of artemisinin were performed. The docking results are given 

in Table 2.4. Comparison of the configurations which occur most often reveals good 

agreement between the docking using the HF/3-21G optimized structure for artemisinin. 

HF/3-21G is, therefore, the recommended method for geometry optimization of artemisinin 

derivatives in further study although it has a lower level of accuracy than HF/6-31G*. It can 

be argued that for artemisinin derivatives it is possible that the good agreement between the 

HF/3-21G and the X-ray structures no longer exists, so it would be wiser to employ the more 

accurate method, HF/6-31G*. From previous calculations on artemisinin, however, and the 

current docking results the difference between the structures obtained from the two methods is 

not pronounced. Thus, the HF/3-21G method is still preferred, because of its faster 

computation time.  
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2.3.3. Effect of heme structure 

 To investigate the effect of the heme structure, three heme structures were selected as 

described in material and methods. The atomic charges were assigned as HF/6-311G** 

charges for all three heme molecules. For artemisinin compounds, the HF/3-21G optimized 

structure and atomic charges were used. The results are shown in Table 2.6 and Fig. 2.5. The 

heme structure chosen does have an effect on the docking results. Although we could not 

observe agreement on O–Fe distances, all docking calculations with different heme structures 

(except heme-deoxy) suggested that artemisinin prefers to dock at endoperoxide oxygens (O1 

and O2). Using heme-pdb for the heme structure, the docking results showed that artemisinin 

pointed its endoperoxide moiety toward the heme iron for the most occurring configuration. 

The O1–Fe and O2–Fe distances were measured and found to be 2.04 Å and 3.22 Å, 

respectively (Fig. 2.5a); the docking score obtained was –2.24. Owing to the planar structure 

of the heme-model, the repulsion between artemisinin and the protoporphyrin ring of heme 

prevents artemisinin from approaching the heme iron as closely as for heme-pdb. The O1–Fe 

distance of 2.04 Å is comparable with the experimental bond length between the heme iron 

and oxygen atom in oxyhemoglobin A (1.86 Å), taken from the Protein Data Bank (id 

1HHO). For the heme-deoxy, because of its basin-like structure (see Fig. 2.5b), the binding 

with the endoperoxide moiety of artemisinin is less favorable and a stronger O13–Fe 

attraction is resulted (docking score –2.51). This could be observed from the most occurring 

configuration, which has the shorter O13–Fe distance of 3.28 Å, compared with 5.85 and 5.63 

Å for O1–Fe and O2–Fe (Fig. 2.5b). Still, this distance is longer than those obtained from the 

docking with other heme structures. For heme-oxy, the most occurring configuration has O1–

Fe as the shortest heme–artemisinin distance with the docking score of –3.22 (Fig. 2.5c). The 

O1–Fe and O2–Fe distances of 2.56 Å and 3.52 Å are comparable with those of heme-pdb. 

Note that hemeoxy and heme-pdb have similar structures. From the results from the three 

heme structures, it can be concluded that the structure of the heme molecule has a significant 

effect on the docking configurations. The steric hindrance at the Fe position plays an 

important role in the binding. The proximal ligand that increases the steric hindrance at the Fe 

position would significantly affect the docking results, as in heme-deoxy. If, however, the 

proximal ligand does not increase the steric hindrance, results similar to those without the 

proximal ligand, i.e. for hemeoxy and heme-pdb, would be obtained. Therefore, the heme 
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structures which facilitate binding between Fe and endoperoxide oxygens, such as heme-pdb 

and heme-oxy, are recommended for further investigation of the heme–artemisinin system. 

All docking calculations similarly reported O1–Fe as the shortest heme–artemisinin distance 

and O2–Fe as the second shortest. It could then be concluded that iron in heme interacts with 

O1 more preferably than O2, a preference which might arise from the more negative charge at 

O1 and the steric hindrance at O2. This observation is in agreement with the proposal of 

Posner et al (1992) (pathway B).  

 

      
     
     

 
 
   

 
 

Figure 2.5. Docking configuration between artemisinin and (a) heme-pdb, (b) heme-deoxy 
and (c) heme-oxy structure. 
 
 

(a) (b) 

(c) 
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2.3.4 Docking of artemisinin derivatives 
 
 To better understand the mechanism of interaction and antimalarial activity of 

artemisinin structural derivatives, computer-aided docking procedures were performed 

between the drug and its putative receptor. In this study heme-pdb was taken for docking of 

artemisinin derivatives. The mode of interaction of artemisinin analogues depends partly on 

the electrostatic configuration of the heme. Both the artemisinin (QHS) and deoxyartemisinin 

(DQHS) derivatives have similar structures with polar and nonpolar regions. The polar 

regions, where the oxygens are clustered are negatively charged. QHS has two prominent 

negative regions (endoperoxide oxygen bridge) and both may interact with the porphyrin iron 

bridge. Because the DQHS derivatives are lacking of peroxide bridge and are inactive, it was 

presumed that the main interaction in QHS derivatives is between the peroxide bridge and the 

heme-iron. Docking methods has been applied here in this study to test whether the peroxide 

bridge performs an important role in binding to heme.  For QHS the atoms O1, O2, O13 and 

O11 were being tested for interaction with heme-iron. Similarly for DQHS the interacting 

oxygen atoms; O2, O13 and O11 were being tested for interaction with heme-iron. Here both 

the oxygen’s from the peroxide bridge are in closer proximity to the positive iron than the 

other two. This indicates that the interaction between QHS and heme involves binding 

between the endoperoxide (O1 and O2) bridge. The respective distances of the oxygens with 

respect to the heme-iron are given in Table 2.6. The docking process was able to placed QHS 

derivatives at distances of 3.89 (± 1.19) Å, 4.46 (± 1.13) Å, 5.61 (±0.64) Å and 5.53 (± 0.63) 

Å with respect to O1, O2, O13 and O11 oxygen atoms respectively from heme-iron. DQHS 

derivatives have single oxygen instead of the peroxide bridge. The heme-iron could interact 

with DQHS in several ways. Form the docking results it has been seen that the heme-iron 

preferentially interact either at the side involving the three nonperoxide oxygens O2, O13 and 

O14 or the peroxide derived oxygen O11. Thus the active antimalarial QHS clearly interacts 

with heme in a manner different from its inactive analogue DQHS. Heme catalyzes the 

breakdown of artemisinin (Zhang et. al., 1992) into a free radical (Meshnick et. al., 1993) 

and/or electrophilic intermediate (Posner and Oh 1992). Once formed, this intermediate can 

alkylate heme (Hong et. al., 1994) or protein (Yang et. al., 1993). The orientation of QHS 

with respect to heme may be critical to formation of this intermediate and thus for drug 
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action.Thus molecular docking and rescoring using Prime MM-GB/SA may aid in the design 

of new QHS congeners.  

Table 2.6. Results for docking of haem-pdb with artemisinin (QHS) analogues as well as 
computed activity using Glide score as a descriptor.  
 

Ligands Fe-O1 
distance (Å) 

Fe-O2 
distance (Å) 

Fe-O13 
distance (Å) 

Fe-O11 
distance (Å) 

Glide 
score 

pIC50expt pIC50Gscore 

1 2.55 3.78 5.57 5.73 -2.24 1.40 1.50 
2 3.06 3.26 5.53 5.83 -1.58 0.71 0.51 
3 5.20 5.37 4.09 4.85 -0.76 -0.76 -0.73 
4 2.91 3.30 5.73 5.56 -2.21 1.19 1.46 
5 3.37 4.25 6.14 5.09 -1.62 0.26 0.57 
6 3.24 3.57 5.58 5.52 -1.32 0.51 0.11 
7 4.17 4.72 5.75 5.93 -1.22 -0.12 -0.04 
8 2.52 3.17 5.49 5.38 -2.27 1.60 1.55 
9 5.20 5.38 6.17 5.87 -1.10 -0.20 -0.22 

10 2.63 3.12 5.15 5.67 -1.94 1.78 1.05 
11 2.64 3.65 5.64 5.43 -2.29 1.16 1.58 
12 3.01 5.08 5.60 5.65 -1.18 0.26 -0.10 
13 3.34 4.56 6.61 5.80 -1.85 0.39 0.91 
14 3.56 4.76 5.06 5.01 -1.21 0.34 -0.05 
15 5.41 5.42 5.13 4.96 -1.08 -0.38 -0.24 
16 3.76 3.40 5.79 5.46 -1.56 0.67 0.48 
17 2.52 3.89 6.01 5.53 -2.29 1.59 1.58 
18 5.89 5.80 4.75 5.24 -0.92 -1.44 -0.49 
19 4.85 4.92 6.49 5.20 -1.50 -0.49 0.39 
20 4.78 5.51 5.76 6.44 -1.04 -0.02 -0.31 
21 6.63 6.32 5.82 5.13 -1.02 -0.56 -0.34 
22 3.06 3.47 5.36 5.34 -2.21 1.34 1.46 
23 3.18 3.27 5.57 5.70 -1.60 0.88 0.54 
24 3.30 4.22 6.13 5.91 -1.50 0.40 0.39 
25 2.83 3.37 5.52 5.10 -2.07 1.17 1.25 
26 3.14 3.33 5.61 5.39 -1.72 0.94 0.72 
27 3.16 3.74 5.70 5.57 -1.62 0.69 0.57 
28 2.46 3.31 5.07 5.85 -2.22 1.29 1.47 
29 3.90 3.91 5.45 5.44 -1.38 0.61 0.20 
30 3.14 3.26 5.91 5.61 -1.77 0.87 0.79 
31 3.11 3.18 5.01 5.82 -1.44 0.98 0.29 
32 3.96 4.35 5.46 5.53 -1.24 0.40 -0.01 
33 3.24 5.29 6.00 5.68 -1.11 0.11 -0.20 
34 6.25 6.30 4.00 4.66 -0.46 -0.56 -1.19 
35 3.56 3.68 5.18 5.17 -1.41 0.67 0.25 
36 2.53 3.29 5.56 5.06 -2.32 1.68 1.62 
37 2.71 3.14 5.00 5.38 -2.18 1.07 1.41 
38 3.60 4.66 6.44 6.02 -1.54 0.28 0.45 
39 3.15 3.16 5.57 5.93 -1.62 0.80 0.57 
40 2.42 3.74 5.74 5.56 -2.19 1.11 1.43 
41 3.56 4.42 5.74 5.70 -1.24 0.40 -0.01 
42 3.17 3.23 4.99 5.97 -1.60 0.80 0.54 
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Table 2.6 (Continued). Results for docking of haem-pdb with artemisinin(QHS) analogues as 
well as computed activity using Glide score as a descriptor. 
 

 Ligands Fe-O1 
distance (Å) 

Fe-O2 
distance (Å) 

Fe-O13 
distance (Å) 

Fe-O11 
distance (Å) 

Glide 
score 

pIC50expt pIC50Gscore 

43 3.38 4.53 5.71 5.41 -1.25 0.36 0.01 
44 3.24 4.93 5.28 5.85 -1.11 0.22 -0.20 
45 3.95 5.16 6.40 5.83 -1.50 0.14 0.39 
46 2.24 3.04 5.47 5.14 -2.11 2.07 1.31 
47 2.18 2.29 5.39 5.45 -2.27 2.53 1.54 
48 2.60 3.55 5.86 5.66 -2.17 1.13 1.40 
49 2.44 3.06 5.24 5.31 -2.32 1.96 1.62 
50 2.84 3.29 5.13 5.02 -2.11 1.02 1.31 
51 2.74 3.89 5.35 5.51 -2.18 1.13 1.41 
52 3.65 4.67 6.39 5.32 -1.33 0.86 0.13 
53 5.58 5.78 6.05 5.81 -1.06 -0.27 -0.27 
54 5.40 5.66 5.19 6.40 -1.07 -0.22 -0.27 
55 5.71 6.71 5.40 5.62 -0.97 -0.62 -0.42 
56 3.86 3.95 5.17 6.14 -1.32 0.50 0.11 
57 2.52 3.19 5.14 5.35 -2.20 1.68 1.44 
58 2.50 3.22 5.84 5.70 -2.19 1.22 1.43 
59 5.82 5.63 5.02 6.19 -0.90 -0.52 -0.52 
60 3.54 4.41 5.39 5.99 -1.28 0.44 0.05 
61 3.54 3.41 5.76 5.69 -1.65 0.61 0.61 
62 4.04 5.81 7.35 6.75 -1.55 -0.11 0.46 
63 3.89 4.53 5.55 6.10 -1.20 0.28 -0.07 
64 3.14 4.00 6.17 5.38 -1.38 0.93 0.20 
65 4.77 5.50 5.67 5.12 -1.08 0.00 -0.25 
66 2.58 3.26 5.57 5.58 -2.13 1.04 1.34 
67 3.47 3.58 5.54 6.38 -1.31 0.73 0.10 
68 4.74 4.02 6.20 5.14 -1.24 -0.32 -0.02 
69 3.68 4.72 6.39 5.97 -1.56 0.46 0.48 
70 5.53 6.52 4.43 4.92 -0.68 -0.59 -0.85 
71 3.36 4.52 5.43 6.41 -1.24 0.40 -0.01 
72 5.79 6.02 4.41 4.65 -0.72 -0.45 -0.79 
73 3.45 4.41 6.14 6.42 -1.62 0.17 0.57 
74 5.70 6.51 5.10 4.74 -0.76 -0.65 -0.73 
75 5.79 6.34 4.77 4.48 -0.62 -1.43 -0.94 
76 3.99 4.03 6.11 6.76 -1.53 0.60 0.43 
77 6.24 6.86 4.17 5.07 -0.56 -1.45 -1.03 
78 6.04 7.22 4.01 4.88 -0.33 -1.56 -1.38 
79 3.65 4.57 5.74 6.06 -1.29 0.43 0.07 
80 2.72 3.11 5.27 5.54 -2.29 1.20 1.58 
81 5.27 5.46 5.16 4.98 -1.01 -0.80 -0.35 
82 4.47 4.02 5.95 4.80 -1.27 -0.37 0.04 
83 5.45 6.08 5.22 5.71 -1.14 -0.20 0.45 
84 6.16 6.14 5.45 5.65 -0.54 -1.76 -1.06 
85 5.16 6.15 4.21 4.80 -0.51 -2.09 -1.11 
86 4.75 6.08 6.84 7.28 -1.54 -0.36 0.45 
87 3.43 4.19 5.94 5.73 -1.54 0.49 -0.27 
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Table 2.6 (Continued). Results for docking of haem-pdb with artemisinin(QHS) analogues as 
well as computed activity using Glide score as a descriptor. 
 

Ligands Fe-O1 
distance (Å) 

Fe-O2 
distance (Å) 

Fe-O13 
distance (Å) 

Fe-O11 
distance (Å) 

Glide 
score 

pIC50expt pIC50Gscore 

88 4.72 4.53 5.39 6.04 -1.15 -0.18 -0.15 
89 6.44 5.03 6.24 5.38 -0.94 -0.83 -0.46 
90 3.86 4.92 5.61 5.71 -1.23 0.40 -0.02 
91 5.38 5.59 4.63 4.99 -1.07 -0.37 0.57 
92 3.49 4.48 6.25 5.55 -1.62 0.18 -0.95 
93 5.52 5.91 4.94 5.32 -0.62 -1.90 -0.40 
94 5.46 5.68 5.53 4.68 -0.98 -1.28 -0.35 
95 4.03 5.36 5.60 5.88 -1.01 -0.11 0.64 
96 3.71 4.75 6.48 6.49 -1.67 -0.06 -0.20 
97 3.34 5.35 6.05 5.91 -1.11 0.01 -0.20 
98 3.17 3.19 5.34 6.86 -1.54 0.91 0.45 
99 2.21 2.46 5.61 5.38 -2.38 2.37 1.71 
100 3.17 3.18 4.10 5.46 -1.48 0.86 0.35 
101 3.34 4.87 6.13 6.31 -1.45 0.22 0.31 
102 5.72 5.48 3.73 4.73 -0.64 -0.38 -0.91 
103 4.91 5.33 6.51 6.97 -1.59 -0.33 0.52 
104 3.83 5.53 6.41 6.25 -1.48 -0.10 0.35 
105 3.05 5.40 5.58 5.78 -1.12 0.13 -0.19 
106 3.59 4.84 6.13 5.21 -1.25 0.40 0.01 
107 2.88 3.08 5.49 5.96 -2.25 1.79 1.52 
108 5.62 3.96 5.89 6.94 -1.58 -0.18 0.51 
109 5.97 6.48 4.51 3.06 -0.46 -0.28 -1.19 
110 2.81 3.68 5.16 5.36 -2.13 1.24 1.34 
111 5.93 6.03 6.48 5.06 -1.13 -0.25 -0.18 
112 2.41 3.22 5.65 5.61 -2.21 1.24 1.46 
113 2.49 3.06 5.64 5.13 -2.23 1.24 1.49 
114 2.96 3.49 5.77 5.17 -2.24 1.24 1.50 
115 3.14 3.50 4.57 5.02 -1.50 0.85 0.39 
116 2.44 3.19 5.44 5.30 -2.16 1.07 1.38 
117 2.67 3.63 5.77 5.77 -2.22 1.24 1.47 
118 3.86 3.66 5.08 6.47 -1.65 0.64 0.61 
119 3.94 3.80 5.97 5.80 -1.62 0.50 0.57 
120 3.63 4.28 5.54 5.87 -1.26 0.45 0.02 
121 2.27 3.18 5.47 5.74 -2.18 1.20 1.41 
122 3.39 4.62 5.84 6.91 -1.72 0.01 0.72 
123 3.17 3.62 5.00 6.38 -1.23 0.66 -0.02 
124 5.96 6.01 4.93 4.15 -0.76 -1.71 -0.73 
125 3.66 4.62 5.51 6.36 -1.23 0.34 -0.02 
126 3.81 3.45 5.82 7.16 -1.69 0.71 0.67 
127 3.16 3.19 5.32 6.42 -1.54 0.73 0.45 
128 5.24 6.53 6.14 5.87 -0.93 -0.20 -0.48 
129 6.67 6.11 3.91 3.99 -0.35 -1.77 -1.35 
130 4.06 4.84 6.64 6.53 -1.58 -0.09 0.51 
131 4.13 4.76 5.90 6.56 -1.48 -0.12 0.35 
132 2.59 3.73 5.59 5.14 -1.92 1.59 1.02 
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Table 2.6 (Continued). Results for docking of haem-pdb with deoxy-artemisinin(DQHS) 
analogues as well as computed activity using Glide score as a descriptor. 
 
 

Ligands Fe-O1 
distance (Å) 

Fe-O13 
distance (Å) 

Fe-O11 
distance (Å) 

Glide 
score 

pIC50expt pIC50Gscore 

133 5.479 4.327 5.435 -3.61 -3.62 -3.63 
134 4.141 5.778 4.916 -3.56 -3.63 -3.64 
135 4.295 5.893 5.995 -3.52 -3.68 -3.65 
136 4.697 6.831 6.378 -3.75 -3.60 -3.59 
137 4.297 5.211 5.539 -3.49 -3.66 -3.66 
138 3.934 6.186 5.892 -3.60 -3.62 -3.63 
139 3.957 6.147 6.604 -3.51 -3.67 -3.65 
140 5.118 3.296 4.587 -3.43 -3.66 -3.68 
141 5.271 4.438 4.86 -3.59 -3.61 -3.63 
142 4.005 5.671 4.578 -3.54 -3.66 -3.65 
143 5.404 4.077 4.341 -3.58 -3.65 -3.64 
144 4.413 6.282 5.339 -3.70 -3.59 -3.60 

 
 
 We applied the docking MM-GB/SA method to a data set of 144 artemisinin 

analogues to build a binding affinity model for evaluating antimalarial activity.  The data set 

used for building the binding affinity model comprised nine subsets of artemisinin analogues 

(Table 2.1). These compounds were taken from various sources, among these are 

endoperoxide artemisinin analogues, 10-substituted artemisinin derivatives, artemisinin 

derivatives without D-ring, 9-substituted artemisinin derivatives, dihydroartemisinin 

derivatives, tricyclic 1,2,4-trioxanes, 3C-substituted artemisinin derivatives, deoxyartemisinin 

analogues and miscellaneous artemisinin derivatives. The experimental relative activity (RA) 

values for all those compounds were calculated against the drug resistant malarial strain P. 

falciparum (W-2 clone). The IC50 value of these analogues was derived from the equation 1 

and used for calculation of absolute pIC50 (pIC50 = - log IC50). With the wide range of 

difference in pIC50 values and the large diversity in the structures, the combined set of 144 

ligands is ideal to build the affinity binding model as the set does not suffer from bias due to 

the similarity of the structures. This data set compounds were docked into the haem receptor 

site using the Glide-XP module and rescore using Prime-MM-GB/SA (Schrodinger, Inc.). For 

the better understanding of the mechanism of action of the artemisinin analogues all the 144 

compounds were classified into highly potent, low and inactive analogues based on the 

experimental pIC50.   
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 All the active artemisinin (QHS) derivatives (1-132, Table 2.1) were found to be good 

binder with heme (Table 2.6). We can observe that the most potent artemisinin analogues 

(pIC50 > 1.0) were found to be having better docking score in comparison to the analogues 

which are less potent (pIC50 < 1.0). For the highly potent analogues the distances between O1-

Fe, O2-Fe, O13-Fe and O11-Fe atom pairs between heme-iron and artemisinin were 2.59 (± 

0.22) Å, 3.31 (± 0.36) Å, 5.49 (± 0.25) Å and 5.45 (± 0.24) Å  respectively; the  glide  score  

obtained  was -2.20 (± 0.11). However, for the less potent analogues the distances were found 

to be 4.31 (± 1.08) Å, 4.83 (± 1.03) Å, 5.54 (± 0.71) Å and 5.67 (± 0.71) Å respectively for 

the O1-Fe, O2-Fe, O13-Fe and O11-Fe atom pairs; the glide score was -1.24 (± 0.36) (Table 

2.6). A linear relationship between Glide score and optimized O-Fe distance was obtained 

with R2 value of 0.6586 (Figure 2.6a). The optimized O-Fe distance was obtained by linear 

combination of O1-Fe, O2-Fe, O13-Fe and O11-Fe atom pairs between oxygen’s of 

artemisinin and heme-iron as explained in Figure 2.6. It has been seen that the distances 

between O1-Fe and O2-Fe are more important for the activity of artemisinin analogues. For 

the inactive artemisinin (DQHS) analogues (pIC50 < -3.0) which lack the peroxide bridge the 

Glide score was found to be -1.07 (± 0.09) (Table 2.6). The distances for O2-Fe, O13-Fe and 

O11-Fe atom pairs were 4.58 (± 0.59) Å, 5.34 (± 1.08) Å and 5.37 (± 0.74) Å respectively. 

Further a linear relationship with R2 value of 0.7702 was obtained between Glide score and 

the optimized O-Fe distance (Figure 2.6c). The interaction of the artemisinin with heme is 

very much dependent upon the stereochemistry of artemisinin analogues, a mechanism that is 

controlled by steric hindrance. The analogues which approach the heme-iron as close as 

possible will have better interaction and thus the good glide score.  

 

 For each ligand in the virtual library, the pose with the lowest Glide score was 

rescored using Prime/MM-GBSA approach. Rescoring using Prime/MM-GBSA leads to 

minor changes of the ligand conformations within receptor site. These changes result from 

minimization of the ligand in receptor’s environment and consequent stabilization of 

receptor:ligand complex. This approach is used to predict the binding free energy (∆Gbind) for 

set of ligands to receptor. Table 2.7 reveals the ∆Gbind energy of artemisinin analogues. The 

∆Gbind energy of the highly potent QHS analogues (pIC50 > 1.0) were higher (-6.84 ± 0.50 
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kcal/mol) then less potent analogues (-5.96 ± 0.84 kcal/mol) and inactive DQHS derivatives (-

4.47 ± 1.07 kcal/mol). 

 
Figure 2.6(a-d). A linear relationship between Fe-O distance and Glide score as well as Fe-O 
distance and binding free energy of the (a & b) Artemisinin (QHS) derivatives and (c & d) 
Deoxyartemisinin (DQHS) derivatives. The Fe-O distance represents the optimized value of 
the distances obtained by linear combination of distances between O1-Fe, O2-Fe, O13-Fe and 
O11-Fe atom pairs respectively between QHS analogues and haem-iron: O-Fe distance = α 
(O1-Fe) + β (O2-Fe) + γ (O13-Fe) + δ (O11-Fe). The α, β, γ and δ are fitting parameters. The 
values obtained for the four fitting parameters, α, β, γ and δ are 0.101, 0.191, -0.357, -0.129 
and -0.482, 0.798, -0.520, -0.905 respectively using Glide score and binding free energy as 
dependent variables. The optimized equation obtained for O-Fe distance for deoxyartemisinin 
derivatives was: O-Fe distance = α (O2-Fe) + β (O13-Fe) + γ (O11-Fe). The values obtained 
for the three fitting parameters α, β and γ are -0.431, -0.490, 0.144 and -1.43, -1.18, 0.74 
respectively using Glide score and binding free energy as dependent variables. 
 

The distances between O1-Fe, O2-Fe, O13-Fe and O11-Fe atom pairs for most potent 

analogues were 2.77 (± 0.30) Å, 3.23 (± 0.35) Å, 5.13 (± 0.46) Å and 5.57 (± 0.49) Å 

respectively. The binding affinity of the artemisinin derivatives with heme is very much 

dependent upon the proximity of O1 and O2 atoms. On the contrary for the less potent 

analogues the distances were 3.69 (± 0.53) Å, 4.03 (± 0.71) Å, 5.25 (± 0.57) Å and 5.26 (± 

0.71) Å.  For the inactive DQHS derivatives the distances for O2-Fe, O13-Fe and O11-Fe 
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atom pairs were 4.83 (± 0.64) Å, 5.70 (± 1.09) Å and 5.65 (± 0.98) Å respectively. A linear 

relationship between linear combination of O-Fe distances and ∆Gbind energy was obtained 

(Figure 2.5b & 2.5d) with R2 value of 0.7073 and 0.7303 for the QHS and DQHS derivatives 

respectively. 

Table 2.7. Results for rescoring using Prime/MM-GBSA of haem-pdb with artemisinin 
analogues as well as computed activity using ∆Gbind energy as a descriptor. 
 

Ligands Fe-O1 
distance(Å) 

Fe-O2 
distance(Å) 

Fe-O13 
distance(Å) 

Fe-O11 
distance(Å) 

∆Gbind
 

kcal/mol 
pIC50expt pIC50ΔGbind 

1 2.58 2.661 4.407 5.842 -6.68 1.40 0.79 
2 3.148 3.528 5.659 4.803 -6.55 0.71 0.68 
3 3.006 2.688 5.044 4.761 -5.12 -0.65 -0.57 
4 2.363 3.37 5.07 5.712 -6.63 1.19 0.75 
5 3.097 3.247 5.408 4.588 -6.09 0.28 0.28 
6 3.087 3.209 5.391 4.617 -6.11 0.51 0.30 
7 3.286 3.795 5.758 4.704 -5.35 -0.12 -0.36 
8 3.39 3.266 5.116 5.558 -6.76 1.60 0.86 
9 3.162 4.943 5.586 6.33 -4.13 -2.09 -1.43 
10 2.88 3.34 5.134 5.693 -7.12 1.78 1.18 
11 2.956 3.245 5.5 5.429 -6.46 1.16 0.60 
12 3.059 3.353 5.603 5.662 -6.49 0.26 0.63 
13 4.301 4.582 5.765 4.989 -6.26 0.39 0.43 
14 3.522 3.852 5.073 4.811 -6.21 0.34 0.39 
15 3.15 3.909 6.15 3.74 -4.95 -0.38 -0.71 
16 3.723 3.207 4.542 5.243 -6.36 0.67 0.52 
17 2.995 2.898 5.117 5.58 -6.76 1.59 0.86 
18 3.504 5.126 6.143 6.148 -4.53 -1.43 -1.08 
19 3.518 4.453 6.101 4.808 -5.85 -0.45 0.07 
20 4.11 4.836 5.241 5.891 -6.58 -0.02 0.71 
21 4.89 5.264 5.588 4.913 -5.86 -0.52 0.08 
22 2.558 3.396 5.19 4.874 -6.3 1.34 0.46 
23 3.146 3.74 5.019 5.917 -6.92 0.88 1.00 
24 2.872 2.66 4.997 4.952 -6.24 0.40 0.41 
25 2.81 3.049 5.288 4.923 -6.36 1.17 0.52 
26 3.284 3.412 5.704 5.624 -7.01 0.94 1.08 
27 3.725 3.575 4.902 5.85 -7.17 0.69 1.22 
28 2.594 3.261 4.661 5.408 -6.4 1.29 0.55 
29 3.03 3.133 5.567 5.56 -7.08 0.61 1.14 
30 3.295 3.211 4.867 4.625 -5.95 0.87 0.16 
31 4.818 5.461 6.13 6.668 -6.97 0.98 1.05 
32 3.691 3.883 4.011 5.455 -6.06 0.40 0.25 
33 3.452 4.33 4.013 5.21 -5.12 0.11 -0.57 
34 3.94 4.796 6.426 6.296 -4.84 -0.56 -0.81 
35 3.773 3.821 4.896 5.473 -7.16 0.67 1.21 
36 3.367 3.492 5.689 4.973 -7.18 1.68 1.23 
37 3.273 3.336 5.65 5.509 -7.00 1.07 1.07 
38 3.174 3.024 5.129 4.351 -5.67 0.28 -0.09 
39 3.034 3.159 5.909 5.262 -7.26 0.80 1.30 
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Table 2.7 (Continued). Results for rescoring using Prime/MM-GBSA of haem-pdb with 
artemisinin analogues as well as computed activity using ∆Gbind energy as a descriptor. 
 

Ligands Fe-O1 
distance(Å) 

Fe-O2 
distance(Å) 

Fe-O13 
distance(Å) 

Fe-O11 
distance(Å) 

∆Gbind
 

kcal/mol 
pIC50expt pIC50ΔGbind 

40 2.83 3.58 4.859 5.797 -6.97 1.11 1.05 
41 3.718 3.801 4.941 5.479 -6.28 0.40 0.45 
42 3.806 3.576 4.817 5.754 -7.22 0.80 1.27 
43 4.158 4.716 4.897 5.537 -6.23 0.36 0.40 
44 3.357 3.985 5.245 5.784 -6.04 0.22 0.24 
45 4.088 4.349 4.55 6.002 -6.2 0.14 0.38 
46 2.18 3.052 5.78 5.98 -7.6 2.07 1.60 
47 2.392 2.42 5.39 6.39 -7.85 2.53 1.82 
48 2.834 3.71 4.009 5.899 -6.09 1.13 0.28 
49 2.775 2.785 5.12 6.14 -7.45 1.96 1.47 
50 2.722 3.813 5.462 4.933 -6.44 1.02 0.59 
51 2.496 3.421 5.079 4.955 -6.2 1.13 0.38 
52 3.703 4.673 5.522 5.667 -7.21 0.86 1.26 
53 4.572 4.858 5.045 5.669 -6.13 -0.25 0.32 
54 4.299 4.582 5.901 3.834 -5.27 -0.20 -0.43 
55 3.517 4.981 5.74 6.557 -4.58 -0.59 -1.04 
56 2.902 2.882 5.11 6.138 -6.63 0.50 0.75 
57 2.086 3.194 5.93 5.14 -7.01 1.68 1.08 
58 2.739 3.448 5.079 6.094 -7.36 1.22 1.39 
59 4.617 4.629 5.788 4.018 -5.07 -0.49 -0.61 
60 3.803 3.733 5.62 5.222 -6.72 0.44 0.83 
61 3.726 3.662 4.062 5.946 -6.49 0.61 0.63 
62 4.489 5.67 5.332 5.625 -6.36 -0.11 0.52 
63 3.963 3.53 4.542 5.278 -6.07 0.26 0.26 
64 3.274 3.994 4.403 6.193 -7.13 0.93 1.19 
65 4.881 5.185 5.238 5.299 -6.11 0.00 0.30 
66 2.699 3.431 4.185 6.03 -6.55 1.04 0.68 
67 2.852 3.44 5.565 5.449 -7.25 0.73 1.29 
68 4.866 4.241 4.305 5.342 -5.58 -0.28 -0.16 
69 3.794 4.878 5.535 5.219 -6.94 0.46 1.02 
70 3.01 2.936 5.272 5.588 -6.09 -0.56 0.28 
71 4.011 4.205 4.527 5.759 -6.48 0.40 0.62 
72 4.327 4.943 5.967 6.246 -5.02 -0.38 -0.65 
74 3.576 4.326 5.128 4.885 -4.96 -0.62 -0.70 
75 3.523 3.477 4.646 5.155 -5.04 -1.28 -0.64 
76 3.582 3.572 5.285 5.328 -7.05 0.60 1.12 
77 3.606 4.604 5.319 3.67 -4.48 -1.44 -1.12 
78 4.943 4.069 5.133 3.19 -4.3 -1.45 -1.28 
79 3.746 4.042 5.356 5.943 -6.91 0.43 1.00 
80 3.062 3.641 5.069 6.113 -7.24 1.20 1.28 
81 3.223 3.194 5.387 4.59 -5.76 -0.76 -0.01 
82 3.413 3.887 5.83 4.755 -5.65 -0.37 -0.10 
83 4.152 4.245 5.279 4.654 -5.367 -0.20 -0.35 
84 3.951 4.445 5.71 6.066 -4.83 -0.98 -0.82 
86 3.967 4.579 5.864 4.964 -5.96 -0.33 0.17 
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Table 2.7 (Continued). Results for rescoring using Prime/MM-GBSA of haem-pdb with 
artemisinin analogues as well as computed activity using ∆Gbind energy as a descriptor. 

Ligands Fe-O1 
distance(Å) 

Fe-O2 
distance(Å) 

Fe-O13 
distance(Å) 

Fe-O11 
distance(Å) 

∆Gbind
 

kcal/mol 
pIC50expt pIC50ΔGbind 

87 3.601 3.757 4.153 5.79 -6.25 0.49 0.42 
88 3.682 4.339 4.828 4.627 -5.29 -0.18 -0.42 
89 4.398 5.61 5.773 4.45 -5.7 -0.80 -0.06 
90 2.89 3.901 5.603 5.766 -6.38 0.40 0.53 
91 4.528 4.871 4.032 5.267 -4.86 -0.36 -0.79 
92 3.39 3.463 5.198 5.721 -6.27 0.18 0.44 
93 3.077 3.557 5.557 3.34 -4.29 -1.77 -1.29 
94 3.846 5.05 5.629 5.905 -4.72 -0.83 -0.91 
95 4.61 4.738 4.582 4.782 -5.35 -0.11 -0.36 
96 4.17 4.732 5.085 6.051 -6.58 -0.06 0.71 
97 3.486 4.449 5.128 6.038 -6.46 0.01 0.60 
98 3.674 3.685 5.177 5.883 -7.39 0.91 1.41 
99 2.75 2.55 5.57 6.1 -7.88 2.37 1.84 
100 3.123 3.109 4.283 4.825 -5.59 0.86 -0.16 
101 4.059 4.434 6.065 3.8 -5.53 0.22 -0.21 
102 3.91 4.549 4.828 5.129 -5.01 -0.37 -0.66 
103 4.022 4.404 5.293 5.636 -6.14 -0.32 0.32 
104 4.092 4.555 4.168 5.663 -5.4 -0.10 -0.32 
105 3.23 3.535 5.667 5.031 -6.09 0.13 0.28 
106 3.969 3.862 5.791 5.095 -6.66 0.40 0.78 
107 2.703 3.227 5.427 6.08 -7.27 1.79 1.31 
108 4.051 4.253 5.274 3.736 -5.00 -0.18 -0.67 
109 4.21 4.819 4.926 4.415 -5.11 -0.27 -0.57 
110 2.917 3.704 4.822 5.48 -6.4 1.24 0.55 
111 3.964 4.391 4.332 5.174 -5.18 -0.22 -0.51 
112 2.94 2.859 4.189 5.357 -5.85 0.87 0.07 
113 2.774 3.77 4.963 5.487 -6.28 1.24 0.45 
114 2.978 3.07 4.537 5.122 -6.27 1.24 0.44 
115 3.152 3.676 4.696 5.079 -5.97 0.85 0.18 
116 2.886 3.662 4.991 5.326 -6.45 1.07 0.59 
117 2.958 2.977 5.719 4.227 -6.4 1.24 0.55 
118 3.961 3.814 5.241 5.525 -7.07 0.64 1.14 
119 3.23 2.615 4.744 5.844 -7.03 0.50 1.10 
120 3.961 3.588 5.489 5.021 -6.86 0.45 0.95 
121 2.54 3.273 5.504 5.936 -7.2 1.20 1.25 
122 3.42 4.37 5.42 5.372 -6.06 0.01 0.25 
123 3.228 2.735 5.118 5.445 -6.46 0.66 0.60 
124 3.561 4.208 5.891 5.682 -4.15 -1.56 -1.41 
125 3.631 3.604 5.417 5.253 -6.11 0.34 0.30 
126 3.99 4.348 5.306 5.437 -6.87 0.71 0.96 
127 3.141 3.251 5.605 5.609 -7.23 0.73 1.27 
128 3.644 3.2 5.387 4.956 -5.8 -0.20 0.03 
129 4.117 4.361 6.79 6.095 -4.76 -1.76 -0.88 
130 4.241 5.023 4.847 5.733 -5.82 -0.09 0.05 
131 3.516 3.727 5.902 5.005 -6.06 -0.12 0.25 
132 2.702 2.775 5.128 5.34 -6.98 1.59 1.06 
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Table 2.7 (Continued). Results for rescoring using Prime/MM-GBSA of haem-pdb with 
deoxy-artemisinin analogues as well as computed activity using ∆Gbind energy as a descriptor. 
 

Ligands Fe-O1 
distance(Å) 

Fe-O13 
distance(Å) 

Fe-O11 
distance(Å) 

∆Gbind
 

kcal/mol 
pIC50expt pIC50ΔGbind 

133 5.622 4.364 5.548 -8.51 -3.62 -3.63 
134 4.451 6.029 4.969 -8.29 -3.63 -3.63 
135 3.806 5.92 6.099 -4.85 -3.68 -3.69 
136 4.811 6.963 6.441 -9.80 -3.60 -3.61 
137 4.42 6.613 6.774 -8.13 -3.66 -3.64 
138 4.274 6.521 6.215 -8.35 -3.62 -3.63 
139 4.845 6.935 7.543 -7.16 -3.67 -3.65 
140 5.263 3.58 4.761 -6.49 -3.66 -3.67 
141 5.807 5.5 5.706 -9.73 -3.61 -3.61 
142 4.378 5.747 4.565 -8.02 -3.66 -3.64 
143 5.693 4.293 4.488 -8.45 -3.65 -3.63 
144 4.565 5.947 4.712 -10.01 -3.59 -3.60 

 
2.3.5 Building models for prediction of pIC50 using Glide score and binding free energy 

 A prediction model of antimalarial activity (pIC50) was build based on Glide score and 

∆Gbind as descriptors. Antimalarial activity of all the 144 analogues used in the study was 

generally evaluated against the drug-resistant malarial strain P. falciparum (W-2 clone) and 

were collected from different sources (Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 

1992; Avery et. al., 1995; Avery et. al., 1996; Pinheiro et. al., 2001) and included in Table 

2.1. It has been seen that the analogues having endoperoxide linkage have significantly better 

activity (pIC50 in the range of -2.09 to 2.53) compared to the other deoxyartemisinin 

derivatives (pIC50 between -3.59 to -3.68). The deoxartemisinin derivatives generally showed 

very weak or no activity. The plot of the Glide score and experimental pIC50 reveal a 

significant relationship (R2 = 0.763 and R2 = 0.734 for both the QHS and DQHS derivatives) 

between these two parameters (Figure 2.7a & 2.7c).  A linear regression model for prediction 

of predicted pIC50 of antimalarial activity based on Glide score has been developed by 

considering analogues with known pIC50. The equations 3 & 4 of the model and the 

corresponding statistics for QHS & DQHS are shown below:  

pIC50 = - 1.88 (± 0.115) - 1.51 (± 0.074)* G-score                   (3) 
                         (N = 132, r2 = 0.763, r2

cv = 0.762, s = 0.428, F = 419.66) 
 

pIC50 = -3.94 (± 0.061) – 0.284 (± 0.057)* G-score                   (4) 
                         (N = 12, r2 = 0.734, r2

cv = 0.685, s = 0.017, F = 24.92) 
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Reasonably good agreement between predicted and experimental pIC50 are found (root mean 

square error = 0.36 and 0.01 for QHS and DQHS derivatives) and suggested that the 

calculated pIC50 based on Glide score is robust and accurate.  Similar prediction model of 

predicted pIC50 of antimalarial activity has been developed by considering ∆Gbind energy as a 

descriptor. The equations 5 & 6 of the model and the corresponding statistics for QHS and 

DQHS analogues are shown below: 

pIC50 = -5.03 (± 0.298) – 0.872 (± 0.048)* ∆Gbind                   (5) 

                      (N = 132, r2 = 0.718, r2
cv = 0.715, s = 0.471, F = 330.22) 

 

pIC50 = -3.75 (± 0.019) – 0.024 (± 0.004)* ∆Gbind                   (6) 

                      (N = 12, r2 = 0.786, r2
cv = 0.739, s = 0.015, F = 32.20) 

 

The ∆Gbind energy value among the ligands of QHS library varies in between -7.88 to - 4.13 

kcal/mol and the overall mean is -6.16 (± 0.859) kcal/mol. It revealed that all these ligands 

bind to haem iron with high affinity and showed activity (experimental pIC50) in between -

2.09 and 2.53. On the contrary for the DQHS derivatives the ∆Gbind energy value varies 

between -5.66 to -2.69 kcal/mol; the experimental pIC50 was -3.59 to -3.66. Correspondingly 

the plot of the binding free energy and experimental pIC50 reveals a significant relationship 

(R2 = 0.718 and R2 = 0.786 for QHS and DQHS respectively) between these two parameters 

(Figure 2.7b & 2.7d). The calculated pIC50 based on ∆Gbind energy descriptor was in good 

agreement with experimental pIC50 (root mean square error = 0.40 and 0.01 for QHS and 

DQHS derivatives) and suggested that the prediction model is robust and accurate.   
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Figure 2.7(a-d). Models for predicting antimalarial activity (pIC50) of the (a&b)Artemisinin 
(QHS) analogues and (c&d) Deoxy-artemisinin analogues based on Glide score and Binding 
free energy (∆Gbind) as descriptor. 
 
2.4. Conclusion 

 We have compiled a virtual library of artemisinin analogues which are built through 

structural modification of scaffold structure of natural artemisinin. Docking and rescoring 

using PRIME/MM-GBSA have been used in the work to get insights into artemisinin: haem 

interactions and development of prediction model for antimalarial activity. The docking result 

revealed that the haem-iron approaches the endoperoxide moiety at the O1 position in 

preference to the O2 position. Several sets of artemisinin analogues have been studied in the 

docking simulations. Results showed that these analogues bind in a very similar mode. The 

magnitude of the binding affinity can be a key factor that decides the activeness of an 

individual inhibitor.  An energetic evaluation of the binding affinity will provide a way to 

estimate the activity of inhibitors. In any binding energy calculation, the correct binding 
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structure of each ligand has to be determined first prior to binding energy estimation. Very 

similar binding structures were obtained for a set of analogues. This makes a credible 

prediction model of the antimalarial activity (pIC50) calculation possible. The calculated Glide 

score and binding free energy value of a set of structural analogues demonstrate excellent 

linear correlation to the experimental antimalarial activity thus these models could be useful 

to predict the range of activity for new artemisinin analogues. We also found that refinement 

of poses and consequent rescoring using PRIME/MM-GBSA leads to better predictivity of 

pIC50. The information that we have expressed in this study may lead to design (synthesis) of 

more potent artemisinin derivatives for inhibition of heme polymerization. 
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CHAPTER 3 

Application of linear interaction energy method for binding affinity 
calculations of artemisinin analogues using continuum solvent model 
and prediction of antimalarial activity 
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Abstract 

 The antimalarial activity of artemisinin derived drugs appears to be mediated by an 

interaction of the drug’s endoperoxide bridge with intraparasitic heme.  The binding affinity 

of artemisinin analogues with heme were computed using a linear interaction energy (LIE) 

method with a surface generalized Born (SGB) continuum solvation model. A training set of 

101 artemisinin analogues with known in vitro antimalarial activity was used to build the 

SGB-LIE model utilizing molecular dynamics (MD) and hybrid Monte Carlo (HMC) 

sampling techniques. For the test set of 57 compounds the SGB-LIE model was able to 

predict their activity with an overall root mean square (RMS) error of 0.348 and 0.415 

kcal/mol respectively with respect to experimental data. Low levels of RMS error establish 

the structure-based LIE method as an efficient tool for generating more potent inhibitors of 

heme by testing rationally designed lead compounds based on artemisinin derivatization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

3.1 Introduction 

 Malaria is one of the most widespread and prevalent endemic diseases; it threatens 

approximately 40 percent of the world's population in more than 107 countries. This disease is 

estimated to cause approximately 350 to 500 million clinical illnesses and upto 3 million 

deaths each year (WHO, 2005). Most deaths are attributed to the parasite Plasmodium 

falciparum. The severity of the disease caused by this species results primarily from its ability 

to modify the surface of infected red blood cells by inserting proteins (Bowman, 1999). The 

enzymes in the parasite digestive vacuole (cysteine- and aspartic-proteinases) break down 

hemoglobin into amino acids and heme (Pandey, 1999). While all the amino acid content is 

used to build parasite proteins, only a small portion of the heme is incorporated into the 

parasite hemoproteins; the rest of the heme is detoxified (polymerized) by parasite enzymes 

(Kamchonwongpaisan, 1997) A number of drugs have been investigated for their use in the 

treatment of malaria (Olliaro, 2001; Ridley, 2002; White, 2004; Arav-Boger et. al., 2005). 

However, new strains of Plasmodium falciparum resistant to some of those drugs are causing 

substantial deterioration in clinical treatment (Olliaro, 2001; Ridley, 2002; White, 2004; 

Arav-Boger et. al., 2005). This has motivated the search for new antimalarial drugs that are 

effective against this form of malaria, thus having a very high priority in antimalarial drug 

design (Cheng et. al., 2002; Bhattacharjee et. al., 2004; Jefford, 2001). This led to Chinese 

researchers introducing a new compound, qinghaosu (or artemisinin, as it is known in the 

West), present in extracts of Qinghao or Artemisia annua L. that has been used in China for 

thousands of years (Haynes, 1997). It is a potent antimalarial drug against the multi-drug 

resistant strains of Plasmodium falciparum (Klayman, 1985; Luo et. al., 1987). The structure 

of artemisinin was identified as an endoperoxide containing sesquiterpene lactone and the 

presence of the 1,2,4-trioxane-ring system seems to be essential for its antimalarial activity 

(Bernardinelli et. al.,1994; Posner et. al., 1995; Haynes et. al., 1996; Rafiee et. al., 2005). 

Studies on the mode of action of artemisinin and its derivatives have shown that free heme 

could be the molecule targeted by artemisinin in biological systems and that Fe+2 ions interact 

with the peroxide when artemisinin react with heme (Cheng et. al., 2002; Jefford, 2001; Wu 

et. al., 1998, Meshnick, 2002; Haynes, 2004; Kannan, 2005). An initial step in the action of 

artemisinin includes heme-catalyzed artemisinin activation into a very reactive radical which 

binds covalently to the parasite proteins or heme (Olliaro, 2001; Jefford, 2001; Meshnick, 
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2002; Haynes et. al., 2004; Kannan et. al., 2005; Kamchonwongpaisan et. al., 1997; Hong et. 

al., 1994) and hemozoin (Kamchonwongpaisan et. al., 1997; Meshnick, 2002; Haynes et. al., 

2004; Kannan et. al., 2005; Kamchonwongpaisan et. al., 1997; Hong et. al., 1994). It has been 

proposed that heme iron attacks the endoperoxide linkage of artemisinin either at the O1 

(Jefford et. al., 1996) or O2 position (Posner et. al., 1995). In pathway A, heme iron attacks 

the compound at the O2 position and produces a free radical at the O1 position. Later it 

rearranges to form the C4 free radical. In pathway B, heme iron attacks the compound at the 

O1 position and produces a free radical at the O2 position. After that the C3–C4 bond is 

cleaved to give a carbon radical at C4. It has been suggested that the C4 free radical in both 

pathways is an important substance in antimalarial activity (Posner et. al., 1994).  
 

The effectiveness of artemisinin and its derivatives as antimalarial drugs for the 

treatment of multi-drug resistant P. falciparum has received considerable attention in recent 

years. More often than not the focus of these studies has been to demonstrate antimalarial 

efficacy in vitro for new structural classes or modification of the natural product architecture. 

Since a wide variety of molecular scaffolds are available for optimization, this diversity 

presents a significant challenge in determining the essential features for activity. A rational 

approach for the discovery of a pharmaceutically acceptable, economically viable, peroxide 

based antimalarial awaits development of a global mechanism of action model for organic 

peroxides (Robert et. al., 1998; Pandey et. al., 1999) and/or a predictive quantitative structure-

activity relationship. With the advent of parallel synthesis methods and technology, we might 

expect the number of antimalarial artemisinin analogues to be tested to grow dramatically. 

Combinatorial methods could also be envisioned as a semirational approach to this above 

discovery strategy. One method of orchestrating these strategies is to make use of linear 

interaction energy (LIE) models for the rapid prediction and virtual prescreening of 

antimalarial activity.  The linear interaction energy approximation is a way of combining 

molecular mechanics calculations with experimental data to build a model scoring function 

for the evaluation of ligand-protein binding free energies. A linear interaction energy method 

for rational design of artemisinin analogues for inhibition of heme polymerization has not yet 

been determined.  
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   The availability of X-ray structure of heme facilitates understanding the structure-

activity relationships (SAR) for heme polymerization and enables molecular modeling 

techniques to be applied for designing novel and more potent inhibitors. In this study, we have 

applied a structure-based linear interaction energy method implementing a surface generalized 

Born (SGB-LIE) (Zhou et. al., 2001) continuum model for solvation to build a binding 

affinity model for estimating the free energy of binding for a diverse set of heme inhibitors. 

The LIE method(Aqvist et. al., 1994; Aqvist et. al., 2001) has been applied to a number of 

protein-ligand systems with promising results (Tominaga et. al., 2004; Leiros et. al., 2004; 

Ostrovsky et. al., 2003) producing small errors on the order of 1 kcal/mol for free energy 

prediction (van Lipzig et. al., 2003). The magnitude of free energy changes upon binding of 

inhibitors to heme directly correlates with the experimental potency of these inhibitors. 

Hence, fast and accurate estimation of binding free energies provides a means to screen the 

compound libraries for lead optimization and rational design. This could bring about the 

development of new and more effective drugs. 

 

3.2.  Materials and methods 

3.2.1 LIE Methodology 

 The LIE method employs experimental data on binding free energy values for a set of 

ligands (referred as training set) to estimate the binding affinities for a set of novel 

compounds. The method is based on the linear response approximation (LRA), which dictates 

that binding free energy of a protein-ligand system is a function of polar and nonpolar energy 

components that scale linearly with the electrostatic and van der Waals interactions between a 

ligand and its environment. The free energy of binding for the complex is derived from two 

states: (1) free ligand in the solvent and (2) ligand bound to the solvated protein. The 

conformational changes and entropic effects pertaining to unbound receptor are taken into 

account implicitly and only interactions between the ligand and either the protein or solvent 

are computed during molecular mechanics calculations. Among the various formulations of 

the LIE methodology developed in the past, the SGB-LIE method implementing a surface 

generalized Born (SGB) model for the solvation has been shown to be 1 order of magnitude 

faster than the methods based on explicit solvent (Zhou et. al., 2001) with the same order of 

accuracy. The SGB-LIE method also offers better accuracy in treating the long-range 
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electrostatic interactions. The SBG-LIE method implements the original formulation proposed 

by Jorgensen (Carlson et. al., 1995) for the case of continuum solvent replacing the solvent 

accessible surface area term by a cavity term as follows 

    

   (1) 

 

where bracketed terms represent the ensemble average of the energy terms, such as van der 

Waals (Uvdw), electrostatic (Uele), or cavity (Ucav) energy. The energy terms involved can 

be computed using energy minimization, molecular dynamics, or Monte Carlo calculations. 

All the terms are evaluated for interaction between ligand, both in the free (f) and bound (b) 

state and its environment. The α, β and γ are LIE fitting parameters. The transferability and 

dependence of LIE parameters on force fields and protein-ligand system are still the subject of 

debate. In the Jorgensen formulation, LIE parameters are free coefficients that need to be 

determined by fitting the experimental data on the training set compounds. In the SGB model 

of solvation, there is no explicit van der Waals or electrostatic interaction between the solute 

and solvent. The contribution for net free energy of solvation comes from two energy terms, 

namely, reaction field energy (Urxn) and cavity energy (Ucav): 

 
The cavity and reaction field energy terms implicitly take into account the van der Waals and 

the electrostatic interactions, respectively, between the ligand and solvent. The application of 

the SGB-LIE method for a given protein-ligand system essentially involves computing four 

energy components, i.e., the van der Waals and Coulombic energy between the ligand and 

protein and the reaction field and cavity energy between the ligand and continuum solvent. 

The total electrostatic energy in the SGB-LIE method is the sum of Coulombic and reaction 

field energy terms.  

 

3.2.2 Computational details 

 All the computations and molecular modeling were carried out using Schrodinger 

package from Schrodinger Inc (Schrodinger Inc.: Portland, 2004). All the calculations for the 

SGB-LIE method wee performed in the Liaison package. The Liaison module performs LIE 
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calculations in the OPLS force field with a residue-based cut off of 15 Å. The OPLS force 

field was also used for charge assignment and all energy calculations.  

 

3.2.3. Receptor  preparation 

 The X-ray structure of heme-pdb was taken from the Protein Data Bank (PDB ID: 

1CTJ) and has been used as initial structure in the preparation of heme receptor site. Heme is 

a planar molecule with a strong positive charge on its central iron atom, which lies slightly 

above the porphyrin plane. Charge on the iron was assigned as +2 but the structure was kept 

the same. Hydrogens were added to the model automatically via the Maestro interface leaving 

no lone pair and using an explicit all-atom model. The multi step Schrodinger’s protein 

preparation tool (PPrep) has been used for final preparation of receptor model. The complex 

structure was energy minimized using OPLS_2005 force field and the conjugate gradient 

algorithm, keeping all atoms except hydrogen fixed. The minimization was stopped either 

after 1000 steps or after the energy gradient converged below 0.01 KJ/mol. Complete 

geometry optimization was carried out using LACVP** (Hay et. al.,1985) for the iron atoms, 

followed by single-point calculations using LACVP** for the iron atom. An unrestricted 

density functional theory (DFT) was employed to model effectively the open shell orbitals on 

the two iron atoms. The Jaguar suite of ab initio quantum chemical program (Jaguar, version 

4.1: Schrodinger, Inc.: Portland, OR, 2000.) was used to carry out all quantum mechanics 

(QM) calculations.   

 

3.2.4. Preparation of ligands 

 An initial dataset of 158 artemisinin analogues were collected from published data 

(Woolfrey et. al., 1998; Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 

1995; Avery et. al., 1996) in which several different ring systems were represented. All of the 

analogues were either peroxides or trioxanes, which should act via similar mechanisms of 

action and were categorized into 10 classes (Table 3.1). Each of these compounds had 

associated in vitro bioactivity values (IC50 values reported in ng/ml) against the drug resistant 

malaria strain P. falciparum (W-2 clone). The log value of the relative activity (RA) of these 

compounds was used for analysis and was defined as: 

Log(RA) = log[(artemisinin IC50/analogue IC50)(analogue MW/artemisinin MW)]. 
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Table 3.1. Artemisinin analogues with antimalarial activities against the drug-resistant 
malarial strain P. falciparum (W-2 clone) used in the work.  

O

O R1

R
O

R2

O

O

 
          

Compounds R R1 R2 log (RA) IC50 (ng/ml) 
Training set      
1 CH3 CH3 H 1.00 0.040 
2 C4H8Ph H H 0.45 0.194 
3 CH3 H 2-Z-Butenyl -1.10 5.750 
4 CH3 H H 0.79 0.065 
5 CH3 H 2-E-Butenyl -0.60 1.818 
6 CH3 Allyl H -0.10 0.550 
7 CH3 C4H9 H 0.17 0.311 
8 C4H8Ph C4H9 H -0.32 1.310 
9 CH2CH2CO2Et C4H9 H 1.36 0.025 
10 C4H9 C4H9 H -0.48 1.568 
11 CH3 C2H5 H 1.40 0.017 
12 CH3 C6H13 H 0.86 0.069 
13 CH3 i-C6H13 H -0.04 0.547 
14 CH3 i-C5H11 H 0.07 0.408 
15 C3H6(p-Cl-Ph) H H 0.10 0.457 
16 C4H9 H H -0.74 2.416 
17 CH2CH2CO2Et H H 0.37 0.214 
18 CH3 C3H6(p-Cl-Ph) H 1.37 0.025 
Test set      
19 CH3 Br CH2Br -1.64 27.244 
20 CH3 =CH2 - -0.89 3.083 
21 CH3 CH2CH3 - -0.36 1.053 
22 CH3 -CH2CH2- - -0.94 3.632 
23 CH3 C5H11 H 1.02 0.046 
24 CH3 C4H8Ph H 0.63 0.133 
25 CH3 C2H4Ph H 0.12 0.400 
26 CH3 C3H7 H 1.13 0.033 
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Table 3.1(continued). 10-Substituted artemisinin derivatives with antimalarial activities 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O
O R1

O
O

R

R2

R3  
Compounds R R1 R2 R3 log RA IC50 (ng/ml) 
Training set       
27 CH3 CH3 H H 0.75 0.068 
28 CH3 CH3 H OH 0.55 0.114 
29 CH3 CH3 H OEt 0.34 0.202 
30 CH3 CH3 H OH 0.96 0.051 
31 CH3 H Br H 0.28 0.248 
32 CH3 CH3 Br NH-2-(1,3-thiazole) 0.66 0.134 
33 CH3 CH3 Br p-Cl-aniline 0.79 0.105 
34 CH3 CH3 Br aniline 0.18 0.397 
35 CH3 Br CH3 NH-2-pyridine -0.09 0.768 
36 CH3 CH3 Br NH-2-pyridine -0.77 3.667 
37 CH3 CH3 H α -OEt 0.32 0.212 
38 CH3 C4H9 H H 1.32 0.021 
39 CH3 C2H5 H H 0.67 0.086 
40 CH3 C3H7 H OEt -0.04 0.529 
41 CH3 H H OEt 0.43 0.157 
42 CH3 CH3 H C3H6OH 0.78 0.077 
43 CH3 CH3 H C4H9 0.06 0.400 
44 CH3 CH3 H OCH2CO2Et 0.52 0.158 
45 CH3 CH3 H OC2H4CO2Me 0.10 0.433 
46 CH3 CH3 H OC3H6CO2Me -0.03 0.605 
47 CH3 CH3 H OCH2(4-PhCO2Me) -0.07 0.720 
48 CH3 CH3 H (R)-OCH2CH(CH3)CO2Me 1.79 0.009 
49 CH3 CH3 H (S)-OCH2CH(CH3)CO2Me 2.25 0.003 
50 CH3 CH3 H (R)-OCH(CH3)CH2CO2Me 0.87 0.073 
51 CH3 CH3 H (S)-OCH(CH3)CH2CO2Me 1.70 0.011 
52 CH2CH2CO2Et H H H 0.70 0.096 
53 C4H9 H H H 0.75 0.075 
Test Set       
54 C4H8Ph H H H 0.58 0.139 
55 CH3 -OCH2- - OOH -0.62 1.857 
56 CH3 -CH2O- - OOH -0.57 1.655 
57 CH3 =CH2 - OOH -0.99 4.131 
58 CH3 C5H11 H H 0.16 0.318 
59 CH3 C3H6Ph H H 1.40 0.021 
60 CH3 C3H7 H H 0.74 0.076 
61 CH3 CH3 H OOt-C4H9 0.92 0.061 
62 - CH3 OH α-OH -0.89 3.303 
63 - CH3 H CH2CHF2 0.11 0.366 
64 - CH3 OH OCH2CF3 0.33 0.243 
65 - CH3 OH OEt -0.44 1.281 
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Table 3.1(continued). 11-Aza-artemisinin derivatives with antimalarial activities against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

O

O
O

N

O
R

 
 

Compounds R log RA IC50 (ng/ml) 
Training set    
66 C3H6Ph 0.02 0.522 
67 C2H4Ph 0.16 0.364 
68 C5H11 -0.20 0.758 
69 i-C5H11 -0.04 0.524 
70 CH2(p-Cl-Ph) -0.16 0.802 
Test set    
71 CH2Ph 0.34 0.231 
72 CH2-(2-C5H4N) 1.46 0.018 
73 Acetaldehyde 1.47 0.015 
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Table 3.1(continued). Artemisinin derivatives lacking the D-ring with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O
R1 R3

O
O

R4

R2
   

O

R2
R4

R3 R5

O
O

R1OMe  
   (74-88)     (89-93) 
 
 
Compounds R1 R2 R3 R4 log (RA) IC50 (ng/ml) 
Training set       
74 -O2CCH2Ph H H CH3 -0.51 1.648 
75 H H H CH3 -0.32 0.628 
76 H OCH3 H H -0.31 0.660 
77 OCH2Ph H H H -0.09 0.530 
78 OCH3 H C2H4O2CNEt H -0.65 0.118 
79 H OCH3 C2H4OCH3 H -0.39 0.996 
80 H OCH3 C2H4OCH2Ph H 0.75 0.091 
81 H OCH3 C2H4O-allyl H 0.40 0.184 
82 H OCH3 C2H4O2Ph H -0.59 2.086 
83 H OCH3 C2H4O2C(4-PhCO2Me) H 0.27 0.343 
84 H OCH3 C2H4O2C(4-PhCO2H) H -0.81 3.856 
85 H OCH3 C2H4O2C(4-PhCONEt2) H 0.230 0.398 
86 H OCH3 C2H4O2C(4-

PhCO2C2H4NMe2) 
H -0.600 2.790 

Test Set       
87 H OCH3 C2H4O2CCH2NCO2-(t-

C4H9) 
H -0.04 0.670 

88 H OCH3 C2H4OCH2(4-N-Me-
pyridine) 

H -0.90 4.439 

 
Compounds R1 R2 R3 R4 R5 Log(RA)  IC50 (ng/ml) 
Test set        
89 C2H4OH H CH3 H H -1.80 26.849 
90 C2H4OH CH3 H H H 0.23 0.251 
91 C2H4OH CH3 CH3 H H -1.80 28.102 
92 C2H4OCH2Ph CH3 CH3 H H -1.80 36.157 
93 C2H4OCH2(4-py) - - - - 0.14 0.373 
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Table 3.1(continued). Miscellaneous Artemisinin derivatives with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

Compounds structure Log(RA) IC50 (ng/ml) 
Training set    

94 O

O

O
O

 

0.78 0.063 

95 
O O

O  

-4.00 6.339 

96 O

O

O
O

O  

0.23 0.259 

97 O

O

O
O

 

-1.20 6.340 

98 
O

OO
H

O  

-3.30 684.899 

Test set    

99 
O

O
O

H

O  

-0.96 3.622 

100 O

O

O
O

H
 

-0.79 2.344 

101 
O

O

O
O

H
 

-0.64 1.573 

102 O

O

O

O

O

O
O

 

-2.09 56.889 

103 O

O

O

O
O

O

 

-2.49 123.612 

104 
O

O
O

O

O

CH3
CH3

 

-0.80 2.309 
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Table 3.1(continued). 9-Substituted Artemisinin derivatives with antimalarial activity against 
the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

Compounds Structure Log (RA) IC50 (ng/ml) 
Training set    

105 O

O

O
OCH3

CH3

OOH  

 
-0.739 

 
2.320 

106 O

O

O
OCH3

CH3

O

H

CH3

H

 

 
-0.197 

 
0.657 

107 O

O

O
OCH3

CH3

O

H

O

 

 
-2.298 

 
79.429 

108 O

O

O
OCH3

CH3

O

Br

H
Br
H

 

 
-1.487 

 
19.143 

Test set    

109 O

O

O
OCH3

CH3

O

O
H

H
OH  

 
-0.460 

 
1.286 

110 O

O

O
OCH3

CH3

O
OH

O
H
H

 

 
-0.409 

 
1.143 

111 O

O

O
OCH3

CH3

O
H
H

OH  

 
-0.361 

 
0.971 
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Table 3.1(continued). Dihydroartemisinin derivatives with antimalarial activity against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

O

O

O
O

H
CH3

CH3

CH3

OR

H

H

H

H

 
Compounds R Log (RA) IC50 (ng/ml) 
Training set    
112 OR = H 0.487 0.123 

113 (S)-CH2CH(CH3)COOCH3 2.104 0.004 
114 (S)-CH(CH3)CH2COOCH3 0.599 0.137 
115 (R)-CH(CH3)CH2COOCH3 1.429 0.020 
116 1-adamantylmethyl 0.007 0.603 
117 (S)-CH2CH(CH3)COOH -0.658 2.380 
118 (S)-CH(CH3)CH2COOH -0.608 2.123 
119 (R)-CH(CH3)CH2COOH -0.383 1.263 
Test set    
120 OR= =O -0.269 0.743 
121 CH2PhCOOH 0.176 0.394 
122 (R)-CH2CH(CH3)COOCH3 1.524 0.016 
123 (R)-CH2CH(CH3)COOH -0.463 1.520 
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Table 3.1(continued). Tricyclic 1.2.4 – Trioxanes derivatives with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

Compounds structure log(RA) IC50 (ng/ml) 
Training set    
124 

O

O

O
O H

H

H

O

O

OH

O  

-0.475 
 

1.886 

125 
O

O

O
O H

H

H

O

O

N
CH2

CH2

CH3

CH3

 

0.995 
 

0.057 

126 
O

O

O
O H

H

H

OS
O

O
O OCH3

 

-0.413 
 

1.771 

127 
O

O

O
O H

H

H

OS

O

O

N
C H 3CH 3  

0.632 
 

0.171 

128 
O

O

O
O H

H

H

O
CH 2

 

0.968 
 

0.057 

129 
O

O

O
O H

H

H

O
CH 2

C H
C H 2  

0.905 
 

0.057 

130 

O N

O

O

O
O H

H

H

O
CH 2

C H 3CH 3

 

0.991 
 

0.057 

Test set    
131 

O

O

O
O H

H

H

O

OO

O

 

0.660 
 

0.143 

132 
O

O

O
O H

H

H

O

O

N
CH 3

CH 3  

0.787 
 

0.086 

133 

CH2

O

O

O
O H

H

H

OP
O

OC
H2

CH3

CH3

S  

0.717 
 

0.057 

134 
O

O

O
O H

H

H

OS
O

O

CH3  

0.434 
 

0.229 

135 
O

O

O
O H

H

H

O
CH3  

0.129 
 

0.314 
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Table 3.1(continued). N-Alkyl-11-aza-9-desmethylartemisinins derivatives with antimalarial 
activity against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

O

N
H

O

H

O
O

R

 
 

Compounds R Log(RA) IC50 (ng/ml) 
Training set    
136 - 0.328 0.400 
137 C5H11(n) 0.041 0.435 
138 C5H11 (i) 0.173 0.321 
139 (CH3)2NCH2CH2 -0.432 1.300 
140 HO2C(CH2)5 -0.921 4.492 
Test set    
141 C6H5CH2 0.276 0.268 
142 p-ClC6H4CH2 0.045 0.500 
143 C6H5(CH2)2 0.294 0.267 
144 C6H5(CH2)3 0.312 0.266 

 
Table 3.1(continued). 3C- substituted artemisinin derivatives with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  

O

O RH

O

H

O
O

R'

 
 

Compounds R1 R LogRA IC50 (ng/ml) 
Training set     
145 CH3 H 0.049 0.357 
146 CH3CH2 H 0.828 0.062 
147 CH3 (CH2)2 H -0.745 2.427 
148 CH3CH H -0.347 0.977 
149 EtO2CCH2 H 0.365 0.216 
150 C6H5CH2 H -2.000 50.780 
151 p-ClC6H4(CH2)2 H 0.104 0.453 
152 C6H5(CH2)3 H 0.449 0.195 
153 CH3 CH3 (CH2)3 0.410 0.187 
Test set     
154 CH3 (CH2)2 CH3 (CH2)3 -0.481 1.573 
155 C6H5CH2 CH3 (CH2)3 -2.000 58.723 
156 p-ClC6H4(CH2)2 CH3 (CH2)3 -0.276 1.239 
157 C6H5(CH2)3 CH3 (CH2)3 -0.319 1.306 
158 EtO2CCH2 CH3 (CH2)3 1.359 0.025 
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Molecular models of the artemisinin and its analogues (Table 3.1) were built using the Builder 

feature in Maestro (Schrodinger package) and energy minimized in a vacuum using Impact.  

Each structure was assigned an appropriate bond order using ligprep script shipped by 

Schrödinger and optimized initially by means of the OPLS 2005 force field using default 

setting. Complete geometrical optimization of these structures was carried out with the HF/3-

21G method (in this work) using the Jaguar (Schrodinger Inc.). In order to check the 

reliability of the geometry obtained, we compared the structural parameters of the artemisinin 

1,2,4-trioxane ring with theoretical (Pinheiro et. al., 2001) and experimental (Leban et. al., 

1988; Lisgarten et. al., 1998) values from the literature. All calculations reproduced most of 

the structural parameters of the artemisinin 1,2,4-trioxane ring seen in X-ray structures (Table 

3.2). This applies especially to the bond length of the endoperoxide bridge which seems to be 

responsible for the antimalarial activity (Bernardinelli et. al., 1994; Posner et. al., 1995; 

Posner et. al., 1995; Haynes et. al., 1996; Rafiee et. al., 2005 ).    

Table 3.2. Experimental and theoretical values of the 1,2,4-trioxane ring parameters in 
artemisinin (bond lengths in Å; bond angles and torsional angles in degrees). The atom 
number are with respect to Figure 3.1.  
 Theoretical Experimentald Experimentale 
Parametersa 3-21Gb 3-21G** c 6-31Gc   
O1-O2 1.463 1.462 1.447 1.475(4) 1.469(2) 
O2-C3 1.441 1.440 1.435 1.417(4) 1.416(3) 
C3-O4 1.436 1.436 1.435 1.448(4) 1.445(2) 
O4-C5 1.407 1.408 1.403 1.388(4) 1.379(2) 
C5-C6 1.529 1.530 1.533 1.528(5) 1.523(2) 
C6-O1 1.478 1.477 1.469 1.450(4) 1.461(2) 
O1-O2-C3 106.9 107.070 108.800 107.600(2) 108.100(1) 
O2-C3-O4 107.0 107.310 106.760 107.200(2) 106.600(2) 
C3-O4-C5 115.6 115.700 117.300 113.500(3) 114.200(2) 
O4-C5-C6 112.0 112.030 112.280 114.700(2) 114.500(2) 
C5-C6-O1 111.1 111.589 110.910 111.100(2) 110.700(2) 
C6-O1-O2 111.2 111.286 113.240 111.500(2) 111.200(2) 
O1-O2-C3-O4 -74.9 -74.680 -71.840 -75.500(3) -75.500(2) 
O2-C3-O4-C5 31.8 32.150 33.390 36.300(4) 36.000(2) 
C3-O4-C5-C6 29.4 28.400 25.320 24.800(4) 25.300(2) 
O4-C5-C6-O1 -51.8 -50.769 -49.410 -50.800(4) -51.300(2) 
C5-C6-O1-O2 10.1 9.792 12.510 12.300(3) 12.700(2) 
C6-O1-O2-C3 50.8 50.522 46.700 47.700 47.800(2) 
a Atoms are numbered according to Figure 3.1; b This work; cValues from Ref. (Pinheiro et. 
al., 2001); dValues from Ref. (Leban et. al., 1988) (experimental estimated standard 
deviations in brackets); eValues from Ref. (Lisgarten et. al., 1998) (experimental estimated 
standard deviations in brackets). 
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Figure 3.1. Sterochemistry and atomic numbering shceme of artemisinin. 

3.2.4. Docking of the ligands 

 All the ligands were docked to the heme receptor using Glide. After ensuring that 

protein and ligands are in correct form for docking, the receptor-grid files were generated 

using grid-receptor generation program, using van der Waals scaling of the receptor at 0.4. 

The default size was used for the bounding and enclosing boxes. The grid box was generated 

at the centroid of the heme receptor (Figure 3.2). The ligands were docked initially using the 

“standard precision” method and further refined using “xtra precision” Glide algorithm. For 

the ligand docking stage, van der Waals scaling of the ligand was set at 0.5. Of the 50,000 

poses that were sampled, 4,000 were taken through minimization (conjugate gradients 1,000) 

and the 30 structures having the lowest energy conformations were further evaluated for the 

favorable Glide docking score. A single best conformation for each ligand was considered for 

further analysis. 

 

Figure 3.2. The structure of the heme compound. 
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3.2.5. LIE calculations 

 The docked complex corresponding to each analogue was transported to the LIAISON 

package for subsequent SGB-LIE calculations. Two sampling techniques, molecular 

dynamics (MD) and hybrid Monte Carlo (HMC), have been used for LIE conformation space 

sampling in the present work. A conjugate gradient minimization was performed first, starting 

from the initial docked structures and then a 15 ps MD equilibration is followed with 

temperature smoothly increasing from 0 to 310 K by velocity scaling and resampling. Finally, 

a 25 ps MD simulation was run for the SGB-LIE data collection.  A residue-based cut off of 

12 Å was set for the non-bonding interactions. The non-bonded pair list was updated every 10 

fs. The time integration step of 1.0 fs and sampling of LIE energies in every 10 steps was 

used. Similarly, the average LIE energies for the ligand were obtained using the OPLS-2005 

force field. The average LIE energy terms were used for building binding affinity model and 

free energy estimation for artemisinin analogues. The α, β and γ LIE fitting parameters were 

determined basing on Gaussian elimination method using Matlab 6.5 and  by fitting the 

experimental data on the training set compounds. 

 

 In order to explore the reliability of the proposed model the cross validation method 

has been used. Prediction error sum of squares (PRESS) is a standard index to measure the 

accuracy of a modeling method based on the cross validation technique. The cross validation 

analysis performed by using the leave one out (LOO) method in which one compound 

removed from the data set and its activity predicted using the model derived from the rest of 

the data points. The cross-validated correlation coefficient (q2) that resulted in optimum 

number of components and lowest standard error of prediction were considered for further 

analysis and calculated using following equations: 

 
where ypred, yobserved and ymean are the predicted actual and mean values of the inhibitory 

activities of the artemisinin analogues and PRESS is the sum of the predictive sum of squares.  
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3.3 Results and Discussions 

 We applied the SGB-LIE method to a training set of 101 artemisinin analogues to 

build a binding affinity model that was then used to compute the absolute free energy of 

binding and relative activity (RA) for a test set of 57 analogues. The training set used for 

building the binding affinity model comprised ten subsets of artemisinin analogues (Table 

3.1). These compounds were taken from various sources; (Woolfrey et. al., 1998; Acton et. 

al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 1995; Avery et. al., 1996) among 

these are endoperoxide artemisinin analogues, deoxy-artemisinin analogues, 10-substituted 

artemisinin derivatives, 3-substituted artemisinin derivatives, 9-substituted artemisinin 

derivatives, 11-Aza-artemisinin derivatives, artemisinin derivatives without D-ring and 

miscellaneous artemisinin derivatives. The experimental relative activity (RA) values for all 

those compounds in the training set were calculated against the drug resistant malarial strain 

P. falciparum (W-2 clone). The IC50 value of these analogues was derived as mentioned in 

Table 3.1 and used for calculation of absolute ∆Gbinding energy. With the wide range of 

difference in IC50 values and the large diversity in the structures, the combined set of 101 

ligands is ideal to be considered as a training set as the set does not suffer from bias due to the 

similarity of the structures. Also, the training set of 101 analogues has enough data points not 

to suffer from over parameterization by the LIE model. Training set compounds were docked 

into the heme receptor site and the SGB-LIE calculations were performed using the LIAISON 

module. The simulations were performed both for the ligand-free and ligand-bound state. The 

various interaction energy terms described in the methods were collected and are presented in 

Table 3.3. Many forces are involved in the intermolecular association: hydrophobic, 

dispersion or van der Waals, hydrogen bonding and electrostatic interaction. The largest 

contribution for the binding energy comes from the van der Waals (VDW) interactions, but 

the specificity of the binding appears to be controlled by hydrogen bonding and electrostatic 

interactions (Fersht, 1984; Fersht et. al., 1985; Street et. al., 1986). This is obvious as the 

artemisinin analogues used in the study are mostly lipophilic molecules that interact favorably 

with a hydrophobic binding site.  

 

 The energy values in Table 3.3 were used to fit equation 1 using the Gaussian 

elimination method. The values obtained for the three fitting parameters, α, β and γ are -
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0.0271, -0.0902 and -1.44 respectively. The large value of the cavity energy term signifies the 

fact that binding is largely driven by the ligand’s ability to bury itself in the binding cavity, 

which is understandable given that most of the ligands are highly hydrophobic in nature. Even 

though the R value is low, VDW interactions contribute significantly toward the free energy 

of binding due to the large magnitude of the VDW interaction term. In Table 3.3, the 

experimental free energy values obtained from the RTIC50 and the predicted free energy 

values estimated using fitting parameters have been presented. Figure 3.3 graphically shows 

the quality of fit between the SGB-LIE binding energy predictions vs the experimental values.  

 

Figure 3.3. LIE binding energies for the Training set from MD sampling. The overall RMS 
error is 0.328 kcal/mol for 101 ligands studied here. If LIE results agree perfectly with the 
experimental values, the data points (represented by diamonds) should be on the diagonal line. 
 

If a predicted binding energy agrees exactly with the experimental value, a data point 

(represented by diamonds) exactly in the diagonal line would be shown. To help visualize 

these data points, a lower and upper bound line are also plotted in the figure, with 1.0 

kcal/mol below or above the experimental values. From the figures most of the data points 

(100 out of 101) are within or very close to these two bound lines, which means most of them 

have either less than or about 1.0 kcal/mol error. The only data point that shows large 

deviation from the experimental value is ligand 98 which has 2.187 kcal/mol error. The 

overall root mean square error (RMSE) between the experimental values and the values 

obtained by the fit was 0.328 kcal/mol, which is an indicator of the robustness of the fit. The 
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correlation coefficient r2 is 0.845 indicating a good correlation with experiment. The 

statistical significance of the SGB-LIE model is evaluated by the correlation coefficient (r2), 

standard error (s), F-test value, significance level of the model (P), leave-one-out cross-

validation coefficient (q2) and predictive error sum of squares (PRESS).  

 
Table 3.3. Average electrostatic (ele), van der Waals (vdw) and cavity (cav) energy terms  as 
well as binding affinity model calculations for the Training set inhibitors using SGB-LIE 
method.  
  
Ligand <Uele>1 

kcal/mol 
<Uvdw>1 

kcal/mol 
<Ucav>1 

kcal/mol 
∆Gbind,expt

2
  

kcal/mol 
∆Gbind,LIE

3 

kcal/mol 
4RA expt 4RA pred 

1 -2.516 -17.145 2.618 -1.906 -2.155 10.000 15.225 
2 3.418 -16.108 1.619 -0.970 -0.971 2.818 2.821 
3 -3.078 -18.372 1.323 1.036 -0.165 0.079 0.603 
4 -3.853 -14.546 2.051 -1.620 -1.537 6.166 5.360 
5 -1.981 -18.983 1.162 0.354 0.092 0.251 0.391 
6 -1.958 -19.826 1.308 -0.354 -0.043 0.794 0.470 
7 -2.338 -18.840 1.213 -0.692 0.016 1.479 0.447 
8 -1.081 -22.970 1.939 0.160 -0.691 0.479 2.012 
9 -2.327 -14.082 2.291 -2.175 -1.966 22.909 16.074 

10 -5.208 -20.827 1.119 0.266 0.408 0.331 0.261 
11 -0.814 -9.738 2.163 -2.423 -2.214 25.119 17.656 
12 -2.665 -18.442 2.426 -1.584 -1.758 7.244 9.713 
13 -0.697 -17.834 1.180 -0.357 -0.072 0.912 0.564 
14 -4.569 -12.307 0.958 -0.531 -0.146 1.175 0.613 
15 -1.426 -22.362 1.882 -0.463 -0.654 1.259 1.737 
16 -2.462 -17.382 0.729 0.522 0.585 0.182 0.164 
17 -2.614 -19.968 2.039 -0.912 -1.064 2.344 3.028 
18 -2.953 -14.843 2.393 -2.175 -2.027 23.442 18.261 
27 -3.078 -18.792 2.191 -1.595 -1.377 5.623 3.885 
28 -3.834 -19.631 2.379 -1.288 -1.551 3.548 5.529 
29 -2.707 -18.188 1.967 -0.946 -1.119 2.188 2.926 
30 -2.849 -14.030 1.794 -1.766 -1.241 9.120 3.757 
31 -3.244 -14.159 1.724 -0.826 -1.118 1.905 3.117 
32 -3.131 -21.131 2.154 -1.191 -1.111 4.571 3.990 
33 -1.162 -18.594 2.534 -1.333 -1.940 6.166 17.204 
34 -2.097 -15.063 1.988 -0.546 -1.447 1.514 6.920 
35 -3.044 -15.843 1.056 -0.156 -0.009 0.813 0.634 
36 -2.157 -19.793 0.994 0.769 0.412 0.170 0.310 
37 -1.920 -17.825 1.928 -0.919 -1.116 2.089 2.915 
38 -0.706 -13.997 2.419 -2.286 -2.202 20.893 18.102 
39 -3.972 -18.487 2.191 -1.456 -1.380 4.677 4.111 

The data are collected from a 15 ps MD simulation after a 15 ps MD equilibration. 1Uele, 
Uvdw and Ucav energy terms represents the ensemble average of the energy terms calculated 
as the difference between bound and free state of ligands and its environment. 2∆Gbind,expt 
refers to free energy of binding with heme and is computed using the relationship: ∆Gbinding ≈ 
RT ln(IC50,expt), where 298 K is used in the work for temperature T. 3∆Gbind,LIE  refer to the 
absolute free energy values obtained using SGB-LIE method. 4RAexpt and RApred refers to the 
experimental and predicted relative activity and is calculated as RA = IC50 of artemisinin/IC50 
of the analogue) x (MW of the analogue/MW of the artemisinin).  



 79 

Table 3.3 (Continued). Average electrostatic (ele), van der Waals (vdw) and cavity (cav) 
energy terms  as well as binding affinity model calculations for the Training set inhibitors 
using SGB-LIE method.  
 
Ligand <Uele>1 

kcal/mol 
<Uvdw>1 

kcal/mol 
<Ucav>1 

kcal/mol 
∆Gbind,expt

2
  

kcal/mol 
∆Gbind,LIE

3 

kcal/mol 
4RA expt 4RA pred 

40 -3.144 -16.665 1.376 -0.377 -0.393 0.912 0.937 
41 -1.522 -16.466 1.654 -1.096 -0.855 2.692 1.791 
42 -1.155 -15.515 2.148 -1.520 -1.662 6.026 7.657 
43 -2.053 -18.557 0.903 -0.542 0.430 1.148 0.222 
44 -2.414 -17.032 2.148 -1.091 -1.491 3.311 6.512 
45 -1.365 -19.248 1.247 -0.496 -0.023 1.259 0.566 
46 -3.597 -18.110 0.966 -0.298 0.340 0.933 0.318 
47 -1.575 -23.515 1.558 -0.195 -0.080 0.851 0.702 
48 -1.994 -11.342 2.789 -2.822 -2.939 61.660 75.041 
49 -1.754 -9.730 3.019 -3.449 -3.422 177.828 169.651 
50 -2.485 -18.383 2.019 -1.546 -1.182 7.413 4.007 
51 -2.661 -14.790 2.954 -2.678 -2.848 50.119 66.731 
52 -2.601 -16.296 2.197 -1.386 -1.623 5.012 7.476 
53 -2.497 -17.867 2.303 -1.536 -1.637 5.623 6.662 
66 -0.334 -21.951 1.454 -0.385 -0.105 1.047 0.652 
67 -6.696 -19.333 1.102 -0.598 0.338 1.445 0.297 
68 -2.908 -18.273 1.455 -0.164 -0.368 0.631 0.890 
69 -1.570 -16.242 1.024 -0.383 0.033 0.912 0.452 
70 -1.949 -13.471 1.085 -0.131 -0.294 0.692 0.912 
74 -0.811 -14.935 0.948 0.296 0.004 0.309 0.506 
75 -2.003 -15.996 0.746 -0.275 0.423 0.479 0.147 
76 -3.262 -13.216 0.874 -0.246 0.021 0.490 0.312 
77 -0.448 -18.855 1.058 -0.375 0.190 0.813 0.313 
78 -3.355 -15.598 1.739 -1.266 -1.006 4.467 2.878 
79 -1.541 -13.995 0.408 -0.002 0.716 0.407 0.121 
80 -0.327 -15.482 1.739 -1.417 -1.099 5.623 3.283 
81 -2.100 -16.519 1.843 -1.002 -1.107 2.512 2.998 
82 -3.419 -15.003 0.852 0.435 0.219 0.257 0.370 
83 -2.704 -21.131 1.634 -0.634 -0.373 1.862 1.199 
84 -1.926 -12.919 0.496 0.799 0.503 0.155 0.255 
85 -2.775 -11.353 0.835 -0.545 -0.103 1.698 0.805 
86 -2.526 -11.029 0.090 0.607 0.934 0.251 0.145 
94 -3.020 -16.659 1.824 -1.641 -1.042 6.026 2.192 
95 -0.808 -13.499 0.387 1.093 0.682 0.054 0.108 
96 -2.531 -15.943 1.721 -0.800 -0.972 1.698 2.268 
97 -1.705 -16.422 0.406 1.094 0.943 0.063 0.081 
98 -3.483 -21.475 0.244 3.866 1.680 0.001 0.020 

105 -8.768 -13.714 0.696 0.498 0.472 0.182 0.190 
106 -5.534 -16.037 1.213 -0.249 -0.149 0.635 0.537 
107 -6.589 -17.617 0.229 2.590 1.438 0.005 0.035 
108 -7.804 -15.997 0.352 1.748 1.148 0.033 0.090 
112 -3.988 -13.850 1.473 -1.242 -0.764 3.071 1.370 
113 -1.586 -11.374 3.017 -3.229 -3.276 127.092 137.458 
114 -1.020 -20.888 2.248 -1.176 -1.325 3.972 5.106 
115 -2.372 -21.331 2.839 -2.308 -2.100 26.850 18.879 
116 -3.801 -21.520 1.347 -0.300 0.104 1.016 0.514 
117 -2.574 -15.816 0.757 0.513 0.407 0.220 0.263 
118 -2.678 -16.410 0.819 0.446 0.373 0.247 0.279 
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Table 3.3 (Continued). Average electrostatic (ele), van der Waals (vdw) and cavity (cav) 
energy terms as well as binding affinity model calculations for the Training set inhibitors 
using SGB-LIE method.  
 
Ligand <Uele>1 

kcal/mol 
<Uvdw>1 

kcal/mol 
<Ucav>1 

kcal/mol 
∆Gbind,expt

2
  

kcal/mol 
∆Gbind,LIE

3 

kcal/mol 
4RA expt 4RA pred 

119 -2.424 -15.593 1.151 0.138 -0.185 0.414 0.716 
124 -2.894 -20.405 0.787 0.376 0.786 0.335 0.168 
125 -2.022 -17.400 2.432 -1.695 -1.878 9.879 13.450 
126 -1.210 -21.164 0.849 0.339 0.719 0.386 0.203 
127 -1.761 -16.138 1.842 -1.044 -1.149 4.286 5.114 
128 -2.492 -18.765 2.484 -1.695 -1.817 9.284 11.402 
129 -1.684 -17.108 2.319 -1.695 -1.751 8.043 8.833 
130 -3.207 -14.210 2.117 -1.695 -1.680 9.805 9.556 
136 -0.640 -19.898 1.455 -0.543 -0.283 1.000 0.645 
137 -3.500 -18.708 1.107 -0.493 0.188 1.100 0.348 
138 -3.401 -13.899 1.004 -0.673 -0.100 1.490 0.566 
139 -2.207 -16.793 0.772 0.155 0.463 0.370 0.220 
140 -1.375 -19.543 0.788 0.890 0.665 0.120 0.175 
145 -2.199 -10.135 0.534 -0.610 0.205 1.120 0.283 
146 -3.199 -16.606 2.338 -1.643 -1.782 6.730 8.511 
147 -2.036 -12.098 0.337 0.525 0.661 0.180 0.143 
148 -2.081 -17.176 1.154 -0.014 -0.056 0.450 0.483 
149 -2.937 -20.664 2.147 -0.906 -1.148 2.320 3.490 
150 -1.725 -19.374 0.286 2.326 1.382 0.010 0.049 
151 -1.522 -20.360 1.647 -0.468 -0.494 1.270 1.326 
152 -1.084 -21.884 2.107 -0.968 -1.031 2.810 3.121 
153 -1.788 -21.281 2.014 -0.994 -0.932 2.570 2.314 
 

∆G = (-0.0271)<Uele> + (-0.0902)<Uvdw> + (-1.44)<Ucav> 

(n = 102, r2 = 0.845, S = 0.465, F = 234.1, P = 0.0001, q2 = 0.844, PRESS = 21.38) 

 

SGB-LIE model developed in this study is statistically (q2 = 0.844, r2 = 0.845, F = 234.1) best 

fitted and consequently used for prediction of antimalarial activities (pIC50) of training and 

test sets of molecules as reported in Table 33 & 3.4. The predicted activity calculated from 

free energy of binding is satisfactory with small deviation compared with experimental 

activity of training and test sets of molecules. The calculated free energy of binding (FEB) 

represents the experimental activity well.  
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Table 3.4. Average electrostatic (ele), van der Waals (vdw) and cavity (cav) energy terms as 
well as binding affinity model calculations for the Test set inhibitors using SGB-LIE method.  
 
Ligand <Uele>1 

kcal/mol 
<Uvdw>1 

kcal/mol 
<Ucav>1 

kcal/mol 
∆Gbind,expt

2
  

kcal/mol 
∆Gbind,LIE

3 

kcal/mol 
4RA expt 4RA pred 

19 -3.281 -21.784 0.487 1.957 1.353 0.023 0.064 
20 -2.613 -18.200 0.694 0.667 0.713 0.129 0.119 
21 -2.740 -16.044 1.053 0.030 0.006 0.437 0.455 
22 -3.833 -14.495 0.429 0.764 0.794 0.115 0.109 
23 -2.919 -18.198 2.060 -1.826 -1.246 10.471 3.929 
24 -3.139 -19.419 1.938 -1.195 -0.954 4.266 2.841 
25 -0.555 -21.367 1.692 -0.542 -0.494 1.318 1.215 
26 -2.136 -18.608 2.248 -2.027 -1.501 13.490 5.543 
54 -3.294 -19.805 2.180 -1.168 -1.264 3.796 4.456 
55 -1.837 -16.930 0.576 0.366 0.748 0.240 0.126 
56 -1.815 -11.207 0.534 0.298 0.291 0.269 0.272 
57 -2.520 -17.954 0.693 0.840 0.690 0.102 0.132 
58 -1.891 -16.900 1.168 -0.678 -0.106 1.445 0.549 
59 -2.806 -13.592 2.332 -2.287 -2.056 25.119 16.986 
60 -1.133 -20.846 2.348 -1.523 -1.470 5.495 5.025 
61 -2.241 -18.266 2.207 -1.659 -1.470 8.318 6.040 
62 -2.837 -14.729 0.481 0.708 0.713 0.129 0.128 
63 -3.090 -16.208 0.905 -0.596 0.243 1.288 0.313 
64 -1.302 -17.980 1.877 -0.838 -1.046 2.138 3.035 
65 -3.185 -16.301 0.936 0.147 0.209 0.363 0.327 
71 -1.949 -13.565 1.463 -0.868 -0.830 2.192 2.055 
72 -2.525 -9.035 1.969 -2.364 -1.952 28.840 14.354 
73 -2.217 -14.830 2.495 -2.493 -2.195 29.512 17.842 
87 -3.360 -21.074 1.579 -0.237 -0.282 0.912 0.983 
88 -3.718 -13.614 0.490 0.883 0.623 0.126 0.195 
89 -2.617 -21.764 0.342 1.948 1.542 0.016 0.032 
90 -3.202 -14.273 1.356 -0.820 -0.578 1.698 1.130 
91 -3.343 -20.539 0.350 1.975 1.439 0.016 0.039 
92 -3.115 -20.933 0.287 2.124 1.559 0.016 0.041 
93 -3.708 -18.669 1.060 -0.584 0.258 1.380 0.333 
99 -2.202 -20.718 0.973 0.762 0.527 0.110 0.163 

100 -1.739 -17.415 0.473 0.504 0.937 0.162 0.078 
101 -2.296 -15.944 0.688 0.268 0.510 0.229 0.152 
102 -3.180 -18.111 0.939 2.393 0.368 0.008 0.248 
103 -3.304 -21.937 0.263 2.852 1.690 0.003 0.023 
104 -2.504 -12.637 0.533 0.496 0.441 0.158 0.174 
109 -6.627 -15.768 0.884 0.149 0.330 0.346 0.255 
110 -7.339 -10.394 0.453 0.079 0.484 0.390 0.197 
111 -6.277 -15.199 0.811 -0.017 0.374 0.435 0.225 

 
The data are collected from a 15 ps MD simulation after a 15 ps MD equilibration. 1Uele, 
Uvdw and Ucav energy terms represents the ensemble average of the energy terms calculated 
as the difference between bound and free state of ligands and its environment. 2∆Gbind,expt 
refers to free energy of binding with heme and is computed using the relationship: ∆Gbinding ≈ 
RT ln(IC50,expt), where 298 K is used in the work for temperature T. 3∆Gbind,LIE  refer to the 
absolute free energy values obtained using SGB-LIE method. 4RAexpt and RApred refers to the 
experimental and predicted relative activity and is calculated as RA = IC50 of artemisinin/IC50 
of the analogue) x (MW of the analogue/MW of the artemisinin).  
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Table 3.4 (continued). Average electrostatic (ele), van der Waals (vdw) and cavity (cav) 
energy terms as well as binding affinity model calculations for the Test set inhibitors using 
SGB-LIE method.  
 
Ligand <Uele>1 

kcal/mol 
<Uvdw>1 

kcal/mol 
<Ucav>1 

kcal/mol 
∆Gbind,expt

2
  

kcal/mol 
∆Gbind,LIE

3 

kcal/mol 
4RA expt 4RA pred 

120 -1.345 -12.865 0.572 -0.176 0.373 0.538 0.213 
121 -1.874 -22.404 2.144 -0.551 -1.016 1.500 3.289 
122 -2.973 -20.845 2.894 -2.438 -2.207 33.445 22.608 
123 -2.698 -14.775 0.847 0.248 0.186 0.344 0.382 
131 -3.370 -20.572 2.342 -1.152 -1.426 4.567 7.244 
132 -3.772 -18.720 2.473 -1.455 -1.770 6.123 10.429 
133 -3.675 -23.555 2.664 -1.695 -1.612 10.823 9.404 
134 -2.567 -21.808 2.349 -0.874 -1.346 2.718 6.029 
135 -2.910 -13.930 1.174 -0.685 -0.355 1.345 0.770 
141 -3.131 -18.025 1.822 -0.780 -0.913 1.890 2.366 
142 -2.166 -19.803 1.773 -0.411 -0.708 1.110 1.833 
143 -1.677 -22.034 2.181 -0.782 -1.108 1.970 3.416 
144 -1.197 -18.325 1.843 -0.783 -0.969 2.050 2.802 
154 -1.597 -21.077 1.347 0.268 0.005 0.330 0.515 
155 -2.852 -21.381 0.704 2.412 1.626 0.010 0.038 
156 -1.402 -19.480 1.361 0.127 -0.165 0.530 0.867 
157 -1.654 -22.698 1.482 0.158 -0.043 0.480 0.674 
158 -2.392 -18.213 2.581 -2.174 -2.009 22.850 17.291 
 

Satisfied with the robustness of the binding affinity model developed using the training set, 

we applied the LIE model to the artemisinin analogues comprising the test set. The test set 

includes 57 compounds categorized into ten subgroups as mentioned above (Table 3.1). The 

analogues comprising the test set were obtained from different sources (Woolfrey et. al., 

1998; Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 1995; Avery et. 

al., 1996). Since the experimental values of IC50 for these inhibitors are already available, this 

set of molecules provides an excellent data set for testing the prediction power of the SGB-

LIE method for new ligands. Table 3.4 presents the free energy values estimated for the 57 

test compounds. The free energy values were estimated based on optimized SGB-LIE 

parameters α, β and γ from the training set. The quality of fit between the SGB-LIE binding 

energy predictions vs the experimental values is shown in Figure 3.4. We can see from the 

figure that most of the data points (56 out of 57) are within or very close to these two bound 

lines, which means most of them have either less than or about 1.0 kcal/mol error. The only 

data point that shows large deviation from the experimental value is ligand 102, which has 

2.025 kcal/mol error. The reason for the big error in 102 is not very clear: it could be due to 

the force field parameters used since this is the only case whose R group has been substituted 
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with oxygen atoms. The RMSE between the experimental and predicted free energy values 

was 0.348 kcal/mol which is comparable to the level of accuracy achieved by the most 

accurate method, such as free energy perturbation. The squared correlation coefficient 

between experimental and SGB-LIE estimates for the free energy of the test set compounds is 

also significant (r2 = 0.868). The predicted relative antimalarial activity of artemisinin 

derivatives estimated using LIE free energy is also very close to experimental relative activity 

for the test set (Table 3.4).  

 

Figure 3.4. LIE binding energies for the Test set from MD sampling. The overall RMS error 
is 0.348 kcal/mol for 57 ligands studied here. If LIE results agree perfectly with the 
experimental values, the data points (represented by diamonds) should be on the diagonal line. 
 

 To test how sensitive the LIE method is to the underlying sampling techniques or in 

other words, how good the sampling techniques is in surfing the local conformation space, we 

also implemented LIE with the HMC sampling (Duane et. al., 1987; Zhou et. al., 1997). A 

Metropolis accept/reject criterion is checked every 5 steps of HMC’s underlying MD 

simulation. The time step used in HMC’s underlying MD is 3.0 fs with RESPA algorithm 

(Tuckerman et. al., 1992; Zhou et. al., 1995). Using the same three-parameter model, the LIE 

predictions are shown in Figure 4.5. Again, as we can see from the figure, most of the data 

points (99 out of 101) are within or very close to these two bound lines, which mean most of 

them have either less than or about 1.0 kcal/mol error. The data point 98 again has a large 

error, 2.992 kcal/mol but the data points 105 and 113 also show some significant error of 
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1.603 kcal/mol and 1.315 kcal/mol respectively. The reason for the big errors in these data 

points is not very clear. The overall RMS error is 0.415 kcal/mol and the correlation 

coefficient is 0.758, which are comparable to those from MD sampling. The new parameters 

are found to be α = -0.0078, β = -0.0735 and γ = -1.20.  

 

∆G = (-0.0078)<Uele> + (-0.0735)<Uvdw> + (-1.20)<Ucav> 

(n = 103, r2 = 0.758, S = 0.588, F = 133.6, P = 0.0001, q2 = 0.757, PRESS = 36.51) 

 

SGB-LIE model developed in this study is statistically (q2 = 0.757, r2 = 0.758, F = 133.6) best 

fitted and consequently used for prediction of antimalarial activity (RA) of training and test 

sets of molecules. 

 

Figure 3.5. LIE binding energies for the Training set from HMC sampling. The overall RMS 
error is 0.415 kcal/mol for 101 ligands studied here. If LIE results agree perfectly with the 
experimental values, the data points (represented by diamonds) should be on the diagonal line. 
 

For the test set of 57 compounds the SGB-LIE model was able to predict their activity with an 

overall RMS error of 0.371. Figure 3.6 graphically shows the quality of fit between the SGB-

LIE binding energy predictions vs the experimental values of the test set. We can see from the 

figure that most of the data points (56 out of 57) are within or very close to the two bound 

lines. The only data point that shows large deviation from the experimental value is ligand 

103, which has 1.677 kcal/mol error. The squared correlation coefficient between 
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experimental and SGB-LIE estimates for the free energy of the test set compounds is also 

significant (r2 = 0.891). 

 

Figure 3.6. LIE binding energies for the Test set from HMC sampling. The overall RMS error 
is 0.371 kcal/mol for 57 ligands studied here. If LIE results agree perfectly with the 
experimental values, the data points (represented by diamonds) should be on the diagonal line.  
 

 Except for the analogue 98 mentioned above, the LIE calculations agree with 

experiments quite well. A close look at the components in the LIE binding energy for each 

ligand reveals some important points. For example, the experiments show that analogues of 

artemisinin substituted at C-3 were found to be less active than those at C-9. For increasing 

alkyl bulk at C-3 a drop in antimalarial efficacy was noted (145, relative activity of 1.12; 147, 

relative activity of 0.2). Upon butyl substitution at C-9, the corresponding dual substituted 

analogues (3-alkyl, 9-butyl) showed a doubling of activity (153, relative activity of 2.6; 154, 

relative activity of 0.33). For the C-3 arylalkyl-substituted analogues alone, an increase in 

activity was observed with increasing chain length between ring system and the aryl ring (two 

carbons for 150, relative activity of 0.01; three carbons for 151, relative activity of 1.3; four 

carbons for 152, relative activity of 2.8). Dual substituted arylalkyl analogues (3-arylalkyl, 9-

butyl) were generally less active than 3-substituted arylalkyl analogues alone (e.g., 151, 

relative activity of 1.3; 156, relative activity of 0.53). This has also been confirmed in our 

SGB-LIE predictions.  The reason behind this is the fact that the binding site or acceptor for 

artemisinin and analogues exists with limited dimensions at both C-9 and C-3, more tolerant 
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of aryl and ester substitution on n-alkyl chains than of branches alkanes of any length. This 

can be evident from the loss of cavity energy due to burial of solvent accessible surface area. 

Further, dual substitution at C-3 and C-9, explored for only 9-butyl analogues, was on the 

whole detrimental to activity with the exception to 158. The high potency of the dual 

substituted analogue 158, is due to the formation of hydrogen bond between heme and 158 as 

suggested by (Avery et. al., 1995) In another class of analogues (Tricyclic 1,2,4-Trioxanes) it 

has been seen that a benzyl ether substituent is more potent as antimalarial activity than a 

methyl ether substituent (135, relative activity of 1.34; 128, relative activity of 9.28). Our 

SGB-LIE model also revealed similar conclusion. Apparently, one important factor 

contributing to very high antimalarial potency is the presence of lipophilic and bulky 

substituent capable perhaps of sterically “protecting” the trioxane moiety from biological 

reducing agents, thereby making the trioxane a more selective oxidizing agent (Klayman et. 

al., 1985). The superior antimalarial activity of the substituted esters over the substituted acid 

groups once again suggested that lipophilicity may play an important role in determining the 

antimalarial activity. For example, the ester derivatives (113-115 & 122) possess superior in 

vitro activity to artemisinin in comparison to their corresponding acids (117-119 & 123). The 

probable reason behind this may be the fact that the ester derivatives being more lipophilic 

have strong van der Waals interaction (SGB-LIE model) than acid derivatives with heme 

receptor. Also it is evident from the result that increased polarity and increased water 

solubility is associated with decreased antimalarial activity (e.g. analogues 105-111) (Lin et. 

al., 1992) and resulted in low van der Waals interaction (SGB-LIE model).  

 

 Overall, we found that the binding affinities for this binding set of artemisinin 

derivatives are largely coming from the van der Waals interaction between ligands and heme 

receptor (i.e., needs a good geometric fit) and the net loss of the cavity energy which is the 

same as the burial of solvent accessible surface area. These findings agree well with the new 

five-term model proposed by Jorgensen et al (Jorgensen et. al., 2001) based on the explicit 

solvents. Since the parameters α, β and γ are crucial to the LIE method, a natural question 

arises: How close are these parameters from one fit to another fit? If the LIE model really has 

the ability to predict binding affinities, one might expect that the parameters should be 

comparable to different fittings for the same binding set. Of course, we should not expect 



 87 

them to be identical due to the “best possible fit” inside the Gaussian elimination fitting 

procedure. As we have already seen from above, the parameters are indeed comparable to the 

LIE fitting using either MD sampling or HMC sampling. 

 

3.4 Conclusions 

 We have demonstrated that the SGB-LIE method can be applied to estimate the free 

energy of binding with a high level of accuracy for a range of compounds with varying 

inhibition potencies. Despite the limitation imposed by the insufficient sampling inherent in 

the MD and HMC protocols, the methods have reproduced experimental data with reasonably 

small error for the majority of artemisinin analogues. A detailed study on the structure-

activity relationships for artemisinin analogues can throw light on the moieties and functional 

groups important in determining the inhibition potency. The close estimation of inhibition 

potencies of a wide range of compounds has established the LIE methodology as an efficient 

tool for screening novel compounds with very different structures. Compared to the empirical 

methods, such as scoring function approaches, the LIE method is more accurate due to the 

semiempirical approach adopted in which experimental data are used to build the binding 

affinity model. The SGB-LIE method seems promising when compared to the free energy 

perturbation (FEP) or thermodynamic integration (TI) methods in achieving comparable 

accuracy with much faster speed even for structurally very different ligands. 
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CHAPTER 4 

Quantitative structure-activity relationship (QSAR) of the 
artemisinin: the development of predictive in vitro antimalarial 
activity models 
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Abstract 

 A quantitative structure-activity relationship (QSAR) analysis has been performed on 

a data set of 194 artemisinin analogues for antimalarial activity. Several types of descriptors 

including topological, spatial, thermodynamics, information content, lead likeness and E-state 

indices have been used to derive a quantitative relationship between antimalarial activity and 

structural properties. A systematic approach of zero tests, missing value test, simple 

correlation test, multicollinearity test and genetic algorithm method of variable selection was 

used to generate the model. Statistically significant model (r2 = 0.845, q2
cv = 0.799, F-test = 

53.40) was obtained with the descriptors like molecular connectivity indexes, E-state index, 

length-to-breadth ratio of compounds, MLog P, HOMO, electron density, Balabans 

topological index and strain energy of the molecules. The robustness of the QSAR models 

was characterized by the values of the internal leave one out cross-validated regression 

coefficient (q2
cv) for the training set and determination coefficient in prediction, q2

test for the 

test set. The value of q2
test = 0.876 for the test set; revealed good external predictability of the 

QSAR model. Also for an external data set (validation set) of 4 artemisinin analogues the 

QSAR model was able to predicts the antimalarial activity with very well in comparison to 

experimental values. The model was also tested successfully for external validation criteria. 

QSAR model developed in this study shall aid further design of novel potent artemisinin 

derivatives.  
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4.1 Introduction 

 Artemisinin (qinghaosu), a sesquiterpene endoperoxide isolated from Artemisia annua 

is a remarkable life saving antimalarial compound, effective against drug-resistant 

Plasmodium falciparum and cerebral malaria (Haynes et. al., 1997; Klayman, 1985; 

Kamchonwongpaisan et. al., 1996; Posner et. al., 1995). Artemisinin and its derivatives have 

many advantages: quick reduction of fevers, fast clearing parasites in blood (90% of malaria 

patients recovered within 48 hrs) and no significant side effects. As a consequence they are of 

special interest for severe malaria. The first decline in the number of parasites is also 

beneficial for combination therapies. Prompted by the clinical successes of the artemisinin, 

significant efforts have been focused on identifying new analogues that have a similar 

mechanism of action yet superior in activity. Subsequent research led to derivatives (Posner 

et. al., 1996; Robert et. al., 1998) of artemisinin such as artemether, arteether and artesunate. 

A consistent number of structural modifications have been introduced in the original structure 

of artemisinin in order to overcome the solubility as well as neurotoxic problem associated 

with its utilization as anti-malarial drug. The artemisinin family of molecules has been 

extensively studied to elucidate its mechanism of action as an antimalarial and to develop 

more potent and selective antimalarial agents (Kamchonwongpaisan et. al., 1996; Posner et. 

al., 1995; Posner et. al., 1996; Robert et. al., 1998). An essential feature of artemisinin (and 

analogues) activity is hypothesized to be the presence of a peroxide bridge (Figure 4.1), which 

forms a bond with a high valence non-heme iron molecule, leading to generation of free 

radicals (Posner et. al., 1995; Posner et. al., 1996).  

 

A number of QSAR studies have also been reported for prescreening of prospective 

artemisinin analogues for antimalarial activity. A number of these studies (Avery et. al., 2002; 

Tommuphean et. al., 1998; Avery et. al., 1993) have used comparative molecular field 

analysis (CoMFA) (Cramer et. al., 1988; Cramer et. al., 1988) as a tool to model the activity 

of artemisinin analogues in terms of active site binding. Although comparative molecular field 

analyses (CoMFA) are statistically excellent and offer good predictive performance, they are 

inherently limited to the need to align with the database molecules correctly within 3D space. 

The determination of the ‘active’ conformation that each compound will retain is a critical 

issue due to unavailability of X-ray structure. We should have some knowledge or hypothesis 
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regarding active conformations of the molecules under study as a prerequisite for structural 

alignment. Hence, the developed models based on CoMFA may not suit to drug design, 

because of a false conformational hypothesis. However, we were motivated to explore 

possible alternatives that would use alignment free descriptors derived from 2D or 3D 

molecular topology and thus alleviate frequent ambiguity of structural alignment typical of 

3D QSAR methods. A QSAR equation is a mathematical equation that correlates the 

biological activity to a wide variety of physical or chemical parameters (Hansch et. al., 2001; 

Livingstone, 2000). There are many examples available in literature in which QSAR models 

have been used successfully for the screening of compounds for biological activity (Shi et. al., 

1998; Oloff et. al., 2005; Meneses-Marcel, 2005).  

 

In this QSAR study, we have applied E-state, electronic, structural, topological 

quantum mechanics and physicochemical based descriptors which can be calculated without 

structural alignments, for the development of QSAR equation correlating in vivo antimalarial 

activity. The model developed in the present study is the first of its kind for antimalarial 

activity prediction of artemisinin congeners because of its high statistical quality. Further the 

behavior of QSAR model is examined with a variety of statistical parameters and the 

contribution of various descriptors are analyzed. The methodology used in the present study is 

in line with that has been used by Deswal and Roy (Deswal and Roy, 2006) for the 

development of thrombin inhibitors. 

 

4.2. Materials and methods 

4.2.1. Data set 

 An initial dataset of 194 artemisinin analogues were collected from published data 

(Woolfrey et. al., 1998; Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 

1995; Avery et. al., 1996) in which several different ring systems were represented. All of the 

analogues were either peroxides or trioxanes, which should act via similar mechanisms of 

action and were categorized into different classes (Table 4.1a-m). These molecules were 

rationally designed as functional mimics of natural artemisinin with the goal of simplifying 

the chemical synthesis and improving the antimalarial activity. Structural modifications are 

mainly introduced at varying radicals at position R, R1 and R2 in artemisinin scaffold. Each of 
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these compounds had associated in vitro bioactivity values (IC50 values reported in ng/ml) 

against the drug resistant malaria strain P. falciparum (W-2 clone). The log value of the 

relative activity (RA) of these compounds was used for analysis and was defined as: 

 

Log(RA) = log[(artemisinin IC50/analogue IC50)(analogue MW/artemisinin MW)] 

 

Molecular models of the artemisinin and its analogues (Table 4.1a-m) were built using 

the builder feature in Maestro (Schrodinger package) and energy minimized in a vacuum 

using Impact. Each structure was assigned an appropriate bond order using ligprep script 

shipped by Schrödinger and optimized initially by means of the OPLS 2005 force field using 

default setting. Complete geometrical optimization of these structures was carried out with the 

HF/3-21G method using the Jaguar (Schrodinger Inc.). In order to check the reliability of the 

geometry obtained, we compared the structural parameters of the artemisinin 1,2,4-trioxane 

ring with theoretical (Pinheiro et. al., 2001) and experimental (Leban et. al., 1988; Lisgarten 

et. al., 1998) values from literature. All calculations reproduced most of the structural 

parameters of the artemisinin 1,2,4-trioxane ring seen in X-ray structures (Table 4.2). This 

applies especially to the bond length of the endoperoxide bridge which seems to be 

responsible for the anti-malarial activity (Bernardinelli et. al., 1994; Posner et. al., 1995; 

Posner et. al., 1995; Haynes et. al., 1996; Rafiee et. al., 2005). These molecules were divided 

randomly into 156 molecules in training set and 38 molecules in test set.   

 

4.2.2. Descriptor calculation 

E-state indices (Gregorio et. al., 1998), M log P (Meylan et. al., 1995), Superpendentic 

index (Gupta et. al., 1999), structural (Liu et. al., 1998), symmetrical, topological, lead 

likeness (Lipinski et. al., 2001), electronic Wang-Ford atomic charge (Avery et. al., 1995) and 

extended Huckel partial charge (Deswal and Roy, 2006; Eliopoulos et. al., 1996; Brenwald et. 

al., 1998),  bulk, moments, orbital energies, molecular connectivity indexes (Kier et. al., 

1976), gravitational indexes (Katritzky et. al., 1996), hydrophobicity (Livingstone et. al., 

2000), steric (Shi et. al., 1998; Oloff et. al., 2005) and thermodynamic factors (Meneses-

Marcel et. al., 2005) and topological descriptors were calculated using ADME Model Builder 

software package (version 4.5). The Superpendentic index is computed from the pendent 
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matrix. These descriptors help differentiate the molecules mostly according to their size, 

degree of branching, flexibility and overall shape. Some of the descriptors included in the 

study are listed and described in Table 4.3.  

 

Table 4.1a: Artemisinin analogues with antimalarial activities against the drug-resistant 
malarial strain P. falciparum (W-2 clone) used in the work.  
 

O

O R1

R
O

R2

O

O

 
 

Compounds R R1 R2 Log RA pIC50 
(ng/ml) 

1 CH3 CH3 H 1.00 1.398 
2 C4H8Ph H H 0.45 0.712 
3 CH3 H 2-Z-Butenyl -1.10 -0.760 
4 CH3 H H 0.79 1.188 
5 CH3 H CH3 -0.17 0.228 
6 CH3 H 2-E-Butenyl -0.60 -0.260 
7 CH3 Allyl H -0.10 0.260 
8 CH3 C4H9 H 0.17 0.674 
9 C4H8Ph C4H9 H -0.32 -0.117 

10 C3H6(P-Cl-Ph) C4H9 H -0.28 -0.097 
11 C4H9 C4H9 H -0.48 -0.195 
12 CH3 C2H5 H 1.40 1.777 
13 CH3 C6H13 H 0.86 1.162 
14 CH3 i- C4H9 H -0.55 -0.212 
15 CH3 i-C6H13 H -0.04 0.262 
16 CH3 i-C3H7 H -0.04 0.317 
17 CH3 i-C5H11  0.07 0.389 
18 C3H6(p-Cl-Ph) H H 0.10 0.340 
19 C4H9 H H -0.74 -0.383 
20 CH2CH2CO2Et H H 0.37 0.669 
21 C2H5 H H 0.05 0.448 
22 i-C4H9 H H -0.35 0.007 
23 CH3 Br CH2Br -1.64 -1.435 
24 CH3 =CH2  -0.89 -0.489 
25 CH3 CH2CH3 R1=R2 -0.36 -0.022 
26 CH3 C5H11 H 1.02 1.339 
27 CH3 C4H8Ph H 0.63 0.876 
28 CH3 C2H4Ph H 0.12 0.398 
29 CH3 C3H6Ph H 0.78 1.042 
30 CH3 C3H7 H 1.13 1.487 
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Table 4.1b: Deoxy-artemisinin  derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

O

O R1

R
O

H

H
R2

 
 

Compounds R R1 R2 MW Log RA pIC50 (ng/ml) 
31 CH3 CH3 OEt 296 -4 -3.623 
32 CH3 CH3 OH 268 -4 -3.580 
33 CH3 C4H8Ph - 370 -4 -3.720 
34 CH3 C3H7 - 280 -4 -3.599 
35 CH3 C6H13 - 322 -4 -3.660 
36 CH3 C4H9 H 294 -4 -3.620 
37 CH3 i-C5H11 - 324 -4 -3.662 
38 CH2CH2CO2Et H H 328 -4 -3.668 
39 C2H4Ph H - 252 -4 -3.553 
40 CH2 CH3 H - 252 -4 -3.553 
41 i-C4H9 H - 280 -4 -3.599 
42 i-C4H9 H H 280 -4 -3.599 
43 CH3 C2H4Ph - 342 -4 -3.686 
44 CH3 C3H6Ph - 356 -4 -3.703 
45 CH3 CH3 - 266 -4 -3.577 

 
Table 4.1c: Seco-artemisinin derivatives with antimalarial activity against the drug-resistant 
malarial strain P. falciparum (W-2 clone) used in the work. 
 

O

O

R1

OO
OR

R

R2

 
 

Compounds R R1 R2 Log RA pIC50 
(ng/ml) 

46 CH3 H H -2.37 -1.906 
47 C2H5 H H -1.13 -0.713 
48 CH3 CH3 CH3 -0.60 -0.183 
49 - - - -0.15 0.245 
50 CH3 H CH3 -0.86 -0.420 
51 - - -(CH2)4- -0.26 0.097 
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Table 4.1d: 10-Substituted artemisinin derivatives with antimalarial activities against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work. 

O
O R1

O
O

R

R2

R3  
Compounds R R1 R2 R3 Log RA pIC50 (ng/ml) 

52 CH3 CH3 H H 0.75 1.170 
53 CH3 CH3 H OH 0.55 0.945 
54 CH3 CH3 H OEt 0.34 0.694 
55 CH3 CH3 H OH 0.96 1.295 
56 CH3 CH3 H OEt -1.08 -0.740 
57 CH3 H Br H 0.28 0.606 
58 CH3 CH3 Br NH-2-(1,3-thiazole) 0.66 0.874 
59 CH3 CH3 Br p-Cl-aniline 0.79 0.977 
60 CH3 CH3 Br aniline 0.18 0.401 
61 CH3 Br CH3 NH-2-pyridine -0.09 0.115 
62 CH3 CH3 Br NH-2-pyridine -0.77 -0.564 
63 CH3 CH3 H OMe 0.28 0.654 
64 CH3 CH3 H α -OEt 0.32 0.674 
65 CH3 C4H9 H H 1.32 1.677 
66 CH3 C2H5 H H 0.67 1.068 
67 CH3 C3H7 H OEt -0.04 0.277 
68 CH3 H H OEt 0.43 0.804 
69 CH3 C2H5 H OEt 0.50 0.835 
70 CH3 CH3 H C3H6OH 0.78 1.115 
71 CH3 CH3 H C4H9 0.06 0.398 
72 CH3 CH3 H OCH2CO2Et 0.52 0.800 
73 CH3 CH3 H OC2H4CO2Me 0.10 0.364 
74 CH3 CH3 H OC3H6CO2Me -0.03 0.218 
75 CH3 CH3 H OCH2(4-PhCO2Me) -0.07 0.143 
76 CH3 CH3 H (R)-OCH2CH(CH3)CO2Me 1.79 2.070 
77 CH3 CH3 H (R)-OCH(CH3)CH2CO2Me 0.87 1.134 
78 CH3 CH3 H (S)-OCH(CH3)CH2CO2Me 1.70 1.964 
79 CH2CH2CO2Et H H H 0.70 1.017 
80 C3H6(p-Cl-Ph) H H H -0.55 -0.295 
81 C2H5 H H H -1.00 -0.580 
82 C3H7 H H H 0.84 1.238 
83 CH3 -OCH2-  OOH -0.62 -0.269 
84 CH3 -CH2O-  OOH -0.57 -0.219 
85 CH3 =CH2  OOH -0.99 -0.616 
86 - CH3 OH α-OH -0.89 -0.519 
87 CH3 C5H11 H H 0.16 0.498 
88 CH3 C3H7 H H 0.74 1.117 
89 - CH3 H CH2CF2 0.11 0.437 
90 - CH3 OH CH2CF3 0.33 0.615 
91 - CH3 OH OEt -0.44 -0.108 
92 - OH CH3 OEt -1.13 -0.798 
93 CH3 CH3 H OOt-C4H9 0.92 1.217 
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Table 4.1e: 11-Aza-artemisinin derivatives with antimalarial activities against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

O

O
O

N

O
R

 
 

Compounds R Log RA pIC50 (ng/ml) 
94 C3H6Ph 0.02 0.283 
95 C2H4Ph 0.16 0.439 
96 C5H11 -0.20 0.121 
97 i-C5H11 -0.04 0.281 
98 CH2(p-Cl-Ph) -0.16 0.096 
99 i-C4H9 0.02 0.359 

100 CH2Ph 0.34 0.636 
101 CH3 0.70 1.099 
102 C3H7 0.05 0.408 
103 2-Thiophene 0.17 0.458 
104 2-Furan 0.11 0.418 
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Table 4.1f: Artemisinin derivatives lacking the D-ring with antimalarial activity against the 
drug-resistant malarial strain P. falciparum (W-2 clone) used in the work.  
 

O
R1 R3

O
O

R4

R2
 

 
Compounds R1 R2 R3 R4 Log RA pIC50 (ng/ml) 

105 -O2CCH2Ph H H CH3 -0.51 -0.217 
106 H H H CH3 -0.32 0.202 
107 H OCH3 H H -0.31 0.180 
108 OCH3 H H H -1.04 -0.550 
109 H H H - -0.41 0.007 
110 OCH2Ph H H H -0.09 0.275 
111 C2H4OH H CH3 - -1.80 -1.429 
112 C2H4OH CH3 H - 0.23 0.601 
113 C2H4OH CH3 CH3 - -1.80 -1.449 
114 C2H4OCH2Ph CH3 CH3 - -1.80 -1.558 
115 OCH3 H C2H4O2CNEt2 H 0.65 0.929 
116 OCH3 H C2H4O2CNPh2 - 0.65 0.829 
117 H OCH3 C2H4OCH3 H -0.39 0.002 
118 H OCH3 C2H4OCH2Ph H 0.75 1.039 
119 H OCH3 C2H4O-allyl H 0.40 0.735 
120 H OCH3 C2H4O2Ph H -0.59 -0.319 
121 H OCH3 C2H4O2C(4-PhCO2Me) H 0.27 0.465 
122 H OCH3 C2H4O2C(4-PhCO2H) H -0.81 -0.586 
123 H OCH3 C2H4O2C(4-PhCONEt2) - 0.23 0.400 
124 H OCH3 C2H4O2C(4-PhCO2C2H4NMe2) - -0.60 -0.446 
125 H OCH3 C2H4O2CCH2NCO2-(t-C4H9) H -0.04 0.174 
126 OCH3 - C2H4OCH2(4-F-Ph) - 0.38 0.648 
127 OCH3 - C2H4OCH2(4-Py) - 0.14 0.428 
128 H OCH3 C2H4OCH2(4-N-Me-pyridine) H -0.90 -0.647 
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Table 4.1g: Miscellaneous Artemisinin derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

 
129 O

O

O
O

 
0.78 1.203 

 
136 

O

H

O
O

H  
-2.26 -1.862 

 
130 O

O

O

O

O

O
O

 

-2.09 -1.755 
 

137 O

O

O
O

 
-0.24 0.180 

 
131 

O O
O  

-1.27 -0.802 
 

138 
O

O
O

H

 
-2.59 -2.167 

 
132 

O

O

O
O

O  
0.23 0.587 

 
139 

O

O
O

H

O  
-0.96 -0.559 

 
133 

C
H2

O

O
O

O  
-0.67 -0.353 

 
140 O

O

O
O

H  
-0.79 -0.370 

 
134 

O

O
O

O

 
-4.00 -3.543 

 
141 O

O

O
O

H  
-0.64 -0.197 

 
135 

O

O
O

O

 
-4.00 -3.567 

 
142 O

O
O

O  
-0.353 0.090 
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Table 4.1h: 9-Substituted Artemisinin derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

143 O

O

O
OCH3

CH3

O H

H

 

-0.729 -0.328 149 O

O

O
OCH3

CH3

O

Br

H
Br
H

 

-1.487 
 

-1.282 
 

144 O

O

O
OCH3

CH 3

OOH  

-0.739 -0.365 150 O

O

O
OCH3

CH3

O

O

H
H

 

-1.926 
 

-1.549 
 

145 O

O

O
OCH3

CH3

O

H N

N

H
HH H  

-2.447 -2.106 151 O

O

O
OCH3

CH3

O

O
H

H
OH  

-0.460 -0.109 

146 O

O

O
OCH3

CH3

O

H

CH3

H

 

-0.198 0.182 152 O

O

O
OCH3

CH3

O
OH

O
H
H

 

-0.409 -0.058 

147 O

O

O
OCH3

CH3

H

OH
OH

H

H

 

-0.717 -0.325 153 O

O

O
OCH 3

CH 3

O
H
H

OH  

-0.361 0.013 

148 O

O

O
OCH3

CH3

S

N
N

S CH3

OH

 

-2.469 -2.207     

 
Table 4.1i: Dihydroartemisinin derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

154 O

O

CH3

O

O
O

CH3H

CH3

HH

H

 
-0.269 

 
0.129 

 
158 

O

O

CH3

O
O

CH3H

CH3

HH

H

O

H

C
H

2

CHCH3

O O CH3  

1.524 1.788 

155 O

O

CH3

O
O

CH3H

CH3

HH

H

O H  
0.310 0.705 159 

O

O

CH3

O
O

CH3H

CH3

HH

H

O

H

CH2

CHCH3

O O CH3  
2.104 2.368 

156 
O

O

CH3

O
O

CH3H

CH3

HH

H

O C
H2

O OH

H

 

0.176 0.404 160 
O

O

CH3

O
O

CH3H

CH3

HH

H

O

H

C
H

CH2

CH3

O O CH3  

0.599 0.863 

157 O

O

CH3

O
O

CH3H

CH3

H

H

H  

0.487 0.911     
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Table 4.1j: Tricyclic 1.2.4 – Trioxanes derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound no. Analogue structure Log RA pIC50 (ng/ml) 
 

161 O

O

O
O H

H

H

O

OO

O

 

0.660 0.845 

 
162 O

O

O
O H

H

H

O

O

OH

O  

-0.475 -0.275 

 
163 O

O

O
O H

H

H

O

O

O
N

 
0.551 0.699 

 
164 O

O

O

O
H

H

H

O

O

O

O

H

H

H

H

N
CH3

CH3  

0.205 0.340 

 
165 O

O

O
O H

H

H

O

OH

H
N
H

O
O

CH 3

CH3  

0.312 0.503 

 
Table 4.1k: N-Alkyl-11-aza-9-desmethylartemisinins derivatives with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

166 O

N

O
CH3

H

O
O

H

 

0.328 0.728 172 O

N

O

H

O
O

H

CH2

O OH  
-1.222 -0.886 

167 O

N

O
CH2

H

O
O

H

CH3  

-0.125 0.233 173 
O

N

O

H

O
O

H

CH2

CH2CH2

CH2

CH2

O OH  

-0.921 -0.652 

168 O

N

O
CH2

H

O
O

H

CH3
CH3  

0.161 0.500 174 O

N

O

H

O
O

H

CH2

 
0.276 0.572 

169 
O

N

O
CH2

H

O
O

H

CH2

CH2

CH3  

0.041 0.362 175 
O

N

O

H

O
O

H

CH2

Cl  

0.045 0.301 

170 O
N

O
CH2

H

O
O

H

CH2 CH3CH3  

0.173 0.494 176 
O

N

O

H

O
O

H

CH2

CH2

 
0.294 0.573 

171 O
N

O

H

O
O

H

CH2
CH2
NCH3 CH3  

-0.432 -0.114 177 

 

0.312 0.574 
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Table 4.1l: 3C- substituted artemisinin derivatives with antimalarial activity against the drug-
resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

178 O

O

O

H
H

H

CH3 O
O

 

0.049 0.447 183 O

O

O

H
CH2

H

CH3 O
O

CH2

CH2

CH3  
0.410 0.729 

179 O

O

O

H
H

H

CH O
O

CH3
CH3

 

-0.347 0.010 184 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

CH2

CH3

 

-0.481 -0.197 

 
180 O

O

O

H
H

H

CH2 O
O

O O

CH2

CH3

 
0.365 0.665 185 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

CH2

Cl

 
-0.276 -0.093 

 
181 O

O

O

H
H

H

CH2 O
O

CH2

Cl

 

0.104 0.343 186 O

O

O

H
CH2

H

CH2 O
O

CH2
CH2
CH3

CH2

CH2

 

-0.319 -0.116 

182 
O

O

O

H
H

H

CH2 O
O

CH2

CH2

 

0.449 0.710 187 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

O O
CH2

CH3

 

1.359 1.594 

 
 
 
Table 4.1m.  Various derivatives of artemisinin and artemether  with antimalarial activity 
against the drug-resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

Compound 
no. 

Analogue 
structure 

Log 
RA 

pIC50 
(ng/ml) 

188 O

O

O

H

O

O

H

 

 
0.437 

 

 
0.083 

 
192 O

O

O
O

O

H
H

FF
H

 
2.570 

 
0.717 

 

189 O

O

O

CH3

O

O

CH3

OH
H

H

 

 
2.188 

 

 
0.672 

 
193 O

O

O

H

O

O

H

 

0.016 
 

-1.347 
 

190 O

O

O

O

O

F

HO

 

 
1.622 

 

 
0.504 

 
194 O

O

O

O

CH3

O

F

 

-0.120 0.192 

191 O

O

O

O

O

CH3

O

 
1.445 

 
0.495 
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Figure 4.1. Sterochemistry and atomic numbering shceme of artemisinin. 

 
Table 4.2. Experimental and theoretical values of the 1,2,4-trioxane ring parameters in 
artemisinin (bond lengths in Å; bond angles and torsional angles in degrees). 
 

 Theoretical Experimentald Experimentale 
Parametersa 3-21Gb 3-21G** c 6-31Gc   
O1-O2 1.463 1.462 1.447 1.475(4) 1.469(2) 
O2-C3 1.441 1.440 1.435 1.417(4) 1.416(3) 
C3-O4 1.436 1.436 1.435 1.448(4) 1.445(2) 
O4-C5 1.407 1.408 1.403 1.388(4) 1.379(2) 
C5-C6 1.529 1.530 1.533 1.528(5) 1.523(2) 
C6-O1 1.478 1.477 1.469 1.450(4) 1.461(2) 
O1-O2-C3 106.9 107.070 108.800 107.600(2) 108.100(1) 
O2-C3-O4 107.0 107.310 106.760 107.200(2) 106.600(2) 
C3-O4-C5 115.6 115.700 117.300 113.500(3) 114.200(2) 
O4-C5-C6 112.0 112.030 112.280 114.700(2) 114.500(2) 
C5-C6-O1 111.1 111.589 110.910 111.100(2) 110.700(2) 
C6-O1-O2 111.2 111.286 113.240 111.500(2) 111.200(2) 
O1-O2-C3-O4 -74.9 -74.680 -71.840 -75.500(3) -75.500(2) 
O2-C3-O4-C5 31.8 32.150 33.390 36.300(4) 36.000(2) 
C3-O4-C5-C6 29.4 28.400 25.320 24.800(4) 25.300(2) 
O4-C5-C6-O1 -51.8 -50.769 -49.410 -50.800(4) -51.300(2) 
C5-C6-O1-O2 10.1 9.792 12.510 12.300(3) 12.700(2) 
C6-O1-O2-C3 50.8 50.522 46.700 47.700 47.800(2) 

 

a Atoms are numbered according to Figure 4.1 
b This work 
cValues from Ref. (Pinheiro et. al., 2001) 
dValues from Ref. (Leban et. al., 1988) (experimental estimated standard deviations in 
brackets) 
eValues from Ref. (Lisgarten et. al., 1998) (experimental estimated standard deviations in 
brackets 
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Table 4.3. List of descriptors used in the study. 

Type Descriptors 

E-state indices Electro-topological-state indices 

Electronic Partial positive surface area, partial negative surface area, relative 
positive charge, relative negative charge, relative positive charged 
surface area, relative negative charged surface area, weighted 
positive charged partial surface area, weighted negative charged 
partial surface area, fractional negative charged partial surface area, 
fractional positive charged partial surface area, Huckel molecular 
orbital indices, highest occupied molecular orbital, lowest 
unoccupied molecular orbital, free valence value, nucleophilic 
superdelocalizability, free radical superdelocalizability,  heat of 
formation, dipole moments,  energy of the highest occupied orbital, 
energy of the lowest unoccupied orbital, electronegativity, hardness 

Information content Information of atomic composition index, superpendentivity index 

Spatial Radius of gyration, Jurs descriptors, shadow indices, area, density, 
length-to-breath ratios 

Structural Topological symmetry, geometrical symmetry, combined symmetry, 
conformational flexibility indices, molecular distance edge 
descriptors, moment of inertia indices, geometric moment indices, 
number of single bonds, number of aromatic bonds. 

Thermodynamic Average energy, bond strain energy, angle strain energy, non-bonded 
strain energy, torsional strain energy, total strain energy of molecule. 

Leadlikeness LogP (Meylan, Howard), LogS, LogP(Moriguchi, Hirono). 

Topological Wiener index, Kier and Hall molecular connectivity indices, path 
count and length descriptors, topological polar surface area (TPSA), 
Balban indices. 

 
4.2.3. Regression analysis 

 The total number of descriptors calculated initially was 372. A systematic search in 

the order of missing value test, zero test, correlation coefficient, multi-colinearity and genetic 

algorithm was performed to determine significant descriptors using ADME Model Builder 

(version 4.5) software package (Fujitsu Inc.). Any parameter which is not calculated (missing 

value) for any number of the compounds in the data set is rejected in the first step. Some of 

the descriptors were rejected because they contained a value of zero for all the compounds 

and have been removed (zero tests). In order to minimize the effect of colinearity and to avoid 

redundancy correlation matrix developed with a cut off value of 0.6 and the variables 

physically removed from the analysis which show exact linear dependencies between subsets 

of the variables and multi-colinearity (high multiple correlations between subsets of the 
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variables). From descriptors thus remained, the set of descriptors that would give the 

statistically best QSAR models were selected from the large pool using a genetic function 

approach implemented in ADME model Builder (version 4.5) software package (Fujitsu Inc.). 

The genetic algorithm starts with the creation of a population of randomly generated 

parameter sets. The usage probability of a given parameter from active set is 0.5 in any of the 

initial population sets. The sets are then compared according to their objective functions. The 

form of objective function favors sets that have r2 as high as possible, while minimizing the 

number of parameters used as descriptors. The higher the score the higher the probability of a 

given set will be used for the creation of the next generation of sets. Creation of a consecutive 

generation involves crossovers between set contents, as well as mutations. The parameters set 

used for genetic algorithm includes: mutation 0.1, crossover 0.9, population 300, number of 

generations 1000, R2 floor limit 50% and objective function was R2/N_par. The form of 

objective function favors sets that have the R2 as high as possible, while minimizing the 

number of parameters used as descriptors. The higher the score, the higher the probability that 

a given set will be used for the creation of the next generation of sets. Creation of a 

consecutive generation involves crossovers between set contents, as well as mutations. The 

algorithm runs until the desired number of generations is reached. Equations were developed 

between the observed activity and the descriptors. The best equation was taken based on the 

statistical parameters such as regression coefficient (r2), adjusted regression coefficient (r2
adj), 

regression coefficient cross validation (q2
cv) and F-test values.  

  

4.2.4. Validation test 

 The predictive capability of the QSAR equation is determined using leave-one-out 

cross validation method. The cross validation regression coefficient (q2
cv) was calculated by 

following equation.  

 

 

 

 

Where, y pred , yexp  and y  are the predicted, experimental and mean values of experimental 

activity, respectively. Also the accuracy of the prediction of the QSAR equation was validated 
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by F-value, r2 and radj
2 .  A large F indicates that the model fit is not a chance occurrence.  It 

has been shown that a high value of statistical characteristics need not be the proof of a highly 

predictive model (Golbraikh et. al., 2002; Roy et. al., 2008). Hence, in order to evaluate the 

predictive ability of our QSAR model, we used the method described by Golbraikh et al., 

(2002) and Roy et. al., (2008). The determination coefficient in prediction, q2
test was 

calculated using the following equation (Roy et. al., 2008).  

 

 

 

Where    and YTest are the predicted value based on QSAR equation (model response) 

and experimental activity values, respectively, of the external test set compounds. YTraining is 

the mean activity value of the training set compounds. Further evaluation of the predictive 

ability of the QSAR model for the external test set compounds was done by determining the 

value of rm2 by the following equation (Roy et. al., 2008): 

 

 

Where r2 is the square correlation coefficient for regression (Y = a + bx; a is referred as the y-

intercept and b is the slope value of regression line) and r2
0 is the squared correlation 

coefficient for regression without intercept (Y = 0 + bx; a very poor model) between 

experimental and predicted values for the external test set compounds. The values of k and k’, 

slopes of the regression line of the predicted activity vs. actual activity and vice versa, were 

calculated using the following equations (Jaiswal et. al., 2004): 

 

 

 

where    and  yi are the predicted and actual activities, respectively.  

To further check the inter-correlation of descriptors variance inflation factor (VIF) analysis 

was performed. VIF value is calculated from 1/1-r2, where r2 is the multiple correlation 

coefficient of one descriptor’s effect regressed on the remaining molecular descriptors. If VIF 

value is larger than 10, information of descriptor can be hidden by correlation of descriptors 

(Jaiswal et. al., 2004; Shapiro et. al., 1998).  
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4.3. Results and Discussion 

The 194 active compounds considered as potential of W-2 strain of P. falciparum 

inhibition were randomly divided into a training set of 156 compounds and a test set of 38 

compounds. The experimental IC50 values against the W-2 strain of P. falciparum for these 

compounds are available from in vitro analysis. With the wide range of difference between 

the IC50 values and the large diversity in the structures, the combined data set of 156 

molecules and 38 molecules are ideal to be considered as training and test set, as both the sets 

do not suffer from bias, due to the similarity of the structures. The various molecular 

descriptors (372 in total) as described in Table 4.3 were calculated initially. By applying 

missing value test, zero test, correlation test with cutoff value of 0.6 and multicollinearity test 

with cutoff value of 0.9 we have discarded the most likely parameters that resulted in 117 

parameters. Further additional parameters were discarded by applying genetic algorithm and 

finally 13 parameters were selected for development of QSAR equation. At first step the 

QSAR equation was developed using only one parameter (V7CH) which showed significant 

correlation with the biological activity in comparison to rest 12 parameters. Taking a brute 

force approach, we increased the number of parameters in the QSAR equation developed at 

the first step one by one and evaluated the effect of addition of new term on the statistical 

quality of the model. As the correlation coefficient, r2 can be easily increased by the number 

of terms in the QSAR equation; we took the cross-validation correlation coefficient, q2
cv, as 

the limiting factor for a number of descriptors to be used in the final model. It was observed 

that the q2
cv value increased till the number of descriptors in the equation reached up to 13 as 

shown in Table 4.4. With further addition of parameters to equation 13 (in Table 4.4), there 

was a decrease in q2
cv value of the model. So the number of descriptors was restricted to 13 in 

the final QSAR model. The best significant relationship between the molecular descriptors 

and antimalarial activity has been deduced to be:  

pIC50 = - 1.34 - 11.3 V7CH + 0.161 EMAX1 + 0.352 LOGP - 0.668 GEOM3 +0.0002 

STRA6 + 0.004 STRA4 + 0.054 STRA2 - 0.875 L/B2 - 9.92 FVMN - 3.25 HOMO - 2.53 

BOMX + 0.475 MOLC9 - 9.89 V6C      (1) 

 

(N = 154; r2 = 0.777; s = 0.662; PRESS = 79.105; r2
adj = 0.756; q2

cv = 0.713; F-test = 37.53) 
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Table 4.4. Statistical assessment of QSAR equations with varying number of descriptors.  
 

No. of  
descriptors 

QSAR equation r2 press q2 

1 pIC50 = 1.78 - 6.00 V7CH 0.186 261.73 
 

0.181 

2 pIC50 = 0.637 - 5.61 V7CH + 0.095 EMAX1 0.223 252.28 
 

0.212 

3 pIC50 = 0.073 - 5.75 V7CH + 0.084 EMAX1 + 0.143 LOGP 0.237 251.25 
 

0.221 

4 pIC50 = 0.140 - 5.77 V7CH + 0.085 EMAX1 + 0.149 LOGP - 
0.116 GEOM3 
 

0.237 253.10 
 

0.217 

5 pIC50 = - 0.489 - 6.09 V7CH + 0.087 EMAX1 + 0.192 LOGP - 
0.471 GEOM3 + 0.003 STRA6 
 

0.304 233.91 
 

0.281 

6 pIC50 = - 0.626 - 6.78 V7CH + 0.074 EMAX1 + 0.215 LOGP - 
0.461 GEOM3 + 0.002 STRA6 + 0.004 STRA4 
 

0.319 243.36 
 

0.292 

7 pIC50 = - 1.04 - 7.67 V7CH + 0.072 EMAX1 + 0.216 LOGP - 
0.710 GEOM3 +0.001 STRA6 + 0.005 STRA4 + 0.052 STRA2 
 

0.424 198.28 
 

0.397 

8 pIC50 = 0.134 - 8.29 V7CH + 0.061 EMAX1 + 0.353 LOGP - 
0.716 GEOM3 +0.001 STRA6 + 0.006 STRA4 + 0.046 STRA2 
- 1.15 L/B2 
 

0.467 182.97 
 

0.438 

9 pIC50 = - 0.736 - 7.75 V7CH + 0.057 EMAX1 + 0.309 LOGP - 
0.696 GEOM3 + 0.001 STRA6 + 0.005 STRA4 + 0.039 
STRA2 - 0.993 L/B2 - 4.95 FVMN 
 

0.516 150.18 
 

0.486 

10 pIC50 = - 1.45 - 6.95 V7CH + 0.058 EMAX1 + 0.348 LOGP - 
0.748 GEOM3 + 0.001 STRA6 + 0.004 STRA4 + 0.045 
STRA2 - 1.05 L/B2 - 4.97 FVMN - 1.38 HOMO 
 

0.534 164.87 
 

0.501 

11 pIC50 = 0.51 - 6.98 V7CH + 0.055 EMAX1 + 0.336 LOGP - 
0.701 GEOM3 +0.001 STRA6 + 0.005 STRA4 + 0.046 STRA2 
- 1.04 L/B2 - 5.90 FVMN - 1.38 HOMO - 2.67 BOMX 
 

0.542 163.93 
 

0.507 

12 pIC50 = 3.88 - 8.40 V7CH + 0.064 EMAX1 + 0.115 LOGP - 
0.673 GEOM3 +0.001 STRA6 + 0.002 STRA4 + 0.041 STRA2 
- 1.08 L/B2 - 4.43 FVMN - 1.51 HOMO - 0.73 BOMX - 1.45 
MOLC9 
 

0.606 140.13 
 

0.573 

13 pIC50 = 3.34 - 8.98 V7CH + 0.088 EMAX1+ 0.172 LOGP- 
0.461 GEMO3 + 0.0001 STRA6 + 0.004 STRA4 + 0.038 
STRA2 - 1.04 L/B2 - 4.78 FVMN - 0.816 HOMO - 1.18 
BOMX - 1.12 MOLC9  - 4.89 V6C 
 

0.782 78.403 
 

0.738 
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It was found that the compound numbers 31 to 45 were outliers with prediction error in 

between 2.233 to 3.150. The reason for those compounds being found as outliers could 

probably be their very low activity. The antimalarial action of artemisinin appears to be 

mediated by the generation of free radicals from the endoperoxide bridge of the drug (Posner 

et. al., 1995; Jefford et. al., 1996). All these compounds belong to deoxyartemisinin 

derivatives (Table 4.1b) that lacks the endoperoxide moiety. This group of compounds has 

single oxygen instead of the peroxide bridge. The interaction between heme and these 

analogues is mediated by three nonperoxide oxygens leading to inactivity or low activity 

(Meshnick et. al., 1989; Shukla et. al., 1995). The quality of the above QSAR model has been 

improved further by removing these compounds and is as follows. 

 
pIC50 = 4.04 - 9.76 V7CH + 0.069 EMAX1 + 0.117 LOGP - 0.581 GEOM3 - 0.00014 STRA6 
+ 0.0035 STRA4 + 0.039 STRA2 - 1.09 L/B2 - 4.82 FVMN - 1.02 HOMO - 0.285 BOMX - 
1.36 MOLC9 - 5.24 V6C       (2) 
 

(N = 141; r2 = 0.845; s = 0.343; PRESS = 19.386; r2
adj = 0.830; q2

cv = 0.799; F-test = 53.40) 

where N is the number of compounds in the training set, r2 is the squared correlation 

coefficient, s is the estimated standard deviation about the regression line, r2
adj is the square of 

adjusted correlation coefficient for degree of freedom, F-test is the measure of variance which 

compares two models differing by one or more variables to see if the more complex model is 

more reliable than the less complex one, the model is supposed to be good if the F-test is 

above a threshold value and q2
cv is the square of the correlation coefficient of the cross-

validation. The QSAR model developed in this study is statistically (r2 = 0.845, q2
cv = 0.799, 

F-test = 53.40) best fitted and consequently used for prediction of antimalarial activity (pIC50) 

of training and test sets of molecules as reported in Table 4.5 and Table 4.6. The quality of the 

prediction models for the training compounds before and after removal of outliers have been 

shown in Figure 4.2 & Figure 4.3. The r2 and q2
cv values of 0.845 and 0.799, respectively of 

the model corroborates with the criteria for a QSAR model to be highly predictive (Leban et. 

al., 1988). The standard error of estimate for the model was 0.343, which is an indicator of the 

robustness of the fit and suggested that the predicted pIC50 based on equation (2) is reliable.  
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Table 4.5. Observed and predicted activity against the drug-resistant malarial strain P. 
falciparum (W-2 clone) of Training set of artemisinin derivatives.  
 

Compound W-2 clone  inhibition (pIC50) Compound W-2 clone  inhibition (pIC50) 
No. Observed Predicted Residual No. Observed Predicted Residual 
187 1.594 0.899 0.695 111 -1.429 -1.336 0.093 
52 1.170 0.474 0.696 112 0.601 0.103 0.498 
2 0.712 0.118 0.594 114 -1.558 -1.026 0.532 
56 -0.740 0.137 0.877 115 0.929 0.687 0.242 

188 0.083 0.354 0.271 116 0.829 1.133 0.304 
1 1.398 1.016 0.382 31 -3.623 -3.346 0.723 
4 1.188 0.518 0.670 32 -3.580 -3.079 0.299 
5 0.228 0.492 0.264 41 -3.599 -2.759 0.840 
6 -0.260 0.302 0.562 35 -3.660 -2.693 0.967 

189 0.672 1.070 0.398 36 -3.620 -2.868 0.752 
7 0.260 1.070 0.810 37 -3.662 -3.075 0.587 
60 0.401 0.227 0.174 39 -3.553 -2.651 0.902 
61 0.115 -0.372 0.487 40 -3.553 -2.771 0.782 
63 0.654 0.446 0.208 42 -3.599 -3.407 0.308 
64 0.674 0.450 0.224 43 -3.686 -3.220 0.134 
8 0.508 0.295 0.213 118 1.039 0.848 0.191 
9 -0.117 0.562 0.679 119 0.735 0.456 0.279 
11 -0.195 0.495 0.690 120 -0.319 0.139 0.458 
66 1.068 1.079 0.011 121 0.465 0.139 0.326 
67 0.277 0.245 0.032 122 -0.586 0.139 0.725 
68 0.804 0.379 0.425 123 0.400 -0.395 0.795 
69 0.835 0.231 0.604 124 -0.446 -0.094 0.352 
13 1.162 1.192 0.030 126 0.648 1.213 0.565 
14 -0.212 -0.304 0.092 128 -0.647 -0.065 0.582 
15 0.262 -0.270 0.532 134 -3.543 -3.060 0.483 
16 0.317 0.325 0.008 135 -3.567 -3.197 0.370 
17 0.389 -0.056 0.445 136 -1.862 -1.740 0.122 
94 0.283 -0.121 0.404 138 -2.167 -1.693 0.474 
95 0.439 0.174 0.265 139 -0.559 -0.526 0.033 
96 0.121 -0.024 0.145 140 -0.370 -0.292 0.078 
97 0.281 -0.243 0.524 141 -0.197 -1.011 0.814 
98 0.096 -0.082 0.178 104 0.418 0.373 0.045 
70 1.115 0.103 1.012 143 -0.328 0.654 0.982 

129 1.203 0.023 1.180 145 -2.106 -1.313 0.793 
72 0.800 0.794 0.006 146 0.182 0.253 0.071 
73 0.364 0.966 0.602 147 -0.325 0.653 0.978 
75 0.143 0.823 0.680 149 -1.282 -1.054 0.228 
76 2.070 1.220 0.850 151 -0.109 -0.348 0.239 
77 1.134 0.359 0.775 152 -0.058 -0.498 0.440 
78 1.964 1.677 0.287 153 0.013 -0.295 0.308 
79 1.017 0.211 0.806 154 0.129 0.320 0.191 
80 -0.295 -0.380 0.085 155 0.705 0.827 0.122 
18 0.340 -0.266 0.606 156 0.404 0.834 0.430 
20 0.669 0.192 0.477 157 0.911 0.195 0.716 
21 0.448 0.182 0.266 158 1.788 1.102 0.686 
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Table 4.5. (Continued) 
 
Compound W-2 clone  inhibition (pIC50) Compound W-2 clone  inhibition (pIC50) 

No. Observed Predicted Residual No. Observed Predicted Residual 
82 1.238 1.054 0.184 159 2.368 1.276 1.092 

100 0.636 0.407 0.229 160 0.863 0.940 0.077 
102 0.408 0.429 0.021 162 -0.275 0.664 0.939 
23 -1.435 -1.080 0.355 165 0.503 0.785 0.282 
83 -0.269 -1.067 0.798 167 0.233 -0.331 0.564 
25 -0.022 0.098 0.120 168 0.500 -0.226 0.726 
87 0.498 0.879 0.381 169 0.362 -0.617 0.979 
26 1.339 0.284 1.055 170 0.494 -0.227 0.721 
27 0.876 0.358 0.518 171 -0.114 -0.612 0.498 
28 0.398 0.187 0.211 172 -0.886 -0.041 0.845 
29 1.042 0.242 0.800 173 -0.652 -0.284 0.368 
88 1.117 0.709 0.408 174 0.572 -0.134 0.706 
30 1.487 0.620 0.867 177 0.574 -0.245 0.819 

194 0.192 0.427 0.235 176 -0.385 -0.875 0.490 
89 0.437 0.080 0.357 179 0.010 0.107 0.097 
92 -0.108 0.358 0.466 180 0.665 0.317 0.348 

191 0.504 0.895 0.391 181 0.343 -0.132 0.475 
192 0.495 1.142 0.647 182 0.710 0.316 0.394 
193 0.717 0.938 0.221 183 0.729 -0.054 0.783 
93 0.497 0.659 0.162 184 -0.197 0.284 0.481 
46 1.217 0.390 0.827 185 -0.093 0.475 0.568 
47 -0.713 -0.056 0.657 186 -0.116 0.833 0.949 
48 -0.183 -0.226 0.043 12 1.777 0.785 0.992 
49 0.245 -0.163 0.408 38 -3.668 -2.900 0.768 
50 -0.420 -0.302 0.118 33 -3.720 -2.759 0.961 

105 -0.217 -0.021 0.196 44 -3.703 -2.850 0.853 
132 0.587 0.660 0.073 190 -0.798 -0.861 0.063 
106 0.202 -0.001 0.203 148 -2.207 0.019 2.226 
107 0.180 0.513 0.333 150 -1.549 0.532 2.081 
51 0.097 -0.226 0.323 130 -1.755 0.242 1.997 

108 -0.550 -0.542 0.008 85 -0.616 1.152 1.768 
109 0.007 0.395 0.388 3 -0.760 0.942 1.702 
110 0.275 0.411 0.136 65 1.677 -0.223 1.900 
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Table 4.6. Observed and predicted activity against the drug-resistant malarial strain P. 
falciparum (W-2 clone) of Test set of artemisinin derivatives.  
 

Compound W-2 clone  inhibition (pIC50) Compound W-2 clone  inhibition (pIC50) 
No. Observed Predicted Residual No. Observed Predicted Residual 
53 0.945 0.685 0.260 133 -0.353 -0.330 0.023 
54 0.694 0.484 0.210 34 -3.599 -2.850 0.749 
55 1.295 1.304 0.009 117 0.002 0.013 0.011 
57 0.606 0.361 0.245 125 0.174 0.552 0.378 
58 0.874 0.211 0.663 127 0.428 0.403 0.025 
59 0.977 0.797 0.180 137 0.180 0.958 0.778 
62 -0.564 -0.537 0.027 142 0.090 0.536 0.446 
10 -0.097 -0.181 0.084 103 0.458 0.199 0.259 
99 0.359 0.299 0.060 144 -0.365 -0.978 0.613 
71 0.398 0.944 0.546 161 0.845 0.215 0.630 
74 0.218 0.045 0.173 163 0.699 0.146 0.553 
19 -0.383 -0.281 0.102 164 0.340 0.010 0.330 
81 -0.580 -0.256 0.324 166 0.728 0.250 0.478 
22 0.007 0.217 0.210 175 0.301 0.313 0.012 
84 -0.219 -0.622 0.403 178 0.447 0.880 0.433 
24 -0.489 -0.365 0.124 101 1.099 1.199 0.100 
86 -0.519 -0.124 0.395 113 -1.449 -1.820 0.371 
90 0.615 0.320 0.295 45 -3.577 -3.190 0.387 

131 -0.802 -0.499 0.303 91 -0.415 -0.694 0.279 
 pIC50 = - log10IC50 
 

 
 
Figure 4.2. Relationship between predicted and experimental activities as per equation (1) 
before removal of outliers. 
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Figure 4.3. Relationship between predicted and experimental activities as per equation (2) 
after removal of outliers (deoxy-artemisinin derivatives). 
 

 V7CH is the 7th order chain molecular connectivity indexes. However, V6C measures 

6th order cluster molecular connectivity indexes. These descriptors contain information about 

the size and the degree of branching in a molecule (Kier et. al., 1976). EMAX1 is the 

maximum atomic E-state index for each atom of each compound in the data set which is the 

measure of the reactivity of each atom, analogues to the concept of free valence. It provides 

information regarding intermolecular interactions (Kier et. al., 1997). L/B2 is the length-to-

breadth ratio of compounds calculated by rotating the molecule in Z-axis in increments of N 

degrees. MLog P calculate Octanol/Water Partition coefficient of the molecule based on the 

algorithm by (Moriguchi et. al., 1992). It is the most popular and traditional. It explains one of 

the principal characteristics of any preparation, the lipophilicity. The higher its value, the 

more probable the transfer of the preparation from the aqueous medium into the biological 

membrane. This property is critical for medicinal preparations that are administered orally and 

must be absorbed through the GI tract. Log P value less than 0.5 will be absorbed 

appropriately. HOMO is the highest occupied molecular orbital energy (calculated using 

single polint MOPAC (AMI)-based semiempirical quantum mechanical methods); this 

descriptor considers only interactions of valence π electrons for adjacent atoms. The 
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descriptor BOMX is a measure of the electron density between adjacent atoms, representative 

to the strength of that bond. FVMN is a measure of the available bonding capacity left in an 

atom. It is considered to be a measure of the likelihood that the specified atom will be the site 

of a radical attack. The descriptors such as STRA2, STRA4, STRA6 comprises each of the 

strain energy terms like bond, torsional and total energy terms of the molecules used in the 

molecular mechanics force field. The descriptor MOLC9 includes Balabans topological index 

J. It measure the degree of branching in structures (Kier et. al., 1976). GEOM3 is the mass 

weighted thickness descriptor. The calculation involves diagonalization of the covariance 

matrix formed from the (x,y,z) coordinates of the atoms, translated to the center of mass of the 

structure. The contribution of each atom is weighted by its mass.  

.  

 The inter-correlation of the descriptors used in the final model (Equation 2) was very 

low (below 0.6) which is in conformity to the study that for a statistically significant model, it 

is necessary that the descriptors involved in the equation should not be inter-correlated with 

each other (Deswal et. al., 2006). The correlation matrix for the used descriptors is shown in 

Table 4.7. To further check the inter-correlation of descriptors variance inflation factor (VIF) 

analysis was performed. In this model, the VIF values of these descriptors are 1.70 (V7CH), 

1.152 (EMAX1), 2.079 (Log P), 1.271 (GEOM3), 2.252 (STRA6), 2.331 (ATRA4), 1.344 

(STRA2), 1.398 (L/B2), 1.441 (FVMN), 1.479 (HOMO), 1.402 (BOMX), 2.257 (MOLC9) 

and 1.155 (V6C). Based on VIF analysis it has been found that the descriptors used in the 

final model have very low inter-correlation.  

 

 Satisfied with the robustness of the QSAR model developed using training set, we 

have applied the QSAR model to an external data set of artemisinin analogues comprising the 

test set. As the experimental values (pIC50) for these inhibitors are already available, this set 

of molecules provides an excellent data set for testing the prediction power of the QSAR 

model for new ligands. Table 4.6 represents the predicted pIC50 values of the test set based on 

equation (2). The overall root mean square error (RMSE) between the experimental and 

predicted pIC50 value was 0.325 which revealed good predictability. The squared correlation 

coefficient between experimental and predicted pIC50 values for the test set is also significant 

(r2 = 0.871). The Figure 4.4 shows the quality of the fit. The estimated correlation coefficient 
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between experimental and predicted pIC50 values with intercept (r2) and without intercept 

(r0
2) are 0.871 and 0.862 respectively. The value of [(r2-r0

2)/r2] = (0.871– 0.862)/0.871 = 

0.010, which is less than 0.1 (stipulated value) (Jaiswal et. al., 2004). Also the values of k and 

k’ were 1.028 and 0.847, which are well within the specified range of 0.85 and 1.15 (Jaiswal 

et. al., 2004). Since the value of q2
test = 0. 876 and rm2 = 0.788 were found to be in the 

acceptable range (Shapiro et. al., 1998), thereby indicating the good external predictability of 

the QSAR model.  

Table 4.7. Correlation matrix of the descriptors used in the QSAR model. 

 
 
 
 

To evaluate the accuracy of the QSAR model for antimalarial activities, we have taken 

a separate data set called validation set consisting of 4 analogues of artemisinin (Table 4.8). 

Their experimental activity and chemical structures were obtained from the literature (Darren 

et. al., 2008). The experimental activity (IC50 value) of these compounds obtained from in 

vitro study in parasitized whole blood (human) against drug resistant strains of P. falciparum 

(W-2 clone)( Desjardins et. al., 1979; Milhous et. al., 1985). The W-2 clone is chloroquinone-

resistant. For all the compounds QSAR predictions produce exactly the same trend for 

antimalarial activity, even though the exact magnitudes of these values do not match very well 

to experimental values (Table 4.8). Coupled with the good predictive ability of the QSAR 

model developed in this study we believe that this model would perform well as rapid 

screening tools to uncover new and more potent anti-malarial drugs based on artemisinin 

derivatizations. 

 V7CH EMAX1 Log P GEOM3 STRA6 STRA4 STRA2 L/B2 FVMN HOMO BOMX MOLC9 V6C 

V7CH 1.00             
EMAX1 -0.14 1.00            
Log P 0.05 0.17 1.00           
GEOM3 -0.06 0.15 0.20 1.00          
STRA6 0.06 -0.01 -0.07 0.28 1.00         
STRA4 0.29 0.09 -0.11 0.14 0.63 1.00        
STRA2 0.15 -0.01 0.04 0.22 0.25 0.12 1.00       
L/B2 -0.12 0.03 0.43 0.07 0.01 0.06 -0.16 1.00      
FVMN 0.06 -0.10 -0.09 -0.01 0.13 -0.01 -0.15 0.08 1.00     
HOMO 0.37 -0.02 0.21 -0.09 -0.26 -0.14 0.21 0.32 -0.08 1.00    
BOMX 0.01 -0.01 -0.03 0.07 -0.08 0.07 0.14 -0.06 -0.44 0.05 1.00   
MOLC9 -0.41 -0.04 -0.50 -0.13 -0.27 -0.35 -0.21 -0.18 0.12 -0.21 0.11 1.00  
V6C 0.22 -0.07 0.03 0.11 -0.09 0.03 -0.02 -0.13 -0.10 0.17 0.12 -0.05 1.00 
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Figure 4. 4. Relationship between predicted and experimental activities as per equation (2). 

 

Table 4.8. Observed and predicted activity against the drug-resistant malarial strain P. 
falciparum (W-2 clone) of validation set of artemisinin derivatives.  
 

Compound W-2 Clone line inhibition (pIC50)  
name Structure Observed Predicted Residual 

artemisinin O

O

O

CH3

CH3

H

O
O

 
1.004 0.228 0.776 

Dihydroartemisinin O

O

OH

CH3

CH3

H
CH3

H

O
O

H

 
0.694 0.480 0.213 

Artemether O

O

O
O H

H

H

O
CH3  

1.638 0.606 1.03 

Artesunuate 
O

O

OH

H

O

H
O

OH

O

O

 

0.259 1.119 0.861 
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4.4. Conclusion 

 The QSAR analysis of a series of artemisinin derivatives enabled consistent models of 

structure- activity relationships to be obtained for several descriptors. The models that had the 

best predictive ability contained topological, theromodynamic, electronic, E-state indices and 

physicochemical descriptors. In this study, we used a more systematic way of variable 

selection in order of missing value test → zero test → simple correlation test → 

multicollinearity test → genetic algorithm to obtain QSAR models for 194 artemisinin 

derivatives. Using a combination of topological, electro-topological-state indices, electronic 

and thermodynamic descriptors of chemical structures, we have built several robust QSAR 

models with high values of q2 (for training sets) and predictive r2 (for test set). The high 

predictive ability of the models allows virtual screening of chemical databases or virtual 

libraries determined by either synthetic feasibility or commercial availability of starting 

materials to prioritize the synthesis of most promising candidates. Therefore, these models 

should facilitate the rational design of novel derivatives, guide the design of focused libraries 

based on the artemisinin skeleton and facilitate the search for related structures with similar 

biological activity from large databases.  
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CHAPTER 5 

The Binding Modes and Binding Affinities of Artemisinin Derivatives with 
Plasmodium falciparum Ca2+-ATPase (PfATP6)  
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Abstract 

 Noncompetitive inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 

orthologue (PfATP6) of P. falciparum have important therapeutic value in the treatment of 

malaria. Artemisinin and ites analogues are one such class of inhibitors that bind to a 

hydrophobic pocket located in the transmembrane region of PfATP6 near the biomembrane 

surface and interfere with calcium transport. The 3D structure of PfATP6 was modeled by 

homology modeling.  A library of artemisinin analogues has been designed consisting of 154 

analogues. Their molecular interactions and binding affinities with modeled PfATP6 protein 

have been studied using the docking, molecular mechanics based on generalized Born/surface 

area (MM-GBSA) solvation model and eMBrAcE. Docking and binding free energies scores 

show good relation with in vitro antimalarial activities. The main binding source of 

artemisinins to the PfATP6 is hydrophobic inbteraction and biologically important peroxide 

bonds were exposed to outside of the binding pocket. The study suggests binding of 

artemisinin to PfATP6 precedes activation of peroxide bond by Fe2+ species. Quantitative 

structure activity relationships were developed between the antimalarial activity (log RA) of 

these compounds and molecular descriptors like docking score and binding free energy. For 

both the cases the r2 was in the range of 0.538–0.0.688 indicating good data fit and r2
cv was in 

the range of 0.525–0.679 indicating that the predictive capabilities of the models were 

acceptable. In addition, a scheme similar to Linear Response was used to develop a free 

energy of binding (FEB) relationship based electrostatic (∆Gele), van der Waal (∆GvdW) and 

surface accessible surface area (SASA), which can express the activity of these artemisinin 

derivatives. It can be seen that ∆GvdW has most significant correlation to the activity (log RA) 

and electrostatic energy (∆Gele) has less significant correlation to the activity. It indicates that 

the binding of these artemisinin derivatives to PfATP6 is almost hydrophobic. ∆GvdW may be 

a major drive force to their binding and contribution to their activity. Low levels of root mean 

square error for the majority of inhibitors establish the docking, Prime/MM-GBSA and 

eMBrAcE based prediction model as an efficient tool for generating more potent and specific 

inhibitors of PfATP6 by testing rationally designed lead compounds based on aremisinin 

derivatization. 
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5.1. Introduction 

In the 1970s, Chinese scientists identified artemisinin (quinghaosu) from sweet 

wormwood (Artemisia annua), thereby giving us our most important class of antimalarial 

drugs. Use of artemisinin-containing therapies has increased exponentially (Klayman, 1985) 

but the mechanism of action of these sesquiterpene lactone endoperoxides is controversial 

(Arrow et. al., 2004). Some (Jefford et. al., 2001; Pandey et. al., 1999), but not all (Haynes et 

al., 2003; O’Neill et. al., 2000; Hawley et. al., 1998), studies suggest that artemisinin act by 

heme-dependent activation of an endoperoxide bridge occurring within the parasite’s food 

vacuole. However, localization of artemisinins to parasite and not food vacuole membranes 

(Ellis et. al., 1985), and killing of tiny rings lacking haemozoin argue against the food vacuole 

being a major site for drug action (ter Kuile et. al., 1993).  

 

An alternative hypothesis for the mode of action of artemisinin has been proposed, 

based on structural similarities between the sesquiterpene moieties of thapsigargin and in 

artemisinin (Figure 5.1).  

(a)                           (b)    

   
 Figure 5.1. The 2D structure of (a) Thapsigargin (TG) and (b) Artemisinin showing 

the similarity between sesquiterpene moieties. 
 

Thapsigargin (TG) (another plant product from Thapsia garganica) is an extremely potent 

inhibitor of Ca2+-transporting ATPases (sarcoplasmic reticulum Ca2+- transporting ATPases 

or SERCAs) from a wide variety of organisms. It was suggested that artemisinin may act in a 
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similar way, but more specifically to inhibit the SERCA of malarial (PfATP6) but not 

mammalian pumps (Eckstein-Ludwig et. al., 2003). PfATP6 is the only SERCA-type Ca2+-

ATPase sequence in the parasite’s genome. Further the experimental studies revealed that 

artemisinin inhibit the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) orthologue 

(PfATP6) of P. falciparum in Xenopus oocytes (Eckstein-Ludwig et. al., 2003). PfATP6 is 

thought to be the real molecular target of artemisinin in spite of some disagreements to be 

resolved (Ellis et. al., 1985).  

 

The SERCA belongs to the family of P-type ATPases that are responsible for active 

transport of cations across biomembranes (Kuhlbrandt, 2004). The SERCA uses the energy 

released from hydrolysis of ATP to ADP for transporting calcium ions to the lumen of sarco- 

and endoplasmic reticulum (ER) against the electrochemical gradient. The publication of 

crystal structures of nucleotide free SERCA in calcium-bound form (Toyoshima et. al., 2000) 

(E1.2Ca2+) and in TG-bound form (Toyoshima et. al., 2002) (E2’.TG) as well as in complex 

with a nonhydrolyzable ATP analogue (E1.AMPPCP) (Toyoshima et. al., 2004; Sorensen et. 

al., 2004) and with ADP stabilized by aluminum fluoride (E1.AIFx.ADP) (Sorensen et. al., 

2004) has elucidated the structures of key intermediates involved in the calcium transport 

cycle. The availability of such structural data has facilitated the understanding of 

conformational changes and dynamics involved at various steps of the transport cycle. The 

overall structure of SERCA consists of three cytoplasmic domains and 10 transmembrane 

helices (Figure 5.2). The two calcium binding sites in the E1 state of SERCA are about 5 Å 

apart and situated in the trans-membrane region, around 4 and 7 Å below the cytoplasmic 

surface of the membrane. The TG binding site is located in a hydrophobic cavity formed by 

transmembrane helices M3, M5, and M7. The polar end of the TG molecule is located near 

the membrane interface between residues Phe256 and Ile829 (Figure 5.3). Binding of TG to 

SERCA is mostly hydrophobic in nature with only one hydrogen bond formed between the 

Ile829 backbone and the carboxyl oxygen at the O-8 position of the TG molecule. The 

availability of structural information on SERCA facilitates understanding the structure-

activity relationships (SAR) for SERCA inhibition and enables molecular modeling 

techniques to be applied for designing novel and more potent inhibitors.  
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Figure 5.2. Overall structure of SERCA. The thapsigargin molecule (shown in blue and 
yellow spheres) binds to SERCA in a cavity formed by residues on transmembrane helices 3, 
5, and 7. The ATP binding site is located near residue F487 (yellow asterisk) in the nucleotide 
domain (N) in purple. The phosphorylating residue (Asp351) is situated near a location 
marked by an orange asterisk in the phosphorylation (P) domain, which is shown in green. 
 
 

 
Figure 5.3. Close up view of TG binding site formed by mostly hydrophobic residues on M3 
and M5 helices linning the channel.  
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The amino acid sequence of PfATP6 is known (Gardner et. al., 2002) but the three-

dimensional structure is not available. In this study, therefore we have constructed the 3D 

structure of PfATP6 by homology modeling and taken for interaction study between 

artemisinin and PfATP6. Of utmost importance in a structure-based drug design is the reliable 

filtering of putative hits in terms of their predicted binding affinity (scoring problem) which is 

based on the in silico-generated near native protein-ligand configurations (docking problem). 

Most of scoring functions used in docking programs are designed to predict binding affinity 

by evaluating the interaction between a compound and a receptor. However, it should be 

noted that ligand receptor recognition process is determined not only by enthalpic effects but 

also by entropic effects. Moreover, the scoring functions have a simplified form for the 

energy function to facilitate high throughput evaluation of a large number of compounds in a 

single docking run. These functions may be problematic when used with contemporary 

docking programs, and can result in a decrease of virtual screening accuracy. To overcome 

this problem, more precise but time consuming computational methodologies are necessary. 

Here, we have used and evaluated several receptor-centric computational methodologies for 

computational modeling of artemisinin and its derivatives as potent inhibitor of PfATP6. 

 

5.1.2. Overview of the methodologies tested in this study 

 We applied several computational solutions from the Schrödinger software package 

(Schrödinger, LLC: Portland, OR). A brief overview of these methodologies is presented. 

 

5.1.3. Glide Docking 

 We used the Glide program (Friesner et. al., 2004) as our docking engine. The Glide 

docking algorithm performs a series of hierarchical searches for locations of possible ligand 

affinity within the binding site of a receptor. A rough positioning and scoring algorithm is 

applied during the initial search step, followed by torsional energy optimization on an OPLA-

AA non-bonded potential energy grid for enduring candidate poses. The pose conformations 

of the very best candidates are further refined by using Monte Carlo sampling. Selection of 

the final docked pose is accomplished using a Glide score, which is a model energy function 

that combines empirical and force field based terms. The Glide score is a modified and 

extended version of the ChemScore function (Eldridge et. al., 1997).  



 123 

5.1.4. Multi-Ligand Bimolecular Association with Energetics (eMBrAcE) 

 The eMBrAcE (MacroModel v9.1) program calculates binding energies between 

ligands and receptors using molecular mechanics energy minimization for docked 

conformations. eMBrAcE applies multiple minimizations, during which each of the specified 

pre-positioned ligands is minimized with the receptor. For the energy-minimized structures, 

the calculation is performed first on the receptor (Eprotein), then on the ligand (Eligand), and 

finally on the complex (Ecomplex). The energy difference is then calculated as: 

∆E = Ecomplex - Eligand - Eprotein 

5.1.5. Prime MM-GBSA 

 This application is used to predict the free binding energy between a receptor and a 

ligand. MM-GBSA is a method that combines OPLS molecular mechanics energies (EMM), 

surface generalized Born solvation model for polar solvation (GSGB), and a nonpolar 

solvation term (GNP). The GNP term comprises the nonpolar solvent accessible surface area 

and van der Waals interactions. The total free energy of binding is calculated as:  

∆Gbind = Gcomplex - (Gprotein + Gligand) 

G = EMM + GSGB + GNP 

5.2. Materials and Methods 

5.2.1. Sequence analysis 

 The protein sequence of PfATP6 of the organism Plasmodium falciparum was 

obtained from the PlasmoDB, the official database of the malaria parasite genome project 

(Toyoshima et. al., 2000; Toyoshima et. al., 2002). Gene PFA0310c located in P. 

falciparum chromosome 1 and annotated by Sanger encoded the only SERCA-type calcium 

transporting ATPase protein. This protein comprises of 1228 amino acids. The predicted 

amino acid sequence was downloaded from the web site (Toyoshima et. al., 2004). 

Sequence similarity search with BLAST in Protein Data Bank (PDB) database gives only 

one similar protein (43.5% identical), SERCA (PDB ID: 1IWO). This structure is 

determined at 1.3Å resolution and contains the highly specific inhibitor thapsigargin (TG). 

It has three functional domains, the α-helix ion channel domain, where TG is located. The 

binding of TG to the ion channel domain is derived almost only through hydrophobic 

interaction with psoposed hydrogen bonding of TG O8 and 1819 backbone amide 

hydrogen. We performed the pairwise alignment of PfATP6 with 1IWO as reference using 
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the homology module of PRIME (Schrodinger package). We initially build the structure of 

PfATP6 using 1IWO as template. The structure of the PfATP6 α-helix domain is very 

similar to the corresponding TG-binding site of SERCA. But the ATP-binding domain and 

calcium ion binding domain showed relatively low similarity to SERCA or other proteins. 

Therefore, we removed the mismatched sequence part (375-707) from the whole sequence 

and then constructed the three-diemnsional structure of PfATP6. The sequence alignment 

after removing the part of mismatched sequence is shown in Figure 5.4. 

5.2.2. Homology model construction 
 

 The homology models of the proteins: PfATP6 built using Prime (Prime version 1.5, 

Macromodel version 9.1, Schrodinger, LLC, New York, NY, 2005) accessible through the 

Maestro interface (Schrodinger, Inc.). All water molecules were removed and the bound 

ligand (TG) was kept for the template. During the homology model building, Prime keeps the 

backbone rigid for the cases in which the backbone does not need to be reconstructed due to 

gaps in the alignment. The model was screened for unfavorable steric contacts and remodeled 

using a rotamer library database of PRIME. Explicit hydrogens were added to the protein and 

the protein model subjected to energy minimization using the Macromodel (Prime version 

1.5) force-field OPLS 2005. Energy minimization and relaxation of the loop regions was 

performed using 300 iterations in a simple minimization method. Again the steepest descent 

was carried out until the energy showed stability in the sequential repetition. Model 

evaluation was performed in PROCHECK v3.4.4 (Laskowski et. al., 1993) producing plots 

that were analyzed for the overall and residue-by-residue geometry. Ramachandran Plot 

(Ramachandran et. al., 1963) provided by the program PROCHECK assured very good 

confidence for the predicted protein. There were only 0.3% residues in the disallowed region 

and 0.9% residues in generously allowed regions. Nevertheless, PROCHECK assured the 

reliability of the structure and the protein was subjected to VERIFY3D (Eisenberg et. al., 

1997), available from NIH MBI Laboratory Servers.  
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Figure 5.4. Alignment of PfATP6 sequence with 1IWO as reference protein. 



 126 

5.2.3. Ligand binding site prediction 

 Site directed mutagenesis studies in catalytic site of PfATP6 of Palsmodium 

falciparum have revealed that Leu 263 is the critical residue involved in binding of 

artemisinin with PfATP6 (Uhlemann et. al., 2005). In silico prediction of the binding site was 

done for the PfATP6 in P. falciparum using SiteMap (Schrodinger package). SiteMap treat 

entire proteins to locate binding sites whose size, functionality, and extent of solvent exposure 

meet user specifications. SiteScore, the scoring function used to assess a site’s propensity for 

ligand binding, accurately ranks possible binding sites to eliminate those not likely to be 

pharmaceutically relevant. It identifies potential ligand binding sites by linking together “site 

points” that are suitably close to the protein surface and sufficiently well sheltered from the 

solvent. Given that similar terms dominate the site scoring function, this approach ensures that 

the search focuses on regions of the protein most likely to produce tight protein-ligand or 

protein-protein binding. Subsites are merged into larger sites when they are sufficiently close 

and could be bridged in solvent-exposed regions by ligand atoms. SiteMap evaluates sites 

using a series of properties. The binding site with highest site score was taken for docking of 

the artemisinin analogues. The algorithm proceeds as follows: the protein is projected onto a 

3D grid with a step size of 1.0 Å; grid points are labeled as protein, surface, or solvent using 

certain rules. A grid point is marked as protein if there is at least one atom within 1.6 Å. After 

the solvent excluded surface is calculated the surface vertices’ coordinates are stored. A 

sequence of grid points, which starts and ends with surface grid points and which has solvent 

grid points in between, is called a surface–solvent–surface event. If the number of surface–

solvent–surface events of a solvent grid exceeds a minimal threshold of 6, then this grid is 

marked as pocket. Finally, all pocket grid points are clustered according to their spatial 

proximity. The clusters are ranked by the number of grid points in the cluster. The top three 

clusters are retained and their centers of mass are used to represent the predicted pocket sites. 

The binding pocket obtained by in silico studies on PfATP6 of Plasmodium falciparum was 

consistent with the site directed mutagenesis studies. 

 

5.2.4. Preparation of the ligands 

 An initial dataset of 158 artemisinin analogues were collected from published data 

(Woolfrey et. al., 1998; Acton et. al., 1993; Lin et. al., 1989; Posner et. al., 1992; Avery et. al., 
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1995; Avery et. al., 1996) in which several different ring systems were represented. All of the 

analogues were either peroxides or trioxanes, which should act via similar mechanisms of 

action and were categorized into 10 classes (Table 5.1). Each of these compounds had 

associated in vitro bioactivity values (IC50 values reported in ng/ml) against the drug resistant 

malaria strain P. falciparum (W-2 clone). The log value of the relative activity (RA) of these 

compounds was used for analysis and was defined as: 

 

Log(RA) = log[(artemisinin IC50/analogue IC50)(analogue MW/artemisinin MW)]. 

 
Table 5.1. Artemisinin analogues with anti-malarial activities against the drug resistant 
malarial strain P. falciparum (W-2 clone) used in this work. 

O

O R1

R
O

R2

O

O

 
Sl No. R R1 R2 Log RA pIC50 

(ng/ml) 
1 CH3 CH3 H 1.000 1.398 
2 C4H8Ph H H 0.450 0.712 
3 CH3 H 2-Z-Butenyl -1.10 -0.760 
4 CH3 H H 0.790 1.188 
5 CH3 H 2-E-Butenyl -0.600 -0.260 
6 CH3 Allyl H -0.100 0.260 
7 CH3 C4H9 H 0.170 0.508 
8 C4H8Ph C4H9 H -0.320 -0.117 
9 C3H6(P-Cl-Ph) C4H9 H -0.280 -0.097 

10 CH2CH2CO2Et C4H9 H 1.360 1.595 
11 CH3 C2H5 H 1.400 1.777 
12 CH3 C6H13 H 0.860 1.162 
13 CH3 i- C4H9 H -0.550 -0.212 
14 CH3 i-C6H13 H -0.040 0.262 
15 CH3 i-C3H7 H -0.040 0.317 
16 CH3 i-C5H11  0.070 0.389 
17 CH2CH2CO2Et H H 0.370 0.669 
18 C2H5 H H 0.050 0.448 
19 C3H7 H H 0.830 1.207 
20 CH3 C3H6(p-Cl-Ph) H 1.370 1.595 
21 CH3 CH2CH3 R1=R2 -0.360 -0.022 
22 CH3 C5H11 H 1.020 1.339 
23 CH3 C4H8Ph H 0.630 0.876 
24 CH3 C2H4Ph H 0.120 0.398 
25 CH3 C3H6Ph H 0.780 1.042 
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Table 5.1 (continued). 10-Substituted artemisinin derivatives with anti-malarial activities 
against the drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 

O
O R1

O
O

R

R2

R3  
 

Sl. 
No. 

R R1 R2 R3 Log RA pIC50 
(ng/ml) 

26 CH3 CH3 H H 0.750 1.170 
27 CH3 CH3 H OH 0.550 0.945 
28 CH3 CH3 H OEt 0.340 0.694 
29 CH3 CH3 H OH 0.960 1.295 
30 CH3 CH3 H OEt -1.080 -0.740 
31 CH3 H Br H 0.280 0.606 
32 CH3 CH3 Br NH-2-(1,3-thiazole) 0.660 0.874 
33 CH3 CH3 Br aniline 0.180 0.401 
34 CH3 Br CH3 NH-2-pyridine -0.090 0.115 
35 CH3 CH3 Br NH-2-pyridine -0.770 -0.564 
36 CH3 CH3 H OMe 0.280 0.654 
37 CH3 CH3 H α -OEt 0.320 0.674 
38 CH3 C4H9 H H 1.320 1.677 
39 CH3 C2H5 H H 0.670 1.068 
40 CH3 C3H7 H OEt -0.040 0.277 
41 CH3 C2H5 H OEt 0.500 0.835 
42 CH3 CH3 H C3H6OH 0.780 1.115 
43 CH3 CH3 H OCH2CO2Et 0.520 0.800 
44 CH3 CH3 H OC2H4CO2Me 0.100 0.364 
45 CH3 CH3 H OC3H6CO2Me -0.030 0.218 
46 CH3 CH3 H OCH2(4-PhCO2Me) -0.070 0.143 
47 CH3 CH3 H (R)-OCH2CH(CH3)CO2Me 1.790 2.070 
48 CH3 CH3 H (S)-OCH2CH(CH3)CO2Me 2.250 2.530 
49 CH3 CH3 H (R)-OCH(CH3)CH2CO2Me 0.870 1.134 
50 CH3 CH3 H (S)-OCH(CH3)CH2CO2Me 1.700 1.964 
51 CH2CH2CO2Et H H H 0.700 1.017 
52 C3H6(p-Cl-Ph) H H H -0.550 -0.295 
53 C4H9 H H H 0.750 1.127 
54 C2H5 H H H -1.000 -0.580 
55 i-C4H9 H H H 0.400 0.777 
56 C3H7 H H H 0.840 1.238 
57 C4H8Ph H H H 0.580 0.858 
58 CH3 -CH2O-  OOH -0.570 -0.219 
59 CH3 =CH2  OOH -0.990 -0.616 
60 - CH3 OH α-OH -0.890 -0.519 
61 CH3 C5H11 H H 0.160 0.498 
62 CH3 C3H6Ph H H 1.400 1.678 
63 CH3 C3H7 H H 0.740 1.117 
64 - CH3 OH CH2CF3 0.330 0.615 
65 - OH CH3 CH2CF3 -0.700 -0.415 
66 - CH3 OH OEt -0.440 -0.415 
67 CH3 CH3 H OOt-C4H9 0.920 1.217 
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Table 5.1 (continued). Seco-artemisinin derivatives with anti-malarial activities against the 
drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 
 

O

O

R1

OO
OR

R

R2

 
 

Sl. No. R R1 R2 Log RA pIC50 (ng/ml) 
68 CH3 H H -2.370 -1.906 
69 C2H5 H H -1.130 -0.713 
70 - - - -0.260 0.097 

 
 
 
 
 
Table 5.1 (continued). 11-Aza artemisinin derivatives with anti-malarial activities against the 
drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 
 
 

O

O
O

N

O
R

 
 

Sl. No. R Log RA pIC50 (ng/ml) 
71 C3H6Ph 0.020 0.283 
72 C2H4Ph 0.160 0.439 
73 C5H11 -0.200 0.121 
74 CH2(p-Cl-Ph) -0.160 0.096 
75 CH2Ph 0.340 0.636 
76 CH2-(2-C5H4N) 1.460 1.487 
77 2-Thiophene 0.170 0.458 
78 Acetaldehyde 1.470 1.828 
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Table 5.1 (continued). Artemisinin derivatives lacking the D-ring with anti-malarial activities 
against the drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 
 

O
R1 R3

O
O

R4

R2
 

 
Sl. 
No. 

R1 R2 R3 R4 Log RA pIC50 
(ng/ml) 

79 -O2CCH2Ph H H CH3 -0.510 -0.217 
80 H H H CH3 -0.320 0.202 
81 H OCH3 H H -0.310 0.180 
82 C2H4OH H CH3  -1.800 -1.429 
83 C2H4OH CH3 H  0.230 0.601 
84 C2H4OH CH3 CH3  -1.800 -1.449 
85 C2H4OCH2Ph CH3 CH3  -1.800 -1.558 
86 OCH3 H C2H4O2CNEt2 H 0.650 0.929 
87 OCH3 H C2H4O2CNPh2  0.650 0.829 
88 H OCH3 C2H4OCH2Ph H 0.750 1.039 
89 H OCH3 C2H4O-allyl H 0.400 0.735 
90 H OCH3 C2H4O2Ph H -0.590 -0.319 
91 H OCH3 C2H4O2C(4-PhCO2C2H4NMe2)  -0.600 -0.446 
92 H OCH3 C2H4O2CCH2NCO2-(t-C4H9) H -0.040 0.174 
93 OCH3 - C2H4OCH2(4-F-Ph)  0.380 0.648 
94 OCH3 - C2H4OCH2(4-Py)  0.140 0.428 
95 H OCH3 C2H4OCH2(4-N-Me-pyridine) H -0.900 -0.647 
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Table 5.1 (continued). Miscellaneous artemisinin derivatives with anti-malarial activities 
against the drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 
 

Sl. No. Ligand structure Log RA pIC50 (ng/ml) 

96 O

O

O

O
O

O
O

 

-2.090 -1.755 

97 
O O

O  

-1.270 -0.802 

98 O

O

O
O

O  

0.230 0.587 

99 
C
H2

O

O
O

O  

-0.670 -0.353 

100 

O

H

O
O

H  

-2.260 -1.862 

101 
O

O

O
O

 

-0.240 0.180 

102 
O

O
O

H

O  

-0.960 -0.559 

103 
O

O

O
O

H
 

-0.790 -0.370 

104 O

O
O

O
 

-0.353 0.090 
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Table 5.1 (continued). 9-sustituted artemisinin derivatives with anti-malarial activities against 
the drug resistant malarial strain P. falciparum (W-2 clone) used in this work.  
 

Sl. No.  Ligand structure Log RA pIC50 (ng/ml) 

105 O

O

O
OCH3

CH3

OOH  

-0.739 -0.365 

106 O

O

O
OCH3

CH3

OH  

-2.219 -1.821 

107 O

O

O
OCH3

CH3

O

H N

N

H
HH H

 

-2.447 -2.106 

108 O

O

O
OCH3

CH3

O

H

CH3

H

 

-0.198 0.182 

109 O

O

O
OCH3

CH3

H

OH
OH

H

H

 

-0.717 -0.325 

110 O

O

O
OCH3

CH3

O

Br

H
Br
H

 

-1.487 -1.282 

111 O

O

O
OCH3

CH3

O

O
H

H
OH  

-0.460 -0.109 

112 O

O

O
OCH3

CH3

O
OH

O
H

H

 

-0.409 -0.058 

113 O

O

O
OCH3

CH3

O
H
H

OH  

-0.361 0.013 
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Table 5.1 (continued). Dihydroartemisinin derivatives with anti-malarial activities against the 
drug resistant malarial strain P. falciparum (W-2 clone) used in this work.  
 

Sl. No. Ligand structure Log RA pIC50 (ng/ml) 

114 O

O

CH3

O

O
O

CH3H

CH3

HH

H

 

-0.269 0.129 

115 O

O

CH3

O
O

CH3H

CH3

HH

H

O H  

0.310 0.705 

116 
O

O

CH3

O
O

CH3H

CH3

HH

H

O C
H2

O OH

H

 

0.176 0.404 

117 
O

O

CH3

O
O

CH3H

CH3

HH

H

O

H

C
H2

CHCH3

O O CH3  

1.524 1.788 

118 
O

O

CH3

O
O

CH3H

CH3

HH

H

O

H

C
H

CH2

CH3

O O CH3  

0.599 0.863 

 
Table 5.1 (continued). Tricyclic 1,2,4-trioxane derivatives with anti-malarial activities against 
the drug resistant malarial strain P. falciparum (W-2 clone) used in this work.  
 

Sl. No. Ligand structure Log RA pIC50 (ng/ml) 

119 O

O

O
O H

H

H

O

OO

O

 

0.660 0.845 

120 O

O

O

O
H

H

H

O

O

O

O

H

H

H

H

N
CH 3

CH 3  

0.205 0.340 

121 O

O

O
O H

H

H

O

OH

H
N
H

O
O

CH3

CH3  

0.312 0.503 
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Table 5.1 (continued). N-alkyl-11-aza-9-desmethylartemisinin derivatives with anti-malarial 
activities against the drug resistant malarial strain P. falciparum (W-2 clone) used in this 
work. 
 

Sl. No. Ligand structure Log RA pIC50 (ng/ml) 

122 O

O

O

H

H

O
O

H

H

 

0.000 0.398 

123 
O

N

O
CH2

H

O
O

H

CH2

CH2
CH3  

0.041 0.362 

124 O
N

O
CH2

H

O
O

H

CH2 CH3CH3  

0.173 0.494 

125 
O

N

O

H

O
O

H

CH2

CH2CH2

CH2

CH2

O OH  

-0.921 -0.652 

126 
O

N

O

H

O
O

H

CH2

 

0.276 0.572 

127 
O

N

O

H

O
O

H

CH2

Cl  

0.045 0.301 

128 
O

N

O

H

O
O

H

CH2

CH2

 

0.294 0.573 

129 
O

N

O

H

O
O

H

CH2

CH2

CH2

 

0.312 0.574 
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Table 5.1 (continued). 3C-substituted artemisinin derivatives with anti-malarial activities 
against the drug resistant malarial strain P. falciparum (W-2 clone) used in this work. 
 
Sl. 
No. Ligand structure Log 

RA 
pIC50 
(ng/ml) 

Sl. 
No. Ligand structure Log RA pIC50 

(ng/ml) 

130 O

O

O

H
H

H

CH3 O
O

 

0.049 0.447 137 
O

O

O

H
H

H

CH2 O
O

CH2

CH2

 

0.449 0.710 

131 O

O

O

H
H

H

CH2 O
O

CH3

 

0.828 1.205 138 
O

O

O

H
CH2

H

CH3 O
O

CH2

CH2

CH3  

0.410 0.729 

132 O

O

O

H
H

H

CH2 O
O

C
H2

CH3

 

-0.745 -0.385 139 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

CH2

CH3

 

-0.481 -0.197 

133 O

O

O

H
H

H

CH O
O

CH3
CH3

 

-0.347 0.010 140 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3  

-2.000 -1.769 

134 
O

O

O

H
H

H

CH2 O
O

O O
CH2

CH3

 

0.365 0.665 141 
O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

CH2

Cl

 

-0.276 -0.093 

135 
O

O

O

H
H

H

CH2 O
O

 

-2.000 -1.706 142 
O

O

O

H
CH2

H

CH2 O
O

CH2
CH2

CH3

CH2

CH2

 

-0.319 -0.116 

136 
O

O

O

H
H

H

CH2 O
O

CH2

Cl

 

0.104 0.343 143 O

O

O

H
CH2

H

CH2 O
O

CH2

CH2

CH3

O O

CH2

CH3

 

1.359 1.594 
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Table 5.1 (continued).  Various derivatives of artemisinin and artemether with antimalarial 
activity against the drug resistant malarial strain P. falciparum (W-2 clone) used in the work. 
 

Compound 
no. 

Analogue 
structure Log RA pIC50 

(ng/ml) 
Compound 

no. 
Analogue 
structure Log RA pIC50 

(ng/ml) 

144 O

O

O

H

O

O

H

 

0.437 
 

0.083 
 148 O

O

O
O

O

F
F

CH3

 

1.549 
 

0.497 
 

145 O

O

O

CH3

O

O

CH3

OH
H

H

 

2.188 
 

0.672 
 149 O

O

O

CH3

O

O

CH3

H
H

OH

 

0.054 
 

-0.938 
 

146 O

O

O

O

CH3

O

F

 

-0.120 
 

0.192 
 150 O

O

O

O

O

CH3

O

 

0.160 
 

0.495 
 

147 O

O

O

H

O

O

H

 

0.016 -1.347 
     

 
Molecular models of the artemisinin and its analogues (Table 5.1) were built using the Builder 

feature in Maestro (Schrodinger package) and energy minimized in a vacuum using Impact.  

Each structure was assigned an appropriate bond order using ligprep script shipped by 

Schrödinger and optimized initially by means of the OPLS 2005 force field using default 

setting. Complete geometrical optimization of these structures was carried out with the HF/3-

21G method (in this work) using the Jaguar (Schrodinger Inc.). In order to check the 

reliability of the geometry obtained, we compared the structural parameters of the artemisinin 

1,2,4-trioxane ring with theoretical (Pinheiro et. al., 2001) and experimental (Leban et. al., 

1988; Lisgarten et. al., 1998) values from the literature. All calculations reproduced most of 

the structural parameters of the artemisinin 1,2,4-trioxane ring seen in X-ray structures (Table 

5.2). This applies especially to the bond length of the endoperoxide bridge which seems to be 

responsible for the antimalarial activity (Bernardinelli et. al., 1994; Posner et. al., 1995; 

Posner et. al., 1995; Haynes et. al., 1996; Rafiee et. al., 2005).    

 

5.2.5 Docking of the ligands 

 All the ligands were docked to the PfATP6 receptor using Glide. After ensuring that 

protein and ligands are in correct form for docking, the receptor-grid files were generated 
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using grid-receptor generation program, using van der Waals scaling of the receptor at 0.4. 

The residues as mentioned in the ligplot (Figure 5.6) are included in the grid box. The default 

size was used for the bounding and enclosing boxes. The ligands were docked initially using 

the “standard precision” method and further refined using “xtra precision” Glide algorithm. 

For the ligand docking stage, van der Waals scaling of the ligand was set at 0.5. Of the 50,000 

poses that were sampled, 4,000 were taken through minimization (conjugate gradients 1,000) 

and the 30 structures having the lowest energy conformations were further evaluated for the 

favorable Glide docking score. A single best conformation for each ligand was considered for 

further analysis. 

 

5.2.6 Ligand & Structure-Based Descriptors (LSBD) protocol 

 The eMBrAcE, Prime MM-GBSA and Liaison calculations were performed using the 

Ligand & Structure-Based Descriptors (LSBD) application of the Schrödinger software 

package. These calculations were applied the ligand-receptor complex structures obtained 

from Glide docking.  

 

5.2.7 MM and Binding Free Energies 

 After obtaining preferable binding structure from docking simulation, the complex 

was partially minimized by relaxing ligand and atoms of side chains that are within 7Å away 

from the ligand while all other atoms were fixed. We compared the energies calculated based 

on pre-minimized structures and minimized structures, the later has better correlation with 

activity of ligands. So the minimized structures were used in all energy calculations. After all 

energies were calculated, factor analysis (FA) and multiple regression analysis (MRA) were 

used to derive a LRE-like equation, which produce a reasonable FEB which has good 

correlation with the activity of these compounds. 

 

 In order to explore the reliability of the proposed model we used the cross validation 

method. Prediction error sum of squares (PRESS) is a standard index to measure the accuracy 

of a modeling method based on the cross validation technique. The r2
cv was calculated based 

on the PRESS and SSY (sum of squares of deviations of the experimental values from their 

mean) using following formula: 
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where yexp, ypred and y are the predicted, observed and mean values of the antimalarial 

activities of the artemisinin analogues. The cross validation analysis performed by using the 

leave one out (LOO) method in which one compound removed from the data set and its 

activity predicted using the model derived from the rest of the data points. The cross-validated 

correlation coefficient (q2) that resulted in optimum number of components and lowest 

standard error of prediction were considered for further analysis and calculated using 

following equations: 

 
where ypred, yobserved and ymean are the predicted, observed and mean values of the antimalarial 

activities of the analogues and PRESS is the sum of the predictive sum of squares.  

 

5.3 Results and Discussion 

 The atomic coordinates of PfATP6 for the organism Plasmodium falciparum was not 

available in Protein Data Bank, which necessitated developing a protein model. Homology 

modeling protocol was employed to predict the model of the protein. An identity of 43.5% 

with well-studied protein of SERCA (pdb id: 1iwo; resolution 1.3 Å) provided a great strength 

for modeling the protein. Three dimensional structure predictions by comparative modeling 

was done by PRIME 1.5 (Schrodinger package). Macromodel (Schrodinger pacakage) was 

used in energy minimization embraces a range of force fields. Macromodel module is a 

molecular mechanics simulation environment offering energy minimization, dynamics and 

conformational search on molecular, aggregate or periodic systems. Due to some unfavorable 

steric contacts we had to edit the raw protein manually, with out disturbing the critical 

residues. Simple minimization followed by a detailed minimization was done until we could 

find no significant variation in energy. Atomic charges were assigned using OPLS-AA force 

field. The final model, which we took for further analysis, consisted of 895 amino acid 

residues. We used both PROCHECK and the VERIFY3D softwares to check the quality of 

the modeled protein. Ramachandran Plot obtained from the program PROCHECK, which 

checks the stereochemical quality of a protein structures, producing a number of postscript 
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plots, analyzing its overall and residue-by-residue geometry, assured the reliability of the 

modeled protein with 91.1% residues in most allowed region and 7.7% in additional allowed 

region. There were only 0.3% residues in disallowed region and 0.9% in generously allowed 

region. The assessment with VERIFY3D, which derives a ‘‘3D-1D’’ profile based on the 

local environment of each residue, described by the statistical preferences for: the area of the 

residue that is buried, the fraction of side-chain area that is covered by polar atoms (oxygen 

and nitrogen), and the local secondary structure, also substantiated the reliability of the three 

dimensional structure. The residues that deviated from the standard conformational angles of 

Ramachandran plot were the members of N terminal domain of the protein. This was an 

ignorable condition since the N-terminal end was not critical in our study. The distance of 

these residues to the active site residues also were found to be more than 10 Å, which 

suggested that those residues would interfere little with the binding of ligands in the active 

site region of PfATP6.  Figure 5.4 compares the structures of SERCA and homology-modeled 

PfATP6. Active site was identified with reference to the studies done on SERCA (pdb id: 

1IWO). We carried out in silico studies to confirm these active sites, using SiteMap 

algorithm. The output from the SiteMap program showed coherent active sites for the target 

protein as reported in sie directed mutagenesis study (Uhlemann et. al., 2005).  The structural 

comparison of template protein and PfATP6 model showed significant similarity in the 

binding site residues (Figure 5.5). 

 

 

 



 140 

 
 

 
 

Figure 5.5 Schematic display of SERCA (above) and PfATP6 (below) generated using DS 
Visualizer for windows. Helices and sheets are represented as red cylinders and cyan arrows, 
respectively. The lignad TG (in brown stick) is included in the structure. 
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  (a) 

 
 

  (b) 

 
 

Figure 5.6: Ligplot of (a) PfATP6- artemisinin binding site and (b) SERCA-TG binding site.  
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 One of the key challenges in computer-aided drug discovery is to maximize the 

capabilities of the method in use for predicting and rank-ordering the binding affinities of 

compounds for a given target protein. The efficiency of a prediction method is predominantly 

determined by these capabilities. Various descriptors extracted from the structural information 

on ligand-receptor complex may provide an advantageous solution to creating a reliable 

binding-affinity-prediction model. Here, we combined the results obtained from a standard 

docking protocol with data from three different structure-based descriptors, and then 

investigated the utility of these descriptors on the virtual screening efficiency for artemisinin 

derivatives.  

 

 Docking simulation of artemisinin derivatives to the homology modeled PfATP6 was 

performed using the Glide program (Schrodinger package). The binding site of PfATP6 was 

constructed with thapsigargin as reference ligand. All the 154 artemisinin liagnds with known 

antimalarial activities (W2 clone) and thapsigargin (TG) were docked into the defined binding 

site. The original crystal structure of TG was extracted from TG-SERCA complex (PDB ID: 

1IWO) and was redocked inot the binding site of PfATP6 in order to validate the Glide-XP 

docking protocol. The top 10 configurations after docking were taken into consideration to 

validate the result (Table 5.2).  

 

Table 5.2. The RMSD and docking score from the docking simulation of 10 lowest 
configurations of crystal structure of TG with PfATP6.  
 

Configuration Glide score ΔGa
score RMSDb (Å) RMSDc (Å) 

1 -9.33 0 0.37 0.04 
2 -9.28  0.53 0.05 
3 -8.04  0.57 0.02 
4 -8.02  0.74 0.03 
5 -8.01  0.81 0.02 
6 -7.93  0.85 0.02 
7 -7.53  1.02 0.02 
8 -7.33  1.27 0.02 
9 -6.99  1.36 0.01 

10 -6.41  1.57 0.05 
 

aΔGscore = Ei - Elowest¸ 
bRMSD, RMSD between docked and crystallographic thapsigargin 

structure, cRMSD, RMSD between docked poses corresponding to each configuration. 
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The RMSD was calculated for each configuration in comparison to the co-crystallized TG and 

the value was found to be in between 0.37–1.57 Å. Whereas the RMSD value calculated out 

of ten accepted poses for each configuration was found in between 0.02–0.05 Å. This revealed 

that the docked configurations have similar binding positions and orientations within the 

binding site and are similar to the crystal structure. The best docked structures, which is the 

configuration with the lowest Glide score is compared with the crystal structure as shown in 

Figure 5.7. These docking results illustrate that thapsigargin in PfATP6 maintained the same 

spatial coordinates as in SERCA.  Docking of artemisinin derivatives to this binding site was 

performed using the standardized docking protocol. The binding mode of both TG and 

artemisinin within the binding site is represented in Figure 5.8. In this figure we can observe 

that both the molecule well fitted to the defined binding pocket. All the 154 artemisinin 

analogues were also found to be good binder with PfATP6. The binding modes of artemisinin 

and its derivatives showed hydrophobic interaction with PfATP6. This binding modes enable 

hypothesis that the artemisinin derivatives bind to PfATP6 with almost hydrophobic 

inateractions and it should be the preorganized shape binding (Nogales et. al., 1998; Vander 

Velde et. al., 1993) between the rigid structure of artemisinin analogues and the binding 

pocket of PfATP6. As the Fe2+-dependent activation and antimalarial activity of artemisinin 

do not depend on the heme binding (Haynes et. al., 2004), we can propose that the production 

of the carbon centered free radical (Posner et. al., 1992) should not precede the binding to 

PfATP6. Therefore, artemisinin should be bound to PfATP6 before activiation by Fe2+ ion. 

For each ligand in the virtual library, the pose with the lowest Glide score was rescored using 

Prime/MM-GBSA and eMBrAcE approaches. These approaches predict the binding free 

energy for set of ligands to receptor.  
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Figure 5.7 Superposition of all docked configurations of TG on crystal structure (red-stick). 

RMSD (heavy atom) = 0.37- 1.57Å.  

 
 

Figure 5.8 Binding mode of artemisinin and TG within the binding site of PfATP6. TG: 
brown stick model and Artemisinin: green stick model. 
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5.3.1 Building models for prediction of Log RA using Glide score and Prime/MM-GBSA 
energy 
 

 The mode of action of artemisinin structural derivatives is reported to be due to 

inhibition of PfATP6 protein. Thus in this study we have taken PfATP6 as the the molecular 

target and built prediction model for antimalarial activity by considering the Glide score and 

ΔGbind as descripotrs. The docking score and the ΔGbind energy of the analogues are included 

in Table 5.3.  

Table 5.3. Predicted antimalarial activities of (a) analogues using Glide score (XP) and 
Prime/MM-GBSA energy as a descriptor and experimental activity.  
 

Ligand 
 

Glide 
Score  

∆Gbind 
(kcal/mol) 

Expt. Log 
RA 

aPred. Log RA 
(Gscore) 

bPred. Log RA 
(∆Gbind) 

 
(a) Artemisinin derivatives 

1 -6.62 -20.21 1.00 0.19 0.40 
2 -5.25 -12.66 0.45 -0.51 -0.37 
3 -4.16 -10.00 -1.10 -1.06 -0.64 
4 -6.37 -28.32 0.79 0.06 1.23 
5 -6.56 -12.27 -0.60 0.16 -0.41 
6 -6.28 -12.14 -0.10 0.02 -0.42 
7 -7.50 -23.47 0.17 0.64 0.73 
8 -7.25 -17.19 -0.32 0.51 0.09 
9 -7.67 -12.10 -0.28 0.72 -0.43 

10 -7.27 -24.49 1.36 0.52 0.84 
11 -7.74 -26.16 1.40 0.76 1.01 
12 -7.11 -22.75 0.86 0.44 0.66 
13 -6.18 -18.36 -0.55 -0.03 0.21 
14 -7.17 -12.49 -0.04 0.47 -0.39 
15 -6.80 -18.99 -0.04 0.28 0.28 
16 -6.88 -22.64 0.07 0.32 0.65 
17 -6.28 -14.73 0.37 0.01 -0.16 
18 -5.47 -12.79 0.05 -0.40 -0.36 
19 -6.28 -19.12 0.83 0.01 0.29 
20 -8.20 -28.54 1.37 0.99 1.25 
21 -5.16 -20.63 -0.36 -0.56 0.44 
22 -6.54 -27.74 1.02 0.15 1.17 
23 -7.26 -17.00 0.63 0.51 0.07 
24 -7.68 -16.62 0.12 0.73 0.04 
25 -7.86 -21.75 0.78 0.82 0.56 

 
(b) 10-Substituted artemisinin derivatives 

26 -6.10 -17.61 0.75 -0.08 0.14 
27 -5.61 -18.11 0.55 -0.32 0.19 
28 -5.57 -11.91 0.34 -0.35 -0.45 
29 -6.96 -28.89 0.96 0.36 1.29 
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30 -5.10 -5.53 -1.08 -0.58 -1.10 
31 -7.85 -22.45 0.28 0.82 0.63 
32 -6.51 -21.46 0.66 0.13 0.53 
33 -7.38 -12.05 0.18 0.58 -0.43 
34 -7.28 -17.18 -0.09 0.52 0.09 
35 -6.78 -8.39 -0.77 0.27 -0.80 
36 -6.76 -21.43 0.28 0.26 0.53 
37 -8.03 -23.15 0.32 0.91 0.70 
38 -7.40 -27.96 1.32 0.59 1.19 
39 -8.24 -20.83 0.67 1.01 0.46 
40 -7.79 -20.43 -0.04 0.78 0.42 
41 -8.32 -16.40 0.50 1.05 0.01 
42 -5.92 -16.69 0.78 -0.17 0.04 
43 -7.95 -15.18 0.52 0.87 -0.11 
44 -6.84 -16.97 0.10 0.30 0.07 
45 -6.53 -10.43 -0.03 0.14 -0.60 
46 -5.49 -8.64 -0.07 -0.39 -0.78 
47 -8.24 -29.13 1.79 1.01 1.31 
48 -8.88 -28.91 2.18 1.34 1.29 
49 -6.55 -21.56 0.87 0.15 0.54 
50 -7.98 -28.76 1.70 0.88 1.27 
51 -6.68 -15.59 0.70 0.22 -0.07 
52 -7.09 -14.27 -0.55 0.43 -0.20 
53 -5.99 -26.30 0.75 -0.13 1.02 
54 -5.36 -11.18 -1.00 -0.45 -0.52 
55 -5.67 -15.15 0.40 -0.29 -0.11 
56 -6.72 -18.20 0.84 0.24 0.20 
57 -7.67 -14.17 0.58 0.72 -0.21 
58 -5.30 -17.61 -0.57 -0.48 0.14 
59 -5.59 -12.91 -0.99 -0.33 -0.34 
60 -5.40 -13.48 -0.89 -0.43 -0.29 
61 -6.98 -13.50 0.16 0.38 -0.28 
62 -7.31 -25.49 1.40 0.54 0.94 
63 -6.41 -28.33 0.74 0.08 1.23 
64 -6.13 -23.29 0.33 -0.06 0.72 
65 -5.38 -14.84 -0.70 -0.44 -0.15 
66 -6.14 -8.72 -0.44 -0.06 -0.77 
67 -6.45 -22.30 0.92 0.10 0.61 

 
(c) Seco-artemisinin derivatives 

68 -3.33 -1.26 -2.37 -1.49 -1.53 
69 -4.68 -5.91 -1.13 -0.80 -1.06 
70 -5.59 -20.41 -0.26 -0.33 0.42 

 
(d) 11-Aza artemisinin derivatives 

71 -6.31 -15.84 0.02 0.03 -0.04 
72 -7.66 -13.00 0.16 0.72 -0.33 
73 -5.84 -14.60 -0.20 -0.21 -0.17 
74 -5.35 -11.67 -0.16 -0.46 -0.47 
75 -6.10 -16.28 0.34 -0.07 0.00 
76 -7.78 -27.77 1.46 0.78 1.17 
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77 -5.14 -23.04 0.17 -0.56 0.69 
78 -8.00 -27.17 1.47 0.89 1.11 

 
(e) Artemisinin derivatives lacking the D-ring 

79 -7.36 -8.13 -0.51 0.56 -0.83 
80 -6.19 -7.71 -0.32 -0.03 -0.87 
81 -5.97 -12.73 -0.31 -0.14 -0.36 
82 -3.56 -4.78 -1.80 -1.37 -1.17 
83 -5.30 -14.26 0.23 -0.48 -0.21 
84 -3.91 -3.66 -1.80 -1.19 -1.29 
85 -3.74 -3.88 -1.80 -1.28 -1.26 
86 -5.95 -19.29 0.65 -0.15 0.31 
87 -8.42 -17.92 0.65 1.11 0.17 
88 -6.30 -22.34 0.75 0.02 0.62 
89 -6.52 -14.00 0.40 0.14 -0.23 
90 -6.75 -16.35 -0.59 0.26 0.01 
91 -6.67 -6.14 -0.60 0.22 -1.03 
92 -5.74 -8.81 -0.04 -0.26 -0.76 
93 -7.15 -25.27 0.38 0.46 0.92 
94 -5.72 -14.82 0.14 -0.27 -0.15 
95 -6.55 -13.79 -0.90 0.15 -0.25 

 
(f) Miscellaneous artemisinin derivatives 

96 -3.33 -1.30 -2.09 -1.49 -1.53 
97 -4.45 -8.39 -1.27 -0.91 -0.80 
98 -6.33 -14.42 0.23 0.04 -0.19 
99 -5.84 -16.94 -0.67 -0.21 0.07 
100 -3.20 -1.43 -2.26 -1.55 -1.51 
101 -4.73 -9.31 -0.24 -0.77 -0.71 
102 -5.03 -11.61 -0.96 -0.62 -0.48 
103 -5.04 -11.09 -0.79 -0.62 -0.53 
104 -4.62 -20.00 -0.35 -0.83 0.38 

 
(g) 9-sustituted artemisinin derivatives 

105 -4.38 -6.79 -1.49 -0.95 -0.97 
106 -4.96 -6.29 -0.46 -0.66 -1.02 
107 -5.55 -10.90 -0.41 -0.35 -0.55 
108 -5.71 -18.53 -0.36 -0.28 0.23 
109 -5.64 -12.88 -0.74 -0.31 -0.35 
110 -3.62 -2.11 -2.22 -1.34 -1.44 
111 -3.17 -0.56 -2.45 -1.57 -1.60 
112 -5.25 -19.30 -0.20 -0.51 0.31 
113 -5.76 -14.00 -0.72 -0.25 -0.23 

 
(h) Dihydroartemisinin derivatives 

114 -5.04 -11.92 -0.27 -0.62 -0.44 
115 -5.70 -21.73 0.31 -0.28 0.56 
116 -6.37 -12.91 0.18 0.06 -0.34 
117 -7.35 -26.00 1.52 0.56 0.99 
118 -6.03 -23.09 0.60 -0.11 0.70 
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(i) Tricyclic 1,2,4-trioxane derivatives 
119 -7.88 -27.37 0.66 0.83 1.13 
120 -8.16 -24.67 0.21 0.97 0.86 
121 -8.30 -13.42 0.31 1.04 -0.29 

 
(j) N-alkyl-11-aza-9-desmethylartemisinin derivatives 

122 -5.10 -21.65 0.00 -0.58 0.55 
123 -6.37 -10.45 0.04 0.06 -0.59 
124 -5.45 -16.18 0.17 -0.41 -0.01 
125 -5.95 -6.54 -0.92 -0.15 -0.99 
126 -6.89 -16.82 0.28 0.33 0.06 
127 -5.61 -12.99 0.05 -0.32 -0.34 
128 -6.73 -20.51 0.29 0.24 0.43 
129 -6.48 -15.26 0.31 0.12 -0.10 

 
(k) 3C-substituted artemisinin derivatives 

130 -5.15 -22.00 0.05 -0.56 0.58 
131 -6.53 -20.00 0.83 0.14 0.38 
132 -6.54 -15.43 -0.74 0.15 -0.09 
133 -6.24 -19.37 -0.35 -0.01 0.32 
134 -5.19 -24.15 0.37 -0.54 0.80 
135 -3.50 -2.68 -2.00 -1.40 -1.39 
136 -8.47 -24.36 0.37 1.13 0.82 
137 -6.98 -24.72 0.45 0.37 0.86 
138 -7.51 -9.22 -0.43 0.64 -0.72 
139 -5.79 -4.78 -0.92 -0.23 -1.17 
140 -6.89 -25.68 0.41 0.33 0.96 
141 -6.31 -19.12 -0.48 0.03 0.29 
142 -3.76 -1.80 -2.00 -1.27 -1.48 
143 -7.64 -8.32 -0.28 0.71 -0.81 
130 -7.39 -15.56 -0.32 0.58 -0.07 
131 -8.25 -27.74 1.36 1.02 1.17 

 
(l) Various derivatives of artemisinin and artemether 

144 -7.15 -8.89 -0.36 0.46 -0.75 
145 -5.37 -12.07 0.34 -0.44 -0.43 
146 -3.61 -5.03 -1.79 -1.34 -1.15 
147 -5.07 -14.17 0.19 -0.60 -0.21 
148 -4.30 -4.21 -1.27 -0.99 -1.23 
149 -5.51 -9.81 -0.12 -0.37 -0.66 
150 -4.79 -14.26 0.16 -0.74 -0.21 
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Both the docking scores and ΔGbind well explained the activities of artemisinin derivatives. 

Figure 5.9 (a & b) shows good correlations of Glide XP score and ΔGbind with relative 

antimalarial activities compared with artemisinin. 
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Figure 5.9. Models for predicting antimalarial activity (Log RA) of the artemisinin 

derivatives based on (a) Glide score and (b) Prime/MM-GBSA energy (ΔGbind). 
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The equation (1) of the model and the corresponding statistics are shown below: 

Log RA = - 3.18 (±0.241) - 0.509 (±0.038) x G-score 
(N = 154; r2 = 0.538; s = 0.601; F = 178.22; r2

cv = 0.525; PRESS = 56.811) 
 

The root mean square error (RMSE) between the experimental RA and the predicted RA 

obtained by the regression model was 0.524, which is an indicator of the robustness of the fit 

and suggested that the calculated RA based on Glide score is reliable. The quality of the fit 

can also be judged by the value of the squared correlation coefficient (r2), which was 0.538 

for the data set. Figure 5.8a graphically shows the quality of fit. The statistical significance of 

the prediction model is evaluated by the correlation coefficient r2, standard error, F-test value, 

leave-one-out cross-validation coefficient r2
cv and predictive error sum of squares PRESS. 

The regression model developed in this study is statistically (r2
cv = 0.525, r2 = 0.538, F = 

178.22) best fitted and consequently used for prediction of antimalarial activities (log RA) of 

the artemisinin analogues as reported in Table 5.4.  

 

 We have used Prime/MM-GBSA protocol for rescoring Glide XP poses of the 

artemisinin analogues. We did find a better correlation between ΔGbind energy and 

experimental RA (r2 = 0.688) (Fig. 5.8b). Rescoring using Prime/MM-GBSA leads to minor 

changes of the ligand conformations (due to energy minimization of the ligand in receptor’s 

environment) and consequent stabilization of receptor and ligand complex. A linear 

regression model for prediction of predicted antimalarial activity (log RA) has been 

developed by considering analogues with known experimental activity. In this model we have 

taken ΔGbind energy as a descriptor. The Equation (2) of the model and the corresponding 

statistics are shown below:  

Log RA = - 1.66 (±0.098) - 0.102 (±0.006) x ΔGbind  (2) 
(N = 154; r2 = 0.688; s = 0.495; F = 333.24; r2

cv = 0.679; PRESS = 37.997) 
 

The statistical significance of the prediction model is evaluated by the correlation coefficient 

r2, standard error, F-test value, leave-one-out cross-validation coefficient r2
cv and predictive 

error sum of squares PRESS. The regression model developed based on ΔGbind energy is 

statistically (r2
cv = 0.679, r2 = 0.688, F = 333.24) best fitted and consequently used for 

prediction of antimalarial activities (log RA) of the artemisinin analogues as reported in Table 
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5.4. The average root mean square error between predicted and experimental RA values was 

0.445 by using leave-one-out cross validation technique which further revealed the reliability 

of the model for prediction ofantimalarial activity. However, we may observe that model 

using ΔGbind descriptor is better for predicting antimalarial activity than model using Glide 

score as a descriptor.  

 

5.3.2 Linear optimization of energy parameters vs Activity 
  

 One docking structure with better Glide score from each molecule docking result was 

picked up as final docked structure in PfATP6 for further calculations. As the Glide program 

treats a receptor rigidly during docking simulation, an energy minimization was performed to 

the docked complex. A vdW energy and electrostatic energy between ligand and receptor 

were calculated for each minimized complex. Also a desolvation energy and solvent 

accessible surface area (SASA) change were calculated using eMBrAcE (Schrodinger 

package). All these energies are listed in Table 5.5. By graphing these energies vs activity 

(log RA) of these ligands, all have bad correlation to experimental activity of the set of 

ligands. SASA has some degree correlation to activity for some subset ligands from all. A 

scheme similar to Linear Response was used to develop a free energy of binding (FEB) 

relationship based on these energies, which can express the activity of these artemisinin 

derivatives. A multiple regression was performed using Minitab statistical package. The 

properties of the final regression model are listed in Table 5.6. From the results of correlation 

factor analysis, it can be seen that ∆GvdW has most significant correlation to the activity (log 

RA) and electrostatic energy (∆Gele) has less significant correlation to the activity. It 

indicates that the binding of these artemisinin derivatives to PfATP6 is almost hydrophobic. 

∆GvdW may be a major drive force to their binding and contribution to their activity.  

 

 The predicted activity (log RA) of these artemesinin derivatives are listed in Table 5.4. 

The correlation between predicted activity and actual activity is shown on Figure 5.10. The 

calculated activity has good correlation to the actual activity. The linear optimization of 

energy parameters represents the actual activity well. Theoretically, the binding affinity of 

drug molecules can be partitioned into several components: vdW, electrostatic, solvation and 
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entropy. The entropy is most difficult component to calculate normally. Different methods 

(56) have been suggested to estimate the entropy contribution. To relative rigid molecules, the 

entropy is relative small and normally is ignored or cancelled in relative free energy 

calculation. In the rational drug design, the calculation of relative binding free energy rather 

than absolute binding free ebergy is normally persuaded. Several papers have been reported, 

in which a reasonable correlation between calculated FEB and activity for a small set of 

ligands. Although these energy components are added directly together in most of these 

applications, it is still a challenge to apply these methods into large set of ligands. Normally, 

these different energy components (vdW, electrostatic, solvation) were calculated using more 

than one method. To same set of structure, different force field or different methods will 

produce different values of energy. This suggests that these energy components need to be 

scaled before an equation is obtained to get a better expression for these energy components. 

A set of weights can be used to scale these energies to get free energy expression by linearly 

combining these energies. Some scoring functions (73) used this strategy, which were 

optimized using a test set of molecules. In the work, a linear combination strategy was used to 

express FEB by four energy components calculated from different methods. An expression of 

free energy, whose weight coefficients were optimized by a multiple regression, was obtained 

and successfully predicted the activity of a large set of ligands. As stated early, the major 

interest in drug design is to express the variance of free energy over a set of active molecules. 

In the sense, the ∆GvdW is biggest contribution; SASA is next; electrostatic part and 

electrostatic part of solvation are smallest contribution to the free energy variance. The 

Equation (3) of the model and the corresponding statistics are shown below:  

Log RA = -1.37 - 0.0035 SASA - 0.0314 ∆GvdW + 0.0029 ∆Gele - 0.00398 ∆Gsolv (3) 
(N = 135; r2 = 0.815; s = 0.291; F = 141.99; r2

cv = 0.802; PRESS = 11.65) 
 

The statistical significance of the prediction model is evaluated by the correlation coefficient 

r2, standard error, F-test value, leave-one-out cross-validation coefficient r2
cv and predictive 

error sum of squares PRESS. The regression model developed based on linear response 

scheme is statistically  (r2
cv = 0.802, r2 = 0.815, F = 141.99)  best fitted and consequently used 

for prediction of antimalarial activities (log RA) of the artemisinin analogues as reported in 

Table 5.4. The average root mean square error between predicted and experimental RA values 

was 0.291 by using leave-one-out cross validation technique which further revealed the 
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reliability of the model for prediction ofantimalarial activity. However, we may observe that 

model using linear response scheme is better for predicting antimalarial activity than model 

using Glide score and ΔGbind descriptor as descriptors.  

 
Table 5.4. Predicted antimalarial activities of artemisinin derivatives based on linear response 
scheme of energy parameters and experimental activities for selected analogues. 
 

Sl. No. SASA ∆GvdW ∆Gele ∆Gsolv Log RA Log RApred 
(a) Artemisinin derivatives 

1 459.0 -122.2 -116.4 106.2 1.00 1.02 
2 624.5 -120.4 -97.4 104.9 0.45 0.01 
3 591.7 -92.2 -138.6 118.4 -1.10 -0.69 
5 512.5 -93.3 -66.3 65.4 -0.60 -0.16 
6 436.8 -80.5 -87.7 103.2 -0.10 -0.12 
7 633.3 -123.8 -31.7 87.8 0.17 0.09 
8 690.3 -117.3 -29.0 61.4 -0.32 -0.44 
9 741.4 -131.4 -123.1 144.6 -0.28 -0.35 
12 609.6 -144.1 -203.2 199.6 0.86 0.76 
13 521.3 -90.4 -152.6 127.5 -0.55 -0.34 
14 477.4 -96.5 -36.5 66.4 -0.04 0.16 
15 635.7 -119.6 -18.5 48.2 -0.04 -0.04 
16 543.8 -105.0 -152.5 136.8 0.07 -0.03 
17 475.0 -109.6 -76.8 90.1 0.37 0.56 
18 479.9 -95.2 -94.7 61.0 0.05 0.08 
19 508.2 -120.5 -48.3 83.0 0.83 0.71 
20 654.6 -163.8 -77.2 107.1 1.37 1.17 
21 521.8 -101.5 -80.9 95.7 -0.36 0.03 
22 584.6 -142.0 -121.9 132.7 1.02 0.89 
23 670.0 -141.4 -110.3 125.6 0.63 0.38 
24 622.9 -119.5 -190.1 196.0 0.12 -0.06 
25 647.4 -141.9 14.6 47.6 0.78 0.59 

 
(b) 10-Substituted artemisinin derivatives 

26 497.3 -131.1 -133.6 120.4 0.75 1.06 
27 475.3 -121.6 -93.8 85.2 0.55 0.92 
28 663.6 -144.5 -670.9 620.4 0.34 0.20 
29 574.3 -143.0 -221.9 198.8 0.96 0.93 
30 532.7 -77.5 -68.6 59.1 -1.08 -0.76 
31 637.0 -137.3 -41.0 63.3 0.28 0.48 
32 532.3 -132.2 -47.9 56.8 0.66 0.93 
33 574.9 -96.4 -121.2 103.3 0.18 -0.45 
34 620.6 -126.7 -61.8 119.3 -0.09 0.24 
35 654.1 -103.1 -68.0 76.2 -0.77 -0.68 
36 711.9 -139.5 -134.4 156.8 0.28 0.06 
37 694.7 -139.9 -183.3 205.5 0.32 0.15 
39 827.3 -171.1 20.8 38.8 0.67 0.45 
40 529.9 -111.2 -56.1 85.0 -0.04 0.30 
41 658.8 -127.6 -168.1 165.6 0.50 -0.01 
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42 568.1 -131.4 -63.7 77.8 0.78 0.69 
43 702.2 -141.0 -62.6 87.5 0.83 0.20 
44 678.0 -126.2 -16.7 38.6 0.10 -0.08 
45 688.1 -121.9 -42.0 57.6 -0.03 -0.29 
46 669.7 -120.7 -34.1 62.1 -0.07 -0.21 
49 504.0 -126.6 -51.9 69.0 0.87 0.92 
51 575.1 -110.1 -42.9 54.4 0.70 0.01 
52 673.1 -113.1 -38.7 97.9 -0.55 -0.47 
53 536.8 -112.7 -109.5 107.7 0.75 0.27 
54 581.8 -88.5 -22.5 45.5 -1.00 -0.68 
55 501.5 -116.3 -33.5 35.7 0.40 0.63 
56 512.4 -124.2 -107.3 98.8 0.84 0.77 
57 659.9 -124.9 -56.1 118.8 0.58 -0.04 
58 531.8 -96.8 -48.5 58.3 -0.57 -0.15 
59 501.3 -77.6 -100.7 78.9 -0.99 -0.59 
60 485.2 -72.4 -180.9 141.2 -0.89 -0.70 
61 582.2 -105.5 -123.8 124.3 0.16 -0.22 
62 627.7 -151.3 -17.9 70.3 1.40 0.98 
64 535.3 -104.1 -76.4 56.7 0.33 0.04 
65 548.8 -92.5 42.8 -12.0 -0.70 -0.33 
66 548.9 -107.8 -78.7 88.1 -0.44 0.07 
67 492.7 -117.8 -168.6 117.6 0.92 0.66 

 
(c) Seco-artemisinin derivatives 

69 459.9 -56.6 -113.0 119.8 -1.13 -1.00 
70 542.4 -118.8 -83.9 98.3 -0.26 0.44 

 
(d) 11-Aza artemisinin derivatives 

71 651.8 -119.3 -77.7 119.6 0.02 -0.18 
72 623.5 -119.2 -55.8 82.3 0.16 0.00 
73 606.9 -119.2 -179.5 148.0 -0.20 0.03 
74 628.8 -108.7 -14.2 47.2 -0.16 -0.33 
75 581.9 -137.1 25.6 3.4 0.34 0.83 
76 616.5 -157.6 -255.6 161.6 1.46 1.12 
77 551.0 -118.1 -0.5 57.0 0.17 0.41 

 
(e) Artemisinin derivatives lacking the D-ring 

79 611.6 -104.3 -360.5 411.6 -0.51 -0.57 
80 418.9 -73.7 -87.9 77.2 -0.32 -0.22 
81 419.0 -85.3 -73.7 94.6 -0.31 0.14 
82 527.2 -52.5 -39.8 43.5 -1.80 -1.48 
83 522.8 -116.9 -89.4 89.8 0.23 0.50 
84 558.1 -63.0 -16.8 35.1 -1.80 -1.33 
85 688.8 -136.4 -64.7 75.1 0.65 0.14 
86 754.9 -144.2 -43.6 72.5 0.65 0.01 
88 649.3 -129.9 -32.6 60.0 0.75 0.19 
89 606.3 -115.5 -107.9 138.4 0.40 -0.05 
90 659.8 -113.6 -59.8 69.5 -0.59 -0.39 
91 874.4 -158.0 -480.8 531.2 -0.60 -0.51 
92 695.1 -117.5 -159.8 155.8 -0.04 -0.53 
93 657.1 -129.3 -74.0 89.3 0.38 0.10 
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94 611.3 -112.3 -37.5 54.2 0.14 -0.13 
95 701.5 -102.6 -63.1 90.8 -0.90 -0.97 

 
(f) Miscellaneous artemisinin derivatives 

96 481.6 -59.6 -85.1 93.3 -1.27 -1.02 
97 492.7 -106.4 -56.2 66.9 0.23 0.37 
98 612.7 -91.5 -107.1 132.5 -0.67 -0.82 

100 473.8 -92.0 -87.8 79.1 -0.24 0.02 
101 486.5 -75.2 -61.5 77.4 -0.96 -0.56 
102 472.5 -75.3 -59.8 75.1 -0.79 -0.47 
103 444.9 -91.8 -54.5 67.1 -0.35 0.20 

 
(g) 9-sustituted artemisinin derivatives 

105 508.1 -58.0 -155.3 151.3 -1.49 -1.26 
106 484.3 -86.2 -142.6 135.4 -0.46 -0.25 
107 490.3 -89.4 -141.0 131.1 -0.41 -0.19 
108 470.1 -98.0 -144.3 153.8 -0.36 0.19 
109 472.4 -73.5 -107.6 91.5 -0.74 -0.55 
112 498.2 -101.8 -106.8 107.2 -0.20 0.17 
113 464.5 -78.1 -159.8 174.5 -0.72 -0.40 

 
(h) Dihydroartemisinin derivatives 

114 469.7 -106.4 -104.5 98.6 -0.27 0.48 
115 472.4 -114.4 -72.1 48.6 0.31 0.72 
116 465.8 -108.6 -22.2 43.4 0.49 0.61 
117 651.1 -155.4 6.0 27.2 1.52 0.98 
118 649.6 -147.6 -37.2 52.0 0.60 0.73 

 
(i) Tricyclic 1,2,4-trioxane derivatives 

119 699.3 -141.2 -196.5 230.3 0.66 0.15 
120 857.5 -162.5 -199.5 240.9 0.21 -0.12 
121 765.0 -149.8 -194.1 199.7 0.31 0.04 

 
(j) N-alkyl-11-aza-9-desmethylartemisinin derivatives 

122 473.4 -115.9 -63.4 70.2 0.00 0.77 
123 578.7 -136.5 -98.0 142.1 0.04 0.76 
124 591.5 -103.8 -44.3 46.9 0.17 -0.28 
125 646.4 -109.2 -689.3 646.8 -0.92 -0.79 
126 596.0 -136.6 -10.8 83.5 0.28 0.71 
127 610.1 -141.0 -16.8 44.5 0.05 0.76 
128 637.4 -131.4 -103.0 120.6 0.29 0.27 
129 664.3 -128.2 -135.7 145.8 0.31 -0.01 

 
(k) 3C-substituted artemisinin derivatives 

130 482.0 -112.9 -83.1 100.7 0.05 0.61 
131 513.0 -121.3 -44.4 78.5 0.83 0.71 
132 543.2 -87.5 -109.1 118.5 -0.74 -0.54 
133 530.4 -102.0 -76.2 88.0 -0.35 0.00 
134 610.6 -130.5 -174.8 185.1 0.37 0.35 
136 642.6 -144.0 -23.4 65.6 0.37 0.66 
137 622.4 -131.5 -250.5 252.9 0.45 0.28 
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138 812.2 -148.7 -325.0 396.0 -0.43 -0.35 
139 786.8 -117.3 -324.9 413.9 -0.92 -1.17 
142 593.5 -128.4 -151.0 136.0 0.41 0.40 
143 619.9 -129.3 -79.7 107.3 -0.48 0.32 
130 757.1 -129.4 -62.1 86.6 -0.32 -0.47 
131 700.5 -163.9 -78.9 94.9 1.36 0.91 

 
(l) Various derivatives of artemisinin and artemether 

144 435.4 -78.8 -141.0 151.5 -0.36 -0.20 
145 555.6 -104.8 68.7 -45.2 0.34 0.02 
146 567.1 -100.2 -78.1 58.3 -0.12 -0.27 
147 531.8 -101.4 -65.7 57.8 0.16 -0.02 
148 564.4 -104.7 -87.6 68.9 0.21 -0.12 
149 554.0 -101.9 -54.6 42.3 0.19 -0.12 
150 521.7 -73.3 -46.3 64.5 -1.27 -0.81 

 
Predicted RA is calculated from optimized linear combination of ∆Gele,  ∆GvdW, ∆Gsolv, 
and SASA from regression.  
 

Table 5.5. Regression properties of energy parameters with experimental activities (Log RA). 

 SASA ∆GvdW ∆Gele ∆Gsolv 

Correlation factor 
with log RA 

0.018 0.587 0.009 0.001 

Intercept (B) -0.492 -3.24 0.087 0.099 

SE of B 0.34 0.241 0.081 0.088 

y = 0.8142x + 0.0073
R2 = 0.8146

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Experimental activities (Log RA)

Pr
ed

ic
te

d 
ac

tiv
iti

es
 (L

og
 R

A
)

 
 
Figure 5.10 Models for predicting antimalarial activity (Log RA) of the artemisinin 
derivatives based on free energy equation. 
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5.4 Conclusions 
 We have presented herein a FEB calculation on the binding affinity of 159 artemisinin 

derivatives with PfATP6. The binding structures of these ligands in PfATP6 were predicted 

by flexible docking simulations. The docking result demonstrated that the docking simulation 

could satisfactorily reproduce a binding structure from a crystal structure of a SERCA/TG 

complex. Superposition of the binding structure of whole set of ligands from docking 

simulations shows that these structurally similar ligand bind in a very similar pattern in 

PfATP6. They all bind at the same orientation, which have been found in crystal structures of 

SERCA/TG. They bind in a similar position inside the PfATP6 active site and try to fit the 

binding pocket well. The calculated FEB for these ligands reasonably predicted the activity of 

this set of ligands. The calculated activity has good correlation to experimental activity. The 

result shows that the linear combination of four energy terms: vdW, electrostatic, solvation 

(electrostatic part), and nonpolar energies optimized by regression has power to express the 

binding affinity of large set of ligands in receptor. The Dock-MM-GB/SA and eMBrAcE 

demonstrates a good ability on the binding structure prediction and binding energy 

determination of produce reasonable energies. The GB/SA method predicted a reasonable 

solvation energy terms to enable a satisfactory FEB expression was build. In the work, it is 

noticed that among these energy terms, the ∆GvdW has most significant correlation to the 

activity (log RA) and electrostatic energy (∆Gele) has less significant correlation to the 

activity. The binding modes of artemisinin and its derivatives showed hydrophobic interaction 

with PfATP6. This work suggests that in the relative FEB calculation, which is major interest 

in drug design, the contribution of different energy terms can be scaled by a set of weight 

factors to reach a good correlation. In practice, it is know that same energy term plays 

different role in different type of systems. This is one of reasons that a reasonable activity 

model can be obtained just based on some energy terms. The calculation of solvation effect 

upon a ligand binding in a protein is a challenge work. This work and many others have 

shown that solvation effect is any important driving force on ligand binding and a key factor 

in expression of activity of a set of ligands. In the work, GB and SASA methods were used to 

estimate the electrostatic and the nonpolar parts of solvation and produced satisfactory results 

in terms of good correlation with experimental activity.  
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CONCLUSION 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159 

Different computational methods such as Dock, FEB, LIE-SGB and QSAR have been 

used in the work to study the binding structure and binding affinity of ligand/receptor of heme 

polymerization and PfATP6 and the inhibition mechanism of artemisinin. The effects of 

atomic charges, and ligand and heme structures on the docking results were investigated. 

Several charge schemes for both artemisinin and heme were employed for docking purpose. 

The docking results depended on the structures of both artemisinin and heme. Moreover, the 

atomic charges of heme have a significant effect on the docking configurations. The 

combined approaches of docking-molecular mechanics based on generalized Born/surface 

area (MM-GB/SA) solvation model showed that artemisinin and its structural derivatives 

approaches heme by pointing O1 and O2 at the endoperoxide linkage towards the iron center, 

a mechanism that is controlled by steric hindrance. Several sets of artemisinin analogues have 

been studied in the docking simulations. Results showed that these analogues bind in a very 

similar mode. The magnitude of the binding affinity can be a key factor that decides the 

activeness of an individual inhibitor.  An energetic evaluation of the binding affinity will 

provide a way to estimate the activity of inhibitors. In any binding energy calculation, the 

correct binding structure of each ligand has to be determined first prior to binding energy 

estimation. Very similar binding structures were obtained for a set of analogues. This makes a 

credible prediction model of the antimalarial activity (pIC50) calculation possible. The 

calculated Glide score and binding free energy value of a set of structural analogues 

demonstrate excellent linear correlation to the experimental antimalarial activity thus these 

models could be useful to predict the range of activity for new artemisinin analogues. We also 

found that refinement of poses and consequent rescoring using PRIME/MM-GBSA leads to 

better predictivity of pIC50.  

 

We have demonstrated that the SGB-LIE method can be applied to estimate the free 

energy of binding with a high level of accuracy for a range of compounds with varying 

inhibition potencies. Despite the limitation imposed by the insufficient sampling inherent in 

the MD and HMC protocols, the methods have reproduced experimental data with reasonably 

small error for the majority of artemisinin analogues. The close estimation of inhibition 

potencies of a wide range of compounds has established the LIE methodology as an efficient 

tool for screening novel compounds with very different structures. Compared to the empirical 
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methods, such as scoring function approaches, the LIE method is more accurate due to the 

semiempirical approach adopted in which experimental data are used to build the binding 

affinity model.  

 

The QSAR analysis of a series of artemisinin derivatives enabled consistent models of 

structure- activity relationships to be obtained for several descriptors. In this study, we used a 

more systematic way of variable selection in order of missing value test → zero test → simple 

correlation test → multicollinearity test → genetic algorithm to obtain the meaningful 

descriptors leading to QSAR model development. The high predictive ability of the model 

developed here in this study allows virtual screening of chemical databases or virtual libraries 

determined by either synthetic feasibility or commercial availability of starting materials to 

prioritize the synthesis of most promising candidates. Therefore, these models should 

facilitate the rational design of novel derivatives, guide the design of focused libraries based 

on the artemisinin skeleton and facilitate the search for related structures with similar 

biological activity from large databases.  

 

 The atomic coordinates of PfATP6 for the organism Plasmodium falciparum was not 

available in Protein Data Bank, hence homology modeling protocol was employed to predict 

the model of the protein. A library of artemisinin analogues has been designed and their 

molecular interactions and binding affinities with modeled PfATP6 protein have been studied 

using the docking, molecular mechanics based on generalized Born/surface area (MM-GBSA) 

solvation model and eMBrAcE. In the docking simulations, the flexible docking reproduced 

well the binding structure of crystal structures. These experiments verified the docking 

protocol adapted in the work. Also the docking simulations of structurally similar inhibitors 

showed that the docking simulation could dock inhibitors into a receptor with similar binding 

positions and orientations within the binding site. Results show that these analogues bind in a 

very similar mode. This suggests that they interact with the enzyme in a very similar way. 

Docking and binding free energies scores show good relation with in vitro antimalarial 

activities. In addition, a scheme similar to Linear Response was used to develop a free energy 

of binding (FEB) relationship based electrostatic (∆Gele), van der Waal (∆GvdW) and surface 

accessible surface area (SASA), which can express the activity of these artemisinin 
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derivatives. It was seen that ∆GvdW has most significant correlation to the activity (log RA) 

and electrostatic energy (∆Gele) has less significant correlation to the activity. The binding 

modes of artemisinin and its derivatives showed hydrophobic interaction with PfATP6. This 

binding mode enable hypothesis that the artemisinin derivatives bind to PfATP6 with almost 

hydrophobic inateractions and it should be the preorganized shape binding between the rigid 

structure of artemisinin analogues and the binding pocket of PfATP6. As the Fe2+-dependent 

activation and antimalarial activity of artemisinin do not depend on the heme binding we can 

propose that the production of the carbon centered free radical should not precede the binding 

to PfATP6. Therefore, artemisinin should be bound to PfATP6 before activiation by Fe2+ ion.  

The calculated FEB of a set of artemisinin analogues demonstrates excellent linear correlation 

to the experimental activity. Low levels of root mean square error for the majority of 

inhibitors establish the docking, Prime/MM-GBSA and eMBrAcE based prediction model as 

an efficient tool for generating more potent and specific inhibitors of PfATP6 by testing 

rationally designed lead compounds based on aremisinin derivatization. 

 

The satisfactory results obtained for virtual screening of artemisinin analogues and 

prediction of antimalarial activity based on screening methodology of Docking-MM-GBSA, 

SGB-LIE and QSAR will help a lot to design new generation inhibitors. We hope that the 

knowledge and insight on the screening models learnt from the work will help a lot on the 

battle against the malaria and benefit human health and life.  
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