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ABSTRACT 
 

Biological systems can create complex structures from very simple systems. To do this, there 

must be a method to differentiate different regions where identical systems create different 

structures, such as the abdomen and the head of a fruit fly. This thesis highlights an emerging 

field known as Synthetic Biology that envisions integrating designed circuits into living 

organisms in order to instruct them to make logical decisions based on the prevailing 

intracellular and extra cellular conditions and produce a reliable behavior.  Synthetic Biology 

attempts to construct and assemble such modules gradually, plug the modules together and 

modify them, in order to generate a desired behavior. Using biological circuit, we can produce a 

new concentration gradient that has twice the frequency. If ‘1’ is represented by a concentration 

of the chemical within the threshold, and a ‘0’ is represented by a concentration outside the 

threshold, then we can represent any two digit binary number. Thus, we can differentiate 

separate regions at certain distances away from a point source. Logic gates are the basic 

building blocks in electronic circuits that perform logical operations. These have input and 

output signals in the form of 0’s and 1’s; ‘0’ signifies the absence of signal while ‘1’ signifies 

its presence.  

 The study focuses on system implementation of a signals and responses triggered by Tumor 

Necrosis Factor- α (TNF-α), Epidermal Growth Factor (EGF) and Insulin factors leading to cell 

survival/ apoptosis. The computational techniques that have been used are: VHDL (Xilinx 

Tool), CMOS and BiCMOS (SPICE Tool), and Fuzzy Logic (MATLAB Tool), Non Linear 

Model (Artificial Neural Networks) and Deterministic Model taking three input signals. In 

future we are also trying to develop bio-simulator that can be used for prediction of status of the 

cell leading to cell survival/ apoptosis giving chemotherapy and radiotherapy treatment. 

 We have presented an integrated theoretical framework for describing the balance between 

cell survival/ apoptosis regulated by TNF, EGF and insulin. The theoretical models consider 

here for mathematical intervention is minimal in the sense it takes into consideration only those 

reactions that are essential to describe the action of TNF, EGF and Insulin on cell survival/ 

apoptosis. We have modeled TNF, EGF and Insulin binding and its uptake by cells, and it is 

worth noting that the essential parameter values are biologically relevant. The results illustrated 



that the rate constants defined in the deterministic models are biologically relevant of key 

proteins in the signaling pathway which decide the fate of cell. The quality of fit between 

theoretical and experimental values has been represented. The minimum root mean square error 

(RMSE value) between theoretical and experimental values for the marker proteins revealed 

good accuracy of the model. 

We have extensively explored the parameter space of the model. Simulations show that the   

model has   a   stable   behavior   for   a   broad   range   of   parameter   values   and   that no 

unexpected patterns emerge (such   as oscillations, chaos, etc.). Thus the model is structurally 

stable: obviously this is quite important and lends credibility to the model, because this 

indicates that different cells with unequal expression of key substrates and enzymes and/or 

showing a signal transduction network with a different topology have similar responses to TNF, 

EGF and Insulin. This also means that our model is not specific for a given cell type and that it 

can be used to simulate the effects of TNF,EGF and Insulin independently for the experimental 

settings of the original data on which the parameter estimate is based. In our model there is no 

switching mechanism that selects cell survival/cell death signals, but rather a balance between 

the two pathways that produces partial cell killing even for long lasting and intense TNF, EGF 

and Insulin treatments. The balance depends on environmental TNF, EGF and Insulin 

concentration, and this observation might be important to explain cellular homeostasis during   

an   immune   response, i.e. the   fine   equilibrium   between   cellular   activation   and death. 

This equilibrium might further be balanced in favor of cell survival or death in real cells by the 

fine expression and/or degradation of intracellular molecular actors that transduce TNF, EGF 

and Insulin signals. 
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CHAPTER 1 

INTRODUCTION 

 Computational Biology has recently emerged at system-level understanding of 

biological processes. Biological signaling networks process extracellular cues to control 

important cell divisions such as survival -death, growth-quiescence, and proliferation-

differentiation [1]. Communication between the response of cells with extracellular 

signals such as cytokines, growth factors, and hormones is mediated by receptors that 

transduce cellular cues into changes in intracellular physiology. Downstream of 

receptors, signal communication networks [2, 3] are controlled by large sets of proteins 

acting in concert. In case of programmed cell death, Tumor necrosis factor- α (TNF-α) 

[4] functions as cell death cues, whereas growth factors such as Epidermal growth factor 

(EGF) [5, 6] and insulin [7, 8, 9] exert survival effects. The magnitudes of the responses 

vary with cell type, but the pathways downstream of cytokine receptors are conserved 

and highly interconnected. It appears that the determination of whether a cell will live or 

die involves a balance between cell survival/cell death [10, 11, 12]. Thus, the intracellular 

signal communication network stimulated by TNF, EGF and insulin acts as a signal 

processor that converts opposing cues into a functional response that controls cell fate. 

Moreover, the complexity of cellular communication networks precludes a simple 

protein-by-protein assignment of function. 

Increasingly, systematic methods are being applied to the interpretation and 

computational analysis of cell signaling [13]. These methods are useful for codifying 

existing prior knowledge in pursuit of in-silico predictions. The signal processing 

pertaining to cell survival/cell death are ripe for applying various computational 

techniques to tease out the key biochemical changes associated with critical cell decisions 

because of the availability of experimental data. However, the experimental data that 

have been available are from the measurement of a wide range of parameters including 

protein abundance, localization, enzymatic activity, and post translational modification. 

In addition, protein measurements involve a variety of techniques, including western 

blots, kinase assays, protein microarrays, and imaging. The heterogeneous nature of the 
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data for cell signaling studies present a challenging problem for data integration into a 

single coherent model. 

There are numbers of exciting and profound issues that are actively investigated, such 

as robustness of biological systems, network structures and dynamics and applications to 

drug discovery. Systems biology is in its infancy, but this is the area that has to be 

explored and the area that we believe to be the main stream in biological sciences in this 

century [13]. Systems biology aims to explain how higher level properties of complex 

biological systems arise from the interactions among their parts.   

The goal of Synthetic Biology is to extend or modify the behavior of organisms and 

engineer them to perform new tasks. One useful analogy to conceptualize both the goal 

and methods of Synthetic Biology is the computer engineering hierarchy. Within the 

hierarchy every constituent part is embedded in a more complex system that provides its 

context. Designing of new behavior occurs with the top of the hierarchy in mind but is 

implemented bottom-up. At the bottom of the hierarchy shown in Fig 1.1 are DNA, RNA, 

proteins and metabolites (including lipids and carbohydrates, amino acids, and 

nucleotides), analogous to the physical layer of transistors, capacitors and resistors in 

Computer and Electronics engineering. The next layer, called the device layer, comprises 

biochemical reactions that regulate the flow of information and manipulate physical 

processes is equivalent to engineered logic gates that perform computations in a 

computer. At the module layer, the Synthetic Biologist uses a diverse library of biological 

devices to assemble complex pathways that function like integrated circuits. The 

connection of these modules to each other and their integration into host cells allows the 

synthetic biologist to extend or modify the behavior of cells in a programmatic fashion. 

Although independently operating engineered cells can perform tasks of varying 

complexity, more sophisticated coordinated tasks are possible with populations of 

communicating cells, much like the case with computer networks. 
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Fig. 1.1 Hierarchy of Electronic and Biological Elements  

1.1 APOPTOSIS OR CELL DEATH 

The term cell death/ programmed cell death was coined in the early 1970, although 

the phenomenon of cell death was already described in the late 1700s. The word, cell 

death, is derived from Greek roots meaning, "Dropping off" e.g. falling of leaves. It plays 

an important role in the development and maintenance of tissue homeostasis but it also 

represents an effective mechanism by which abnormal cells, such as tumor cells, can be 

eliminated [12, 14]. Although the apoptotic destruction itself is an "expensive" process 

that consumes much energy and building materials it is a sound investment in terms of 

the organism as an entity. When compared to the life of the whole organism, cells are 

apparently cheap and expendable. The cell death process can be divided into at least three 

functionally distinct phases: initiation, effector and degradation. During the 

heterogeneous initiation phase cells receive death-inducing signals: lack of obligatory 
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survival factors, shortage of metabolite supply and ligation of death-signal transmitting 

receptors, sub necrotic damage by toxins, heat or irradiation. During the effector phase, 

these signals are translated into metabolic reactions and the decision to die is taken.  

1.2 PHASES OF CELL DEATH   

It has been shown that cell death is triggered by different intracellular and extra 

cellular stimuli and proceeds in two phases: an initial commitment phase and an execution 

phase shown in Fig 1.2, which results in typical apoptotic morphological changes in the 

cells such as plasma membrane blebbing, shrinkage of the cytoplasm, dilation of 

endoplasmic reticulum, nuclear chromatin condensation and fragmentation into apoptotic 

bodies that are phagocytosed by neighboring cells. During cell death cells reduce their 

volume, pump out ions and there is contraction of the cytoskeleton, forming a cage-like 

structure around the nucleus. At the same time, the dying cells activate their own 

proteolytic enzymes in addition to those acting in the phagolysosomes.  

 
Fig. 1.2  The apoptotic pathway: The apoptotic pathway consists of a commitment phase, during which 
the fate of the cell is decided and an execution phase during which caspases are activated and mediate cell 
death. Many factors determine the influence of the cell survival or death. All these factors represent 
potential targets of therapeutic intervention that can be used to promote or prevent cell death. 
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During the first phase, called the “commitment phase”, an individual cell “decides” 

whether or not to enter the execution phase and die or remain viable. The ultimate result 

of exposure to an apoptotic trigger, life or death, is determined by a balance between a 

number of pro- and anti-apoptotic pathways present in every cell. If a cell is destined to 

die, the second stage of cell death, called the “execution phase” is activated. The 

execution of cell death entails the controlled activation of a number specific effector 

mechanisms that lead to the classic morphologic features of cell death described above. 

1.2.1 THE EXECUTION PHASE OF THE APOPTOTIC PATHWAY 

Role of caspases/ interleukin-1b-converting enzymes (ICE): Caspases, the family of 

proteases are largely responsible for the execution phase of cell death [15]. The caspases 

are present in cells in an inactive form (pro-caspase) and form a tightly regulated, 

sequential, and self-amplifying cascade. Caspases are responsible for almost all the 

biochemical and morphologic features of cell death and act by the proteolytic cleavage of 

a host of cellular proteins. All caspases share a number of structural and functional 

features. The “c” refers to the fact that caspases are cysteine proteases, with the catalytic 

site cysteine contained within a conserved QACXG motif (single letter amino acid code), 

whereas the “aspase” refers to the unique and absolute predilection of all caspases for 

cleaving proteins after aspartic acid residues.  While it is not yet possible to provide a 

complete flow diagram of the precise cascade of reactions by which caspases mediate the 

apoptotic pathway, caspases can be divided into two main functional classes; “initiator” 

caspases and “effector” caspases. Caspase-mediated cleavage of cell death-specific 

endonuclease CAD (caspase-activated DNase) is responsible for the “ladder” pattern of 

DNA fragmentation typical of cell death. Caspases also are responsible for proteolysis of 

the nuclear lamins thereby, facilitating nuclear condensation. Caspases that target cyto 

skeletal proteins such as α-fodrin, β-actin, and keratins mediate disassembly of the cell 

cytoskeleton [16]. Other classes of caspase substrates cleaved during cell death include 

DNA repair enzymes, signal transduction molecules as well as transcriptional and cell 

cycle regulators. 
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Mechanisms of caspase activation 

In general, there are several ways by which caspases can be activated. The first is as a 

result of cleavage by autolysis and by upstream proteases, such as other caspases or 

granzyme B (GrB), which is the only mammalian serine protease that shares the caspase 

specificity for the Asp residue at the P1 position. A common feature of the ICE family 

proteases is the presence of a pro domain that has been hypothesized to keep the enzyme 

in an inactive form. Pro domain is also necessary for dimerization, which occurs prior to 

auto processing. GrB in vivo processes initially caspase-3, which in turn can remove the 

pro domain from caspase-7, and, finally, caspase-7 is fully processed by GrB. In a 

heterologous expression system it has been shown that recombinant caspase pro enzymes 

are autolytically processed to their mature forms when synthesized at sufficiently high 

levels. A mutation in catalytic cysteine residue prevents this processing. Isolated caspase 

pro enzymes can be auto activated when they are concentrated by ultra filtration . 

A second mechanism of caspase activation through the ‘extrinsic’ pathway is initiated 

by triggering cell death receptors on the cell surface, leading to activation of the 

intracellular apoptotic machinery (death signal-induced, death receptor-mediated 

pathway).  Cell death signals, such as Fas ligand (FasL) and tumor necrosis factor (TNF)-

2, can be specifically recognized by their corresponding death receptors, such as Fas or 

TNF receptor (TNFR)-1, in the plasma membrane [17]. Their binding will in turn activate 

the death receptors. Fas can bind to the Fas-associated death domain (FADD) (or TNFR-

associated death domain, TRADD) and cause FADD aggregation and the emergence of 

DEDs. These exposed DEDs interact with the DEDs in the pro domain of procaspase-8, 

which will induce the oligomerization of procaspase-8 localized on the cytosolic side of 

the plasma membrane. Then a massive molecule complex known as the death-inducing 

signal complex (DISC) is formed. This complex is called DISC (death-inducing signaling 

complex), and it is thought that as more procaspase-8 molecules become involved in this 

complex, they are activated, probably by auto cleavage. Similar mechanisms have been 

demonstrated for the tumor necrosis factor receptor (TNF-R1), which seems to require an 

additional adapter molecule TRADD (TNFR-associated death domain), which recruits 

FADD and procaspase-8. Furthermore, TRADD can recruit serine-threonine kinase RIP 
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(receptor interacting protein) and an adapter molecule RAIDD, which has sequence 

similarity with the pro domains of caspases-2, -9 and CED-3 and can activate procaspase-

2. At the same time, the physiological role of caspase-2 in the activation cascade of 

caspases remains unclear. It is likely that caspases-8 and -10 are the major proteases in 

TNF and anti-Fas induced cell death, which activate the downstream caspases. In the next 

step, activated downstream caspases can activate themselves and other caspases, leading 

to the amplification cascade of caspase activation. The recruitment of caspases-8 and -10 

may be inhibited by viral inhibitors of the apoptotic signals (FLIPs). These inhibitors 

contain two N-terminal DEDs in their structure. They interfere with FADD-caspase-8 

binding and inhibit both caspase-8 activation and cell death. Caspases -1, -2, -4, -5, -9 

and CED-3 contain another "caspase recruitment domain" (CARD), required for 

assembly of activation complexes [15]. The activation of the downstream pathways of 

caspase-8 varies with different cell types (Fig. 1.3).  

 
Fig. 1.3  Caspase-8/caspase-10-dependent procaspase-activation pathway 
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In Type I cells (cells of some lymphoid cell lines), caspase-8 is vigorously activated 

and can directly activate the downstream pro caspases (e.g. procaspase-3). In Type II 

cells (other than Type I cells), caspase-8 is only mildly activated and unable to activate 

procaspase-3 directly [18, 19]. However, it can activate the mitochondrion-mediated 

pathway by truncating Bid (a pro-apoptotic Bcl-2 family member), a kind of pro 

apoptotic protein in the cytosol, into its active form, tBid. tBid will trigger the activation 

of the mitochondrion pathway: cytochrome c, cell death-inducing factor (AIF) and other 

molecules are released from mitochondria, and cell death will be induced.  

The activation pathway mediated by procaspase-10, with a DED-containing 

prodomain, is similar to that mediated by procaspase-8. Caspase-10 functions mainly in 

the cell death of lymphoid cells. It can function independently of caspase-8 in initiating 

Fas- and TNF-related cell death. Moreover, Fas cross linking in primary human T cells 

leads to the recruitment and activation of procaspase-10. Although caspase-8 and 

caspase-10 both interact with the DED of FADD in death receptor signaling, they may 

have different cell death substrates and therefore potentially function distinctly in death 

receptor signaling or other cellular processes.  

The third way in which the caspase cascade can be initiated involves translocation of 

cytochrome c from the mitochondria to the cytoplasm (non-receptor-mediated pathway or 

stress-induced cell death) (Fig. 1.4). The mechanism of this translocation remains unclear 

and may be due to opening of a mitochondrial permeability transition pore, rupture of the 

outer membrane or the presence of specific channels for cytochrome c [18, 19]. 

Cytochrome c release from mitochondria is under the control of the Bcl-2 family of 

proteins, [20] that either inhibit (Bcl-2, Bcl-xL) or promote (Bax, Bak, Bik, Bid) cell 

death. In the cytoplasm, cytochrome c interacts with Apaf-1 (the human homolog of C. 

elegans protein CED-4) [21]. The ‘intrinsic’ pathway (Mitochondrion-mediated pro 

caspase-activation pathway) of cell death is initiated via the mitochondria by cellular 

stress, such as chemotherapeutic drugs and radiation (the stress-induced, mitochondrion-

mediated pathway) (i.e. a caspase-9-dependent pathway). The elucidation of the 

molecular mechanisms regulating these processes is of primary interest.  
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a)  Mitochondrion-mediated pro caspase-activation pathway of caspase-8 : Apart from 

being recruited to form a DISC complex after auto activation, procaspase-8 could also be 

activated through a cytochrome c-dependent pathway. After cytochrome c is released 

from mitochondria to the cytosol, caspase-6 is the only cytosolic caspase with the ability 

to activate procaspase-8, which depends solely on procaspase-6 activation by pro domain 

cleaving. It means that, in the cytochrome c-dependent pathway, the activation of 

procaspase-8 requires neither the interaction with FADD nor the formation of a DISC 

complex.  

b) Mitochondrion-mediated pro caspase-activation pathway of caspase-9 : When cellular 

stress (e.g. DNA damage) occurs, pro apoptotic proteins in the cytosol will be activated, 

which will in turn induce the opening of mitochondrion permeability transition pores 

(MPTPs) [22]. As a result, cytochrome c localized in mitochondria will be released to the 

cytosol. With the presence of cytosolic dATP (deoxyadenosine triphosphate) or ATP, 

apoptotic protease activation factor-1 (Apaf-1) oligomerizes [23]. Together with cytosolic 

procaspase-9, dATP and cytochrome c, oligomerized Apaf-1 can result in the formation 

of a massive complex known as apoptosome. They interact with each other by CARDs 

and form a complex in the proportion of 1:1 [24]. Activated caspase-9 can in turn activate 

procaspase-3 and procaspase-7. The activated caspase-3 will then activate procaspase-9 

and form a positive feedback activation pathway shown in Fig 1.4. Fig 1.5 shows the 

combined Intrinsic and Extrinsic Pathway. 

1.2.2 THE COMMITMENT PHASE OF APOPTOPSIS 

After exposure to an apoptotic trigger, a cell enters phase of variable duration during 

which the fate of the cell, cell death or survival, is decided. This is called the commitment 

phase of cell death. The outcome of the commitment phase depends upon the balance of a 

number of different factors, some of which are anti-apoptotic and others that promote 

precipitation of the execution phase of cell death.  
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Fig. 1.4 The intrinsic pathway of cell death triggered by TNF and mediated by mitochondria. 

 
Fig. 1.5   Schematic representing the core components of cell death pathways. In the extrinsic pathway, 

TNF super family members including Fas Ligands binding to a death receptor and forming a death 
inducing Signaling complex (DISC), which activate caspase-8. In the intrinsic pathway, 
cytochrome c released from mitochondria causes apoptosome formation and caspase-9 activation. 
Both caspase-8 and caspase-9 activate down stream caspases like caspase-3 and leading to cell 
death.  
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Bcl-2 family of proteins :  

The first member of this family, proto-oncogene bcl-2, was originally found at the 

breakpoints of t(14;18) chromosomal translocation in low-grade B cell lymphomas. The 

bcl-2 gene was thought to be a unique oncogene that contributed to cell expansion 

through failed cell death rather than rapid cell division [25]. However, it is now known 

that many cancers express high levels of bcl-2 without evident gene alterations, 

suggesting that other pathways also contribute to bcl-2 expression. The bcl-2 protein 

seems to be multifunctional since it is able to hetero-dimerize its pro-apoptotic relative 

bax, to bind to non-homologous proteins and to form ion-channels. Bax (Bcl-2 

homologous antagonist x) is a bcl-2 related protein that promotes cell death and acts as a 

tumor suppressor [26, 27]. Bax is thought to be a downstream transcription target of p53 

and may thus play a part in p53 apoptotic pathway. There is evidence that the ratio of bcl-

2 to bax determines the susceptibility of a cell to cell death. When over expressed, bax 

forms homo dimers, thereby accelerating cell death. In contrast, when bcl-2 is expressed 

in excess, it hetero dimerises with bax and cell death is suppressed. Consistent with its 

tumor suppressor role in human cancer, bax has been shown to be mutated or expressed 

at a reduced level in several human cancers, including colon and breast cancer as well as 

haematopoietic malignancies. The expression of bax is predominant in large cell neuro 

endocrine lung carcinoma and inversely associated with bcl-2 expression.  

Bcl-2 and related proteins can be divided on the functional basis into two distinct 

groups, those with anti-apoptotic activity and those that promote cell death.  Pro-survival 

members of this family can inhibit cell death induced by an extremely wide range of 

triggers, including survival factor deprivation. Bcl-2 family members play an important 

role in influencing cell fate during the commitment phase of cell death. Bcl-2 family 

members bind to one another to form hetero-dimers. Dimerization of Bcl-2 members with 

opposite effects on cell death results in a titration of the effects of each of the interacting 

proteins. In addition to direct interaction, Bcl-2 proteins may influence the effects of 

other members by competing for common downstream targets. Thus, the outcome of the 

commitment phase appears to depend, at least in part, on the relative concentrations of 

pro-survival and pro-apoptotic Bcl-2 family members. Bcl-2 proteins appear to regulate 

cell death in two major ways. The first involves the direct interaction of Bcl-2 family 
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members with procaspase activating complexes. Activation of procaspase-9 occurs within 

a so-called “apoptosome”, in which cytoplasmic Apaf-1 binds via separate domains to 

procaspase- 9 and cytochrome c Pro-survival Bcl-2 family members, such as Bcl-xL, by 

binding to Apaf-1, can inhibit the cytochrome c-induced change in Apaf-1 that leads to 

the recruitment and activation of procaspase-9 [28]. Thus, pro-survival Bcl-2 family 

members may block initiation of the execution phase of cell death, even after 

mitochondrial permeability transition and release of cytochrome c has occurred.  Pro-

apoptotic Bcl-2 family members may counteract the protective effects of Bcl-xL by 

binding to and sequestering Bcl-xL [29]. The second mechanism of action of Bcl-2 

family members involves alterations in the permeability of mitochondrial membranes. In 

response to several triggers of cell death, pro-survival proteins Bcl-2 or Bcl-xL stabilize 

the mitochondrial membrane, thereby inhibiting mitochondrial permeability transition 

and the release of cell death promoting substances such as cytochrome c and AIF.  It is 

still uncertain how Bcl-2 and Bcl-xL stabilize the mitochondrial membrane. In any case, 

these proteins protect cells by acting at two discrete but sequential steps in the apoptotic 

pathway; by inhibiting the release of mitochondrial cytochrome c, and once cytochrome c 

is released, by interfering with cytochrome c-mediated activation of procaspase 9 [30, 

31]. In contrast to the stabilizing effects of pro-survival Bcl-2 on the mitochondrial 

membrane, some pro-apoptotic proteins such as Bax, and Bid directly induce 

mitochondrial permeability transition and the release of cytochrome c. These proteins 

appear to act by inserting into the mitochondrial membrane and forming pores and ion 

conducting channels.  

The Bcl-2 proteins have a role both in the commitment phase and the execution phase 

of cell death. During the commitment phase, Bcl-2 proteins are regulated primarily via 

phosphorylation events. Phosphorylation events can increase or decrease the activity of 

pro-survival proteins such as Bcl-2 and Bcl-xL. On the other hand, phosphorylation of 

the pro-apoptotic member BAD by PKB/Akt leads to the sequestration of BAD within 

the cytosol, thereby preventing access of BAD to mitochondria where it can hetero 

dimerize with and inactivate pro survival Bcl-2 family members [32]. During the 

execution phase, the activity of these proteins can be altered by caspase-mediated 

cleavage. In some cases, caspase-mediated cleavage can convert proteins from pro-
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survival to pro-apoptotic activity. Thus, cleavage of Bcl-2 abrogates its pro-survival 

activity and converts the protein into a Bax-like pro-apoptotic factor. Also, caspase-8 

activates the pro-apoptotic protein Bid, and converts it from a latent cytoplasmic form to 

an active moiety which moves to mitochondria and promotes the release of cytochrome c. 

These examples highlight the complexity of regulation not only among Bcl-2 family 

members but also between Bcl-2 family members and other components of the apoptotic 

machinery. 

NF-κB: A powerful anti-apoptotic transcription factor: The term NF-κB refers to a 

family of nuclear transcription factors that regulate the transcription of genes involved in 

the immune response and cell death. It has become evident that activation of NF-κB plays 

an important role in opposing cell death and therefore in determining cell fate in response 

to a number of apoptotic triggers [33].  When inactive, NF-κB is present within the 

cytoplasm complexed to one of several inhibitory proteins known collectively as IκB, 

which prevent NF-κB from entering the nucleus. An extremely wide range of stimuli, 

including some apoptotic triggers, activates NF-κB-Inducing Kinase (NIK) which 

phosphorylates IκB, thereby leading to its rapid proteasomal degradation. This allows the 

active NF-κB to translocate to the nucleus where it binds to specific motifs in the 

promoter regions of its multiple target genes. The anti-apoptotic effect of NF-κB was first 

clearly demonstrated for TNF-α. TNF-α binds with high affinity to two distinct receptors, 

TNF-R1 and TNF-R2, with opposing effects on cell fate. The death receptor TNFR1 

induces cell death through recruitment and activation of the death domain-containing 

proteins TRADD and FADD, ultimately leading to the activation of the apoptotic initiator 

pro caspase 8.  By contrast, signaling through TNF-R2, which lacks a death domain and 

so does not activate TRADD and FADD, generally promotes survival and proliferation. 

However, the division in signaling pathways induced by TNF-R1 versus TNFR2 is not 

absolute. NF-κB is activated via engagement of both receptors. The strong induction of 

NF-κB by both TNF-R1 and TNF-R2 accounts for the fact that induction of cell death by 

TNF-α generally requires the concomitant addition of a protein synthesis inhibitor such 

as cyclo heximide [34, 35].  NF-κB protects against cell death in a number of ways. 

These include the transcriptional induction of various members of the IAP family of cell 

death inhibitors as well as of the anti-apoptotic Bcl-2 family member Bfl- A1; the 
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induction of a novel inhibitor of cell death, named IEX-1L; the inhibition of p53 activity 

through competition for a limiting shared co-factor; and an increase in the expression of 

TNF receptor-associated proteins such as TRAF2.  It is likely that the contribution and 

magnitude of these pro-survival effects of NF-κB will depend on the cell type and 

inducing stimulus. It is important to note that the pro-survival effect of NF-κB is unlikely 

to be restricted to TNF-induced cell death since other stimuli, such as growth factors and 

oxidant stress are known to activate NF-κB. Thus NF-κB may turn out be potent anti-

apoptotic response to a ubiquitous array of apoptotic triggers. 

1.3 COMMUNICATION OF SIGNAL TRIGGERED BY TNF-α 

LEADING TO CELL SURVIVAL / CELL DEATH 

Tumor necrosis factor (TNF) is a cytokine that mediates cell death, cell proliferation, 

inflammation, allergy, arthritis, septic shock, insulin resistance, autoimmune diseases, 

and other pathological conditions [36, 37]. TNF transduces these cellular responses 

through two distinct receptors: type I, which are expressed on all cell types, and type II, 

which are expressed only on cells of the immune system and endothelial cells. TNF binds 

with high affinity to two-cell surface receptors, a 55kd protein (p55TNF-R/ TNFR1) and 

a 75kd protein (p75TNF-R/ TNFR2), both are expressed by most cell lines and primary 

tissues [36].  At the cellular level, these receptors activate the pathways leading to the 

activation of transcription factors NF-kappa B and AP-1, cell death and proliferation, and 

mitogenic activated protein kinases.  

TNF-R1 is constitutively expressed in most tissues, and can be fully activated by both 

the membrane-bound and soluble trimeric forms of TNF, while TNF-R2 is only found in 

cells of the immune system and respond to the membrane-bound form of the TNF 

homotrimer. As most information regarding TNF signaling is derived from TNF-R1, the 

role of TNF-R2 is likely underestimated. The binding of TNF-α to the TNF receptor type 

I (TNF-RI) promotes the recruitment of several intracellular adaptors which in turn, 

activate multiple signal transduction pathways.  While recruitment of death domain (DD) 

containing adaptors such as Fas associated DD (FADD) and TNF-R associated DD 

(TRADD) [38] can lead to the activation of signal transduction pathways that induce cell 
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death, recruitment of TNF-RI associated factors (TRAFs) can lead to the activation of 

multiple cell survival intracellular signals such as NF-κB, JNK, p38 and ERK [39]. 

Signaling pathways of TNFR1 is shown in Figure 1.6.  MAPK and IKK in turn activate 

AP-1 and NF-κB transcription factors. Activation of AP-1 and NF-κB induces genes 

involved in inflammation, immune response, cell proliferation and cell differentiation, as 

well as genes that act to suppress death receptor- and stress-induced cell death. 

 

 
Fig. 1.6  Illustration of signal communication network triggered by TNF. The box marked in 

red color are the proteins involved in cell death pathway, the box marked in green 
color are the proteins involved in cell survival pathway and the box marked in blue 
color are the proteins involved in both cell survival/ cell death 

 

The following TRADD binding pathways can be initiated as follows  

1.3.1 Activation of NF-κB: NF-κB is widely used by eukaryotic cells as a regulator of 

genes that control cell proliferation and cell survival. Active NF-κB turns on the 

expression of genes that keep the cell proliferating and protect the cell from conditions 
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that would otherwise cause it to die. In tumor cells, NF-κB is active either due to 

mutations in genes encoding, the NF-κB transcription factors themselves or in genes that 

control NF-κB activity (such as IκB genes); in addition, some tumor cells secrete factors 

that cause NF-κB to become active. Blocking NF-κB can cause tumor cells to stop 

proliferating, to die, or to become more sensitive to the action of anti-tumor agents. Thus, 

NF-κB is the subject of much active research among pharmaceutical companies as a 

target for anti-cancer therapy. TRAF2 in turn recruits the multicomponent protein kinase 

IKK, enabling the serine-threonine kinase RIP to activate it. An inhibitory protein, IκBβ , 

that normally binds to NF-κB and inhibits its translocation, is phosphorylated by IKK and 

subsequently degraded, releasing NF-κB [34, 35]. NF-κB is a heterodimeric transcription 

factor that translocates to the nucleus and mediates the transcription of a vast array of 

proteins involved in cell survival and proliferation, inflammatory reponse, and anti-

apoptotic factors. NF-κB is a family of transcription factors, which induce the expression 

of a wide variety of genes, especially those involved in survival, such as the Bcl-2 family 

member Bfl-1, and the caspase inhibitors c-IAP1 and c-IAP2.  

1.3.2 Activation of the MAPK pathways: The MAPKs consist of several subfamilies 

such as ERK, JNK/SAPK (c-Jun amino-terminal kinase / stress-activated protein kinase), 

and p38/ MK2 [40, 41, 42]. They act in distinct and independent signaling pathways with 

a wide range of cellular responses including proliferation, differentiation and survival. 

The signaling through ERK 1 and 2 has a major role in the stimulation of cell 

proliferation; they have been shown to be translocated to the nucleus and induce gene 

expression that promotes the cell cycle entry. There is evidence of direct regulation of 

cell death by ERK (downstream of b-Raf) through cytosolic caspase inhibition. 

The other MAPK members, p38 and JNK/SAPK represent signaling pathways 

homologous to the Ras-MAPK pathways, which are involved in the regulation of cellular 

responses to stress. These pathways, in contrast, are not activated primarily by mitogens 

but by various kinds of cellular stress instead and inflammatory cytokines, and result in 

cell death.  
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  The RAS/ERK pathway :  Growth factor stimulation activates various signaling 

pathways that result in the induction of a variety of genes involved in the regulation 

of cell proliferation, cell differentiation and cell cycle progression. The ERK MAP 

kinase cascade is one of the central pathways in growth factor signal transductions. In 

response to growth factor stimulation, classical MEK becomes activated, and then the 

activated MEK phosphorylates and activates classical MAP kinase ERK. EGF/IRS 

activates the ERK pathway through the binding of Grb2 or Shc to phosphorylated 

ErbB receptors, which in turn results in the recruitment of the son of sevenless (SOS) 

to the activated receptor dimmer SOS then activates RAS leading to the activation of 

RAF 1 [43]. RAF-1 subsequently phosphorylates MEK1 and MEK2 which activate 

respectively ERK1 and ERK2. The MAP kinases (MAPKs) are serine / threonine 

protein kinases e.g. ERK1/2 (extracellular signal-related kinase 1/2), which are 

activated by MAP/ERK kinases (MEKs), which in turn is activated by MEK kinase 

(MEKK), such as Raf. This pathway results in cell proliferation and in the increased 

transcription of Bcl2 family members and inhibitors of cell death proteins (IAPs), 

thereby promoting cell survival.  Mitogenic sigalling increases the rate of translation 

of selective mRNAs [44]. Fig.1.7 shows the pathway of Ras 

 
Fig. 1.7 Illustration of signal communication network triggered by RAS 
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  JNK pathway : The second most widely studied MAP kinase cascade is the 

JNK/SAPK (c-Jun NH2-terminal kinase/stress activated protein kinase). The c-

Jun kinase (JNK) is activated when cells are exposed to ultraviolet (UV) 

radiation, heat shock, or inflammatory cytokines. However, the functional 

consequence of JNK activation in UV-irradiated cells has not been established. 

The absence of JNK caused a defect in the mitochondrial death signaling 

pathway, including the failure to release cytochrome c.  

  p38 pathway: The p38 kinase is the most well-characterized member of the MAP 

kinase family. It is activated in response to inflammatory cytokines, endotoxins, 

and osmotic stress. It shares about 50% homology with the ERKs. The upsteam 

steps in its activation of this cascade are not well defined. However, downstream 

activation of p38 occurs following its phosphorylation (at theTGY motif) by 

MKK3, a dual specificity kinase. Following its activation, p38 translocates to the 

nucleus and phosphorylates ATF-2. Another known target of p38 is MAPK2 that 

is involved in the phosphorylation and activation of heat-shock proteins.  

Although different MAP kinase cascades show high degree of specificity and 

functional separation, some degree of cross-talk is observed between different 

pathways shown in Fig 1.8.  For example, JNKK, an activator of JNK/SAPK, is 

reported to activate p38, whereas MKK3 activates only p38 and not JNK/SAPK. 

MEKK1 that stimulates SEK/JNKK1 in the JNK/SAPK cascade has only a trivial 

effect on p38 activation. In the upstream signaling, SOS stimulates only the ERK 

pathways without affecting either JNK or p38 cascade. Another important 

observation is that if mammalian cells are treated with mitogenic agents; ERKs 

are significantly activated whereas JNK/SAPK is not affected. Conversely, cells 

exposed to stress cells activate JNK/SAPK pathway without altering the activity 

of ERKs. At the transcription level, ATF-2 is phosphorylated and activated by all 

three MAP kinases, whereas c-Jun and Elk-1 are phosphorylated by ERKs and 

JNK/SAPK, yet all these pathways result in transcriptional activity that is unique 

for a particular external stress. 
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Fig. 1.8 Illustration of signal communication network triggered by MAP kinase. 

1.3.3 INDUCTION OF DEATH SIGNALING: Like all death-domain containing 

members of the TNFR superfamily, TNF-R1 is involved in death signaling. However, 

TNF-induced cell death plays only a minor role compared to its overwhelming functions 

in the inflammatory process. Its death inducing capability is weak compared to other 

family members (such as Fas), and often masked by the anti-apoptotic effects of NF-κB. 

Nevertheless, TRADD binds FADD, which then recruits the cysteine protease caspase 8 

shown in Figure 1.9. A high concentration of caspase 8 induces its autoproteolytic 

activation and subsequent cleaving of effector caspases, leading to cell cell death [11, 

12].  
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Fig. 1.9 Illustration of signal communication network triggered by FAS 

Cell death is an essential strategy for the control of the dynamic balance in living 

systems, and two fundamentally different forms of cell death, cell death and necrosis, 

have been defined. There are at least two broad pathways that lead to Cell death, an 

"Extrinsic" and an "Intrinsic" Pathway [10]. In both pathways, signaling results in the 

activation of a family of Cys (Cysteine) Proteases, named Caspases that act in a 

proteolytic cascade to dismantle and remove the dying cell. 

In addition to their participation in survival and proliferation, PI3K and its target 

PKB/Akt, have emerged as critical signaling molecules that regulate multiple cellular 

processes. The ability of PI3K or Akt to suppress cell death has been attributed to both, 

Bad and caspase-9 phosphorylation, as well as ceramide regulation. In addition to these 

anti-apoptotic effects, Akt can also contribute activating NIK, with the consequent 

nuclear translocation of NF-κB. Thus, depending on cell context and cell type, TNF-α is 

able to induce cell survival or cell death pathways. 

1.4 COMMUNICATION OF SIGNAL TRIGGERED BY EGF 

LEADING TO CELL SURVIVAL / CELL DEATH 

The epidermal growth factor (EGF) and EGF receptor (EGFR) were among the first 

growth factor ligand-receptor pairs discovered [45]. Subsequently, EGFR was found to 

be a member of a receptor tyrosine kinase (RTK) family, the human epidermal growth 

factor receptor (HER) family. The epidermal growth factor receptor (EGFR) family plays 



 21

an important role in cell lineage determination, the morphogenesis of many organs and in 

cell survival in the adult. Moreover, activating mutants and over-expression of these 

family members contribute to oncogenesis by inducing cells to proliferate and to resist 

cell death. Upon ligand binding, EGFR dimerizes either with itself to form a homodimer 

or with other HER family members to form heterodimers (e.g., EGFR:HER2 or 

EGFR:HER3) [46, 47]. Ligand-induced dimerization causes a conformational change in 

the receptors that promotes the activation of the TK domain. Subsequent phosphorylation 

of the HER-kinase itself and/or other proteins, which then pass on to various signaling 

cascades [e.g., phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein 

kinase (MAPK) pathways], can lead to different cellular events such as growth, 

migration, and division 

SIGNALING PATHWAY OF EGF 

Upon ligand-binding receptors homo-dimerise or hetero-dimerise triggering tyrosine [48, 

49] trans-phosphorylation of the receptor sub-units. These tyrosine phosphorylated sites 

allow proteins to bind through their Src homology 2 (SH2) domains leading to the 

activation of downstream signaling cascades including the RAS/extracellular signal 

regulated kinase (ERK) pathway, the phosphatidylinositol 3 kinase(PI3K) pathway and 

the activator of transcription (JAK/ STAT) pathway. Differences in the C-terminal 

domains of the ErbB receptors govern the exact second messenger cascades that are 

elicited conferring signaling specificity [50, 51]. The EGF signal is terminated primarily 

through endocytosis of the receptor-ligand complex. The contents of the endosomes are 

then either degraded or recycled to the cell surface [52, 53]. A number of signal 

transduction pathways branch out from the receptor signaling complex as shown in Fig. 

1.10. 
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Fig. 1.10 Illustration of signal communication network triggered by EGF 

1.4.1 ACTIVATION OF MAP KINASE PATHWAYS 

MAP kinases are actually a family of protein kinases that are widely distributed and are 

found in all eukaryotic organisms. These can be classified into three main functional 

groups as shown in Fig. 1.11. The first is mediated by mitogenic and differentiation 

signals. The other two respond to stress and inflammatory cytokines. The ERK pathway 

responds to mitogen activation. In the JNK/SAPK pathway SAPK stands for stress 

activation protein kinase and within this class of kinases the Jun N-terminal kinases 

(JNK) for a subfamily. In the p38/HOG pathway HOG stands for high osmolarity 

glycerol where the p38 proteins are a subfamily. Each of these pathways led to the dual 

phosphorylation of MAP kinase family members responsible for activation of 

transcription factors.  
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Fig. 1.11 Three main functional groups of MAP kinase 

Cytokines and growth factors activate the mitogen-activated protein (MAP) kinase 

pathways resulting in the stimulation of ERK1/2, c-Jun N-terminal kinases and p38 

kinases which in turn activate transcription factors like AP-1 and ATF-2. Other 

proinflammatory agents like TNF-α, IL-1 and LPS activate the transcription factor NF-

κB which participates in the regulation of expression of immediate early genes involved 

in immune, acute phase and inflammatory responses. Besides, the transcription factors 

NF-κB and AP-1 which are immediate-early transcriptional activators and components of 

the JAK/STAT pathway play an important role in the transcriptional activation of many 

inflammatory genes. Consensus sequences for the transcription factors NF-κB, AP-1 and 

STAT1a have been found e.g. in the promoters of COX-2 and iNOS. 

1.4.2  ACTIVATION OF PI3 kinase/AKT pathway 

EGF also promotes cell survival through the activation of PI3 kinase/AkT signaling 

[54]. EGF triggers the recruitment of PI3 kinase to activated ErbB receptors, which is 

mediated by the binding of SH2 domains in PI3 kinase to phosphorylated tyrosine 

residues. The catalytic subunit of PI 3-kinase in turn phosphorylates phosphatidylinositol 
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(4, 5) biphosphate (PtdIns (4, 5)P2) leading to the formation of PtdIns(3,4,5)P3. PI 3-

kinase can also activate RAS, resulting in the activation of ERK signaling, thereby 

facilitating cross-talk between survival pathways. A key downstream effector of 

PtdIns(3,4,5)P3 is AKT. AKT promotes cell survival through the transcription of anti-

apoptotic proteins. Intermediate transcription factors involved in this process are NFκB 

and CREB. Another downstream target of AKT is glucogen synthase kinase 3 (GSK3). 

Under basal conditions the constitutive activity of GSK3 leads to the phosphorylation and 

inhibition of a guanine nucleotide exchange factor eIF2B, which regulates the initiation 

of protein translation. Therefore, upon inactivation of GSK3 by AKT, eIF2B is 

dephosphorylated resulting in the promotion of protein synthesis and the storage of amino 

acids.  AKT also activates mammalian target of rapamycin (mTOR), which promotes 

protein synthesis through p70 ribosomal S6 kinase (p70s6k) and inhibition of eIF-4E 

binding protein (4E-BP1) [55]. Collectively, these processes all promote cell growth and 

survival in response to EGF. Fig 1.12 which shows the pathway of PI3K. 

 
Fig. 1.12 Illustration of signal communication network triggered by PI3K 

Following are the various proteins which helps in Cell survival/ Death using AkT .  
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1. Bad : Bad was the first protein that is directly involved in cell death to be identified 

as a target of Akt. Bad is a member of the Bcl-2 family, which converges on the 

mitochondrial outer membrane to regulate cell. In the absence of Akt activity, Bad 

binds with another pro-survival member of the Bcl-2 family, Bcl-XL, and induces 

cell death, most likely by inhibiting the function of Bcl-XL to block the release of 

cytochrome c from mitochondria to the cytoplasm .However, activated Akt 

phosphorylates, Bad causing it to dissociate from Bcl-XL in the mitochondrial 

membrane and associate with the adaptor protein 14-3-3 instead. This results in 

the sequestration of Bad to the cytosol shown in Fig 1.13. Thus, Bad that is 

phosphorylated by Akt cannot induce cell death. Table 1.1 shows the truth table 

for cell death/ survival for AkT/ BAD pathway. In output ‘1’ means survival and 

‘0’ means death. 

The BAD protein is a pro-apoptotic member of the Bcl-2 family whose ability to 

hetero dimerize with survival proteins such as Bcl-X(L) and to promote cell death 

is inhibited by phosphorylation. JNK suppresses cell death in IL-3-depedent cells 

via phosphorylation of the pro-apoptotic Bcl-2 family protein BAD. In IL-3-

dependent hematopoietic cells, IL-3 activated JNK phosphorylates BAD at 

Thr201. The phosphorylation results in reduced association of BAD with Bcl-xL, 

thereby suppressing cell death. 
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Fig. 1.13 Illustration of signal communication network triggered by BAD 

 

Table 1.1 The truth table for cell death/ survival for AkT/ BAD pathway. 

AkT BAD Output 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

2.  Caspase 9 : During cell death, cytochrome c that is released into the cytoplasm 

binds the CED-4 homologue, Apaf-1. This causes it to bind, cleave, and activate 

the cysteine protease procaspase-9, which propagates the apoptotic caspase 

cascade that results in the activation of the ‘executioner’ caspases, caspase 3 and 

caspase 7. Interestingly, Akt phosphorylates procaspase-9 at Ser-196 rendering it 

resistant to processing and activation. Although it may appear redundant for Akt 

to act both upstream and downstream of cytochrome c in preventing cell death, 

the phosphorylation of procaspase-9 by Akt must have a physiological 

significance, as the cells that express caspase-9 with the Ser-196 mutated to 

alanine and underwent cell death that was resistant to Akt activity  

3.  FKHR1  : Akt phosphorylates and inactivates the Forkhead transcriptional factors. 

In the absence of survival signaling (i.e. phosphorylation by Akt), the Forkhead 

proteins enter the nucleus and are thought to induce the transcription of various 

cell-death related genes, such as FasL (Fas ligand) [56].  However, active Akt 

induces the phosphorylation of a specific site on the FKHR1 molecule that causes 
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it to be excluded from the nucleus, therefore losing its transcriptional activity. 

Table 1.2 shows the truth table for cell death/ survival for AkT/ FKHR pathway. 

Table 1.2 The truth table for cell death/ survival for AkT/ FKHR pathway 

AkT FKHR Output 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

 

4.  p53 : The mechanism by which p53 specifies the neuronal response to injury is 

poorly understood. However, currently available data suggest that the Bcl2 family 

member, Bax, is involved in p53-mediated neuronal death. Bax-deficient neurons 

are protected from cell death induced by DNA-damaging agents and adenovirus-

mediated p53 over expression. Moreover, various forms of neuronal injury are 

associated with Bax translocation from the cytosol to the mitochondria. The 

redistribution of Bax to the mitochondria has been associated with a reduction in 

mitochondrial membrane potential, mitochondrial release of cytochrome c, and 

activation of caspases, suggesting that caspases may also be a component of a p53-

induced cell death pathway. Recent studies indeed demonstrated that p53 is 

required for caspase activation in response to genotoxic stress. These findings 

suggest that some forms of neuronal injury invoke a common pathway involving 

signal transduction through p53, Bax, mitochondrial dysfunction, cytochrome c 

release and caspase activation. 

It is also critical that the pathways responsible for activating and suppressing 

p53 activity be identified. In this regard it is interesting to note that the important 

survival-promoting protein, Akt, can protect neurons from cell death by inhibiting 

p53-dependent transcriptional activity. These results demonstrate the 

interconnection that exists between pathways that govern cell death and viability 

and serve to remind us that the response and the outcome of neurons to stress are 

exceedingly complex. Table 1.3 shows the truth table for cell death/ survival for 

AkT/ p53 pathway. 
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Table 1.3  The truth table for cell death/ survival for AkT/ p53 pathway. 

AkT p53 Output 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

5. NF-κB : NF-κB is a factor that is involved in cell survival. It has been identified as 

a functional target of Akt. NF-κB is a family of transcription factors, which 

induce the expression of a wide variety of genes, especially those involved in 

survival, such as the Bcl-2 family member Bfl-1, and the caspase inhibitors c-

IAP1 and c-IAP2. Binding with IκB sequesters it to the cytoplasm. Upon 

phosphorylation of IκB by IKKalpha and IKKbeta, IkB is degraded and NF-κB 

can enter the nucleus to induce transcription. It must be noted that NF-κB does 

not appear to be directly phosphorylated by Akt, but indirectly activated. Table 

1.4 shows the truth table for cell death/ survival for AkT/ NF-κB pathway. 

Table 1.4 The truth table for cell death/ survival for AkT/ NF-κB pathway. 

AkT NF-kB Output 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

1.4.3 ACTIVATION OF JAK/STAT PATHWAY 
Another signaling cascade initiated by EGF is the JAK/STAT pathway, which is also 

implicated in cell survival responses [57]. JAK phosphorylates STAT proteins are 

localized at the plasma membrane. This leads to the translocation of STAT proteins to the 

nucleus where they activate the transcription of genes associated with cell survival. 

 

1.5 COMMUNICATION OF SIGNAL TRIGGERED BY INSULIN 

LEADING TO CELL SURVIVAL / CELL DEATH  

Insulin is a hormone [58, 59] that regulates the amount of glucose (sugar) in the blood 

and is required for the body to function normally.  It is synthesized as one chain, which is 

then cleaved at one site by a protease to form a two chain (A and B) protein.  The two 
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chains are covalently linked by a bond (disulfide) between a cysteine, an amino acid with 

a -CH2SH side chain, with a cysteine side chain on the other chain.  This protein binds to 

its receptor the insulin receptor, on cell membranes, which initiates a process of signal 

transduction [60]. The insulin receptor is a hormone-dependent kinase.  When insulin 

binds on the extracellular part of the insulin receptor, shape changes communicated to the 

intracellular part cause it to bind ATP and phosphorylate proteins, specifically on 

tyrosine side chains.  The insulin receptor is an insulin-dependent tyrosine kinase. Insulin 

binds to the extracellular α-subunit of the receptor and induces a conformational change 

that brings the α-subunits closer together. This leads to a rapid autophosphorylation of the 

receptor [61].  This then allows other intracellular proteins to bind to the intracellular 

domain of the receptor, and become phosphorylated.  People who do not produce the 

necessary amount of insulin have diabetes. There are two general types of diabetes  

The signaling pathway for insulin is shown in Fig. 1.14.  

MAPK Pathway (Mitogenic responses) :  

Other signal transduction proteins interact with IRS including GRB2, an adaptor protein 

that contains SH3 domains, which in turn associates with the guanine nucleotide 

exchange factor son-of sevenless (sos) and elicits activation of the MAPK cascade 

leading to mitogenic responses. SHC is another substrate for the insulin receptor. Upon 

phosphorylation SHC associates with GRB2 and can therefore activate the MAPK 

pathway independently of IRS. MAP kinases are actually a family of protein kinases that 

are widely distributed and are found in all eukaryotic organisms [62].  
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Fig. 1.14 Illustration of signal communication network triggered by Insulin 

PI3K Pathway/ AkT: PI3K is activated by insulin, insulin-like growth factor-1 and other 

growth factors. PI3K is a heterodimeric lipid kinase with a broad range of cellular 

functions, including growth and differentiation, synthesis and degradation of 

carbohydrates, proteins and lipids, and membrane trafficking. PI3K consists of a 

regulatory subunit that associates with a catalytic subunit. The regulatory subunit binds 

the IRSs, whereas the catalytic subunit phosphorylates phosphatidylinositols in the 

membrane. PI3K is supposed to phosphorylate phosphatidylinositol 4, 5-bisphosphate at 

position 3 of the inositol ring to generate the putative lipid second messenger, 

phosphatidylinositol 3, 4, 5-trisphosphate [55]. Inhibition of PI3K by either Wortmannin 

or LY-294002 blocks the formation of phosphatidylinositol 3,4,5-trisphosphate within the 

cell and leads to the inhibition of several intracellular events, most importantly Glucose 

transporter 4 (GLUT4) translocation, thereby inhibiting insulin-stimulated glucose 

transport in the skeletal muscle. Activation of PI3K with insulin is insufficient for 
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insulin-stimulated glucose transport. A new pathway suggests that CAP (Cbl-associated 

protein)/Cbl may play a role in glucose uptake. CAP/Cbl is recruited to the insulin 

receptor in 3T3-L1 adipocytes and disruption of this interaction attenuates insulin-

stimulated glucose transport. The importance of this pathway is unknown in human 

insulin-sensitive tissues and the role of this pathway in the skeletal muscle is not clear. 

The pathway for PI3K is shown in Fig. 4.5. PDK (phosphoinositide-dependent protein 

kinase)/Akt (protein kinase B, c-Akt) is one of the serine/threonine kinases downstream 

of PI3K. Akt was originally implicated in cancer development, promoting cell 

proliferation and inhibition of cell death. Insulin and other growth factors acutely activate 

Akt. Three isoforms of Akt have been identified: Akt1, Akt2 and Akt3, all of which are 

ubiquitously expressed. Full activation of Akt1 requires phosphorylation of two specific 

sites, Thr308 and Ser473 .Akt1 is activated by phosphorylation of Thr308 by PDK-1. The 

mechanism for phosphorylation of Ser473 is unclear, but PDK-2 is believed to be 

involved. Both Akt1 and Akt2 are involved in insulin signal transduction in skeletal 

muscle and adipose tissue. In contrast, Akt3 is not activated by insulin in the liver, 

muscle or adipose tissue. Whereas IRS-1 and PI3K phosphorylation/activation is 

impaired under in vivo and in vitro insulin stimulation in the skeletal muscle from Type II 

diabetic subjects, Akt phosphorylation is impaired only under in vitro conditions. 

Recently, a new Akt substrate, AS160, was identified in adipocytes. Initial studies 

demonstrate that insulin-stimulated AS160 phosphorylation is required for GLUT4 

translocation leading to glucose transport. 

Following are the various proteins which help in Cell survival/ Death using AkT .  

( )
( )
( )

1) / 3 / ( 1CellSurvival, 0Cell Death); Result Shown in Table1.1

2) / 3 / (Cell Death); Result Shown in Table1.2
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κ→ = =

→ = =
 

mTOR : Using cell biological, biochemical, genomic and proteomic approaches, we are 

uncovering the complex molecular understanding of a signaling network centered around 

a G protein switch involving the tuberous sclerosis complex (TSC) tumor suppressors 
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(TSC1 and TSC2) and the Ras-related small G protein Rheb.  A complex between TSC1 

and TSC2 is regulated by multi-site phosphorylation and acts as a point of integration for 

a diverse array of cellular signals, including those arising from growth factors, nutrients 

and a variety of stress conditions.  When active, the TSC1-TSC2 complex [55] acts as a 

GTPase activating protein (GAP) for Rheb, thereby turning Rheb off by stimulating its 

intrinsic GTPase activity.  In the presence of growth factors and nutrients, this complex is 

turned off, allowing the GTP-bound active version of Rheb to accumulate and turn on 

downstream pathways.  The best-characterized downstream effectors of Rheb is the 

mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of cell growth 

and proliferation.   
Table 1.5  The truth table for cell death/ survival for AkT/ mTOR pathway. 

AkT mTOR Output 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

1.6 OBJECTIVE OF THE THESIS WORK  

 In this work our purpose is to determine whether the computational techniques such as 

electronic implementation (e.g.VHDL, CMOS and BICMOS, Fuzzy Logic) and 

mathematical modeling (e.g. Non–linear (ANN) and Deterministic implementation) can 

be used to uncover important aspects of biological cue-signal-response systems. 

Specifically we examine the tumor necrosis factor-alpha (TNF-α), epidermal growth 

factor (EGF) and insulin mediated cell survival/ cell death response of HT-29 human 

colon carcinoma cells based on heterogeneous measurements of nearly 10 signaling 

protein levels, states and activities. We wish to attract the interest of experimental 

molecular cell biologists with the strength of aforesaid computational techniques to find 

out the key players involve in biological processes before going for any experimental 

manipulations. A noteworthy feature of biological measurements reflects tangible 

molecular entities with known mechanistic roles in intracellular processes. Thus, these 

data-driven models of signaling are empirical, but not phenomenological, and suggest 

mechanistic dependencies. We showed here that the aforesaid methods can uncover key 
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contributors to death-survival decisions. These contributions always involve multiple 

proteins working in concert, but the informative proteins consist of only a fraction of the 

original protein dataset. Thus, our results suggest that within a cue-signal-response 

system lays a reduced set of information-rich protein measurements that together 

constitute an efficient model of the signaling network state and the relevant signal-

response relationships.  

This thesis focuses on system implementation of a signals and responses triggered by 

TNF-α, EGF and insulin factors leading to cell survival/ cell death. The computational 

techniques that have been used are: VHDL (Xilinx Tool), CMOS and BiCMOS (SPICE 

Tool), and Fuzzy Logic (MATLAB Tool), Non Linear Model (Artificial Neural 

Networks) and Deterministic Model taking three input signals. Each of these pieces of 

work has distinct characteristics. At the same time they are related to one another. To 

clearly and coherently demonstrate the goal, results and conclusion of each piece of 

work, we have arranged each work chapter wise in a publishing format. The format will 

benefit readers to understand the idea of development, conclusion, coherence and full 

significance as each chapter will be a full manuscript from background to conclusion at 

publication stage. In future we are also trying to develop bio-simulator that can be used 

for prediction of status of the cell leading to cell survival/ cell death giving chemotherapy 

and radiotherapy treatment. 

1.7 APPROACH  
 Signal transduction pathways control cellular responses to stimuli, but it is unclear how 

molecular information is processed as a network. Large-scale collection and 

systematization of such data is likely to have a great impact on cell biology as complete 

genome sequencing has had on genetics. Cell signaling pathways interact with one 

another to form networks. Such networks are complex in their organization and exhibit 

emergent properties such as bistability and ultra sensitivity. Analysis of signaling 

networks requires a combination of experimental and theoretical approaches including 

the development and analysis of models [1, 2, 3]. This work examines signaling networks 

that control the survival decision treated with combinations of the pro-death cytokine, 
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tumor necrosis factor-α (TNF), and the pro-survival growth factors, epidermal growth 

factor (EGF) and insulin. 

The signaling system underlying cell death allows the cell to process input signals 

capturing information coming from the environment of the cell to lead to one of two 

possible outputs: cell survival or cell death. The system output is typically a phenotypic 

readout (death or survival); however, it can also be determined by measuring “early” 

signals that perfectly correlate with the death/ survival output. Examples of such early 

signals include phosphatidylserine exposure, membrane permeability, nuclear 

fragmentation and caspase substrate cleavage. The Fig. 1.15 illustrates the system under 

study linking the three input signaling such as TNF, EGF and Insulin and four output 

signals phosphatidylserine exposure, membrane permeability, nuclear fragmentation and 

caspase substrate cleavage leading to cell death/ survival. 

 
Fig. 1.15  Illustration of the system model of biological cue-signal-response system. In presence of three 
input signals (in single or in combination) the system model  make logical decisions based on the prevailing 
intracellular and extra cellular conditions and produce a reliable behavior. In general the apoptotic cell 
death is described based on chromatin condensation, fragmentation of DNA, blebbing of the plasma 
membrane, and formation of "apoptotic bodies", which are phagocytes by neighboring cells. 

 Biological systems have the immense capability to generate complex structures from 

very simple systems. With simple rules and few inputs, a biological system can grow 

from a single cell to a multi cellular organism in a relatively short time. Biological 

systems, however, have been accurately synthesizing nano-scale machines for millions of 

years [63, 64, 65, 66]. Logic gates are the basic building blocks in electronic circuits that 

perform logical operations. These have input and output signals in the form of 0’s and 
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1’s; ‘0’ signifies the absence of signal while ‘1’ signifies its presence. Similar to the 

electronic logic gates, cellular components can serve as logic gates.  

1.8 SUMMARY OF CONTRIBUTIONS:  
In this dissertation, I make the following contributions: 

1. SPICE : SPICE is a program that simulates electronic circuits in our PC. We can view 

any voltage or current waveform in our circuit. SPICE calculates these voltages and 

currents versus time (Transient Analysis) or versus frequency (AC Analysis). Most 

SPICE programs also perform other analysis like DC, Sensitivity, Noise and Distortion. 

Today, SPICE is available from many vendors who have added schematic drawing 

tools to the front end and graphics post processors to plot the results. SPICE simulators 

and applications have been expanded to analog and digital circuits, microwave devices, 

and electromechanical systems. Ideally, we would actually build and test actual circuits 

to understand all of its behavior. However, we would need breadboards, components 

and time to wire the circuit. Actual circuits also require expensive equipment like 

power supplies, signal generators and oscilloscopes. It may be difficult to physically 

breadboard every circuit one encounter.  We can spend hours building an actual circuit 

and only get a simple concept from it, whereas, SPICE provides the insight in minutes. 

SPICE could be our “virtual” breadboard.  Even if one has a short time to spare one can 

cover several circuit principles and applications.  

2. VHDL coding: VHDL is a programming language that has been designed and 

optimized for describing the behavior of digital systems. It is a hardware description 

language that can be used to model a digital system at many levels of abstraction, 

ranging from the algorithmic level to the gate level. The complexity of the digital 

system being modeled could vary from that of simple gate to the complete digital 

electronic system or any thing in between. The digital system can also be described 

hierarchically. Timing can also be explicitly modeled in the same description. VHDL 

has many features appropriate for describing the behavior of electronic components 

ranging from simple logic gates to complete microprocessors and custom chips. 

Features of VHDL allow electrical aspects of circuit behavior (such as rise and fall 

times of signals, delays through gates, and functional operation) to be precisely 
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described. The resulting VHDL simulation models can then be used as building blocks 

in larger circuits (using schematics, block diagrams or system-level VHDL 

descriptions) for the purpose of simulation.  

  VHDL is also a general-purpose programming language; just as high-level 

programming languages allow complex design concepts to be expressed as computer 

programs, VHDL allows the behavior of complex electronic circuits to be captured 

into a design system for automatic circuit synthesis or for system simulation. Like 

Pascal, C and C++, VHDL includes features useful for structured design techniques, 

and offers a rich set of control and data representation features. Unlike these other 

programming languages, VHDL provides features allowing concurrent events to be 

described. This is important because the hardware described using VHDL is inherently 

concurrent in its operation. One of the most important applications of VHDL is to 

capture the performance specification for a circuit in the form of what is commonly 

referred to as a test bench. Test benches are VHDL descriptions of circuit stimuli and 

corresponding expected outputs that verify the behavior of a circuit over- time. Test 

benches should be an integral part of any VHDL project and should be created in 

tandem with other descriptions of the circuit. 

3.  FUZZY LOGIC: Fuzzy Logic is a departure from classical two-valued sets and logic 

that uses "soft" linguistic (e.g. large, hot, tall) system variables and a continuous range 

of truth values in the interval [0,1], rather than strict binary (True or False) decisions 

and assignments. Formally, fuzzy logic is a structured, model-free estimator that 

approximates a function through linguistic input/output associations. Fuzzy rule-based 

systems apply these methods to solve many types of "real-world" problems, especially 

where a system is difficult to model, is controlled by a human operator or expert, or 

where ambiguity or vagueness is common. A typical fuzzy system consists of a rule 

base, membership functions, and an inference procedure. Fuzzy logic is the part of 

artificial intelligence or machine learning which interprets a human’s actions. 

Computers can interpret only true or false values but a human being can reason the 

degree of truth or degree of falsehood. Fuzzy models interpret the human actions and 

are also called intelligent systems.  
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4. Artificial Neural Network : Artificial Neural Networks (ANN) are among the newest 

signal-processing technologies in the engineer's toolbox. The field is highly 

interdisciplinary but our approach will restrict to the view of the engineering 

perspective. In engineering, neural networks serve two important functions: as pattern 

classifiers and as nonlinear adaptive filters. We will provide a brief overview of the 

theory, learning rules, and applications of the most important neural network models. 

An Artificial Neural Network is an adaptive, most often nonlinear system that learns to 

perform a function (an input/output map) from data. Adaptive means that the system 

parameters change during operation, normally called the training phase. After the 

training phase the Artificial Neural Network parameters are fixed and the system is 

deployed to solve the problem at hand (the testing phase). The Artificial Neural 

Network is built with a systematic step-by-step procedure to optimize a performance 

criterion or to follow some implicit internal constraint, which is commonly referred to 

as the learning rule. The input/output training data are fundamental in Neural Network 

Technology, because they convey the necessary information to 'discover' the optimal 

operating point. The nonlinear nature of the neural network processing elements (PEs) 

provides the system with lots of flexibility to achieve practically any desired 

input/output map, i.e., some Artificial Neural Networks are universal mappers . 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38

CHAPTER 2 

ELECTRONICS IMPLEMENTATION 

Bioelectronics encompasses a range of topics at the interface of biology and 

electronics. One aspect of the application of electronics in biology, medicine, and 

security includes both detection and characterization of biological materials, such as on 

the cellular and sub cellular level. Another aspect of bioelectronics is using biological 

systems in electronic applications (e.g., processing novel electronic components from 

DNA, nerves, or cells). Bioelectronics also focuses on physically interfacing electronic 

devices with biological systems (e.g., brain-machine, cell-electrode, or protein-electrode). 

Applications in this area include assistive technologies for individuals with brain-related 

disease or injury, such as paralysis, artificial retinas, and new technologies for protein 

structure-function measurements. Fig 2.1 shows the comparison of electronics and 

biological elements. 

 
Fig 2.1 Comparison of Electronics and Biological Elements   
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2.1 SYSTEM MODEL OF CELL SURVIVAL/ CELL DEATH 

The decision between cell survival/ cell death is well regulated by three input signals : 

TNF, EGF and insulin. These factors in single or in combination activate various key 

players in the network pertaining to cell survival/ cell death. Many proteins involved in 

this process that interact systematically regulating a specific pathway or cross talk with 

other proteins of different pathways. As a result many pathways activated simultaneously 

leading to many biochemical and physiological changes inside the cell. The final 

outcome of whether a cell dies or survives depends in the concentrations of key players 

among the pathways. In this work we have engineered regulatory network for cell death 

(Figure 2.2), and cell survival (Figure 2.3). Furthermore a combination model for both 

cell survival/ cell death was engineered shown in Figure 2.4.  

 
Fig 2.2 Illustration of cellular communication induced by combination of TNF, EGF and insulin leading 

to Cell death 



 40

 
Fig 2.3 Illustration of cellular communication induced by combination of TNF, EGF and insulin leading 

to cell survival 

 
Fig 2.4  Illustration of cellular communication induced by combination of TNF, EGF and insulin leading 

to cell survival/ cell death 
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2.2 TRUTH TABLES 

On the basis of above models we have made the truth tables for every possible pathways 

encountered for cell death/ survival for pro death cytokine TNF, and pro survival 

cytokine EGF and Insulin and combining the three taking ‘1’ as cell survival and ‘0’ as 

cell death. For cell survival the ten different proteins i.e. P13K, TNFR1, EGFR, IRS, 

IKK, Grb2, SOS, Ras, TRADD, Traf2 should be present. If any one of them is absent 

than there is a cell death. This is the necessary condition. 

2.2.1 Truth Table for TNF 
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2.2.2 Truth Table for EGF  
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2.2.3 Truth Table for Insulin  
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2.2.4 Truth Table for TNF, EGF and Insulin combined 

 
Above are all truth tables made from the computational model of Cell Survival and Cell 

death. In the later chapter we will implement all these truth tables using different 

electronic implementation.  

2.3 EXPERIMENTAL FINDINGS OF MARKER PROTEINS 

LEADING TO CELL SURVIVAL/ CELL DEATH :  

The experimental findings of cell survival or cell death with respect to cytokine treatments 

was taken from Gaudet et al. (2005); Janes et al. (2005) treated with ten cytokine 

combinations of tumor necrosis factor-α (TNF), a pro apoptotic cytokine, in combination 
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with epidermal growth factor (EGF) or insulin, two pro survival growth factors. The 

response of cell survival as well as cell death are regulated by eleven different proteins 

such as Mitogen-activated protein kinase-activated protein kinase 2 (MK2), c-jun N-terminal 

kinases(JNK), Forkhead transcription factor (FKHR), Mitogen-activated protein kinase and 

extracellular-regulated kinase kinase (MEK), Extracellular-regulated kinase (ERK), Insulin 

receptor substrate (IRS), AkT, IKK,  Phospho-to-total EGFR (ptEGFR),  Phospho-to-total 

Akt (ptAkt), pAkT. All the eleven proteins forms signaling network which leads to cell 

survival/ death. The response of signaling network is regulated by the concentration of 

cytokines like TNF, EGF and Insulin. Therefore, it is possible to built self consistent 

compendia cell signaling data based on the above eleven proteins that can be simulated 

computationally to yield important insites into the control of cell survival/ death. Kinases 

such as Akt and ERK were maximally active 5-15 min after cytokine addition whereas 

caspase cleavage was evident only after 4 hr time shown in Table 2.1. The changes in 

concentration of 11 marker proteins with respect to various treatments of cytokines are 

represented as heat map (Fig. 2.5 (a)). Similarly the output response in terms of (1) PS 

exposure (2) membrane permeability (3) DNA fragmentation and (4) caspases cleavage is 

represented as heat map in Fig 2.5(b).  

Table 2.1 Combination of ten cytokine treatments used in the experimental study (Gaudet et al. 2005).  

 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

TNF(ng/ml) - 5 100 - 5 100 - 0.2 5 100 

EGF(ng/ml) - - - 100 1 100 - - - - 

Insulin(ng/ml) - - - - - - 500 1 5 500 
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Fig 2.5  Heat map showing the level of the 11 marker proteins  and the cell death response with respect 

to the treatments of TNF, EGF and Insulin with 10 cytokine combinations from Gaudet et al 
2005 For each treatment, the average signal intensities were normalized to the maximal value 
obtained for that signal (0: green; 0.5: black; 1: red) and are plotted for the 13 time points . (B) 
Heat map of cell death responses for the 10 treatments. The average values from triplicate 
samples were normalized to the maximal value for that assay and are plotted for 12, 24, and 48 
hr of treatment (0: green; 0.5: black; 1: red). The fractions of cells doubly positive for cleaved 
caspase-3 and cleaved cytokeratin (CC3/CCK) or with phosphatidylserine exposure (PS 
exposure), membrane permeability (Memb. Perm.), or sub-G1 DNA content (SubG1 DNA) or 
were measured by flow cytometry.  

 

2.4 SYSTEM IMPLEMENTATION OF CMOS AND BICMOS USING 

SPICE 

SPICE is a powerful general purpose analog and mixed-mode circuit simulator that is 

used to verify circuit designs and to predict the circuit behavior. This is of particular 

importance for integrated circuits. It was for this reason that SPICE was originally 

developed at the Electronics Research Laboratory of the University of California, 
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Berkeley (1975), as its name implies:  Simulation Program for Integrated Circuits 

Emphasis.  

Today, SPICE is available from many vendors who have added schematic drawing 

tools to the front end and graphics post processors to plot the results. SPICE simulators 

and applications have expanded to analog and digital circuits, microwave devices, and 

electromechanical systems. Ideally, we would actually build and test actual circuits to 

understand all of its behavior. However, we would need breadboards, components and 

time to wire the circuit. Actual circuits also require expensive equipment like power 

supplies, signal generators and oscilloscopes. We can spend hours building an actual 

circuit and only get a simple concept from it, whereas, SPICE provides the insight in 

minutes. SPICE can be our “virtual” breadboard.  Even if we have a short time to spare, 

we can cover several circuit principles and applications.  

The Figure 2.6 summarizes the different steps involved in simulating a circuit with 

Capture and PSpice. We'll describe each of these briefly through a couple of examples. 

 
Fig 2.6  Steps involved in simulating a circuit using SPICE 

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or 

MOS FET) is a device used for amplifying or switching electronic signals. The basic 

principle of the device was first proposed by Julius Edgar Lilienfeld in 1925. In 

MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting 

channel between the two other contacts called source and drain. The channel can be of n-

type or p-type, and is accordingly called an NMOSFET or a PMOSFET (also commonly 
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nMOS, pMOS). It is by far the most common transistor in both digital and analog 

circuits, though the bipolar junction transistor was at one time much more common [67, 

68]. 

A traditional metal–oxide–semiconductor (MOS) structure is obtained by growing a 

layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal 

or polycrystalline silicon (the latter is commonly used). As the silicon dioxide is a 

dielectric material, its structure is equivalent to a planar capacitor, with one of the 

electrodes replaced by a semiconductor. 

A metal–oxide–semiconductor field-effect transistor (MOSFET) is based on the 

modulation of charge concentration by a MOS capacitance between a body electrode and 

a gate electrode located above the body and insulated from all other device regions by a 

gate dielectric layer which in the case of a MOSFET is an oxide, such as silicon dioxide. 

If dielectrics other than an oxide such as silicon dioxide (often referred to as oxide) are 

employed the device may be referred to as a metal–insulator–semiconductor FET. 

Compared to the MOS capacitor, the MOSFET includes two additional terminals (source 

and drain), each connected to individual highly doped regions that are separated by the 

body region. These regions can be either p or n type, but they must both be of the same 

type, and of opposite type to the body region. The source and drain (unlike the body) are 

highly doped as signified by a '+' sign after the type of doping [69, 70]. 

If the MOSFET is an n-channel or nMOS FET, then the source and drain are 'n+' 

regions and the body is a 'p' region. As described above, with sufficient gate voltage, 

above a threshold voltage value, electrons from the source (and possibly also the drain) 

enter the inversion layer or n-channel at the interface between the p region and the oxide. 

This conducting channel extends between the source and the drain, and current is 

conducted through it when a voltage is applied between source and drain. For gate 

voltages below the threshold value, the channel is lightly populated, and only a very 

small sub threshold voltage current can flow between the source and the drain. 

If the MOSFET is a p-channel or pMOS FET, then the source and drain are 'p+' 

regions and the body is a 'n' region. When a negative gate-source voltage (positive 
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source-gate) is applied, it creates a p-channel at the surface of the n region, analogous to 

the n-channel case, but with opposite polarities of charges and voltages. When a voltage 

less negative than the threshold value (a negative voltage for p-channel) is applied 

between gate and source, the channel disappears and only a very small subthreshold 

current can flow between the source and the drain. Symbols for nMOS and pMOS is 

shown in Fig 2.7. 

            
(a)                 (b) 

Fig 2.7 Representation of  (a) nMOS transistor (b) pMOS transistor     

CMOS referred to as complementary-symmetry metal–oxide–semiconductor (or 

COS-MOS). The words "complementary-symmetry" refer to the fact that the typical 

digital design style with CMOS uses complementary and symmetrical pairs of p-type and 

n-typemetal oxide semiconductor field effect transistors (MOSFETs) for logic functions. 

The principal reason for the success of the MOSFET was the development of digital 

CMOS logic, which uses p- and n-channel MOSFETs as building blocks. Overheating is 

a major concern in integrated circuits since ever more transistors are packed into ever 

smaller chips. CMOS logic reduces power consumption because no current flows 

(ideally), and thus no power is consumed, except when the inputs to logic gates are being 

switched. CMOS accomplishes this current reduction by complementing every 

nMOSFET with a pMOSFET and connecting both gates and both drains together [69, 

70]. A high voltage on the gates will cause the nMOSFET to conduct and the pMOSFET 

not to conduct and a low voltage on the gates causes the reverse. During the switching 

time as the voltage goes from one state to another, both MOSFETs will conduct briefly. 

This arrangement greatly reduces power consumption and heat generation. Two 

important characteristics of CMOS devices are high noise immunity and low static power 

consumption. Significant power is only drawn while the transistors in the CMOS device 

are switching between on and off states. Consequently, CMOS devices do not produce as 

much waste heat as other forms of logic, for example transistor-transistor logic (TTL) or 
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NMOS logic, which uses all n-channel devices without p-channel devices. CMOS also 

allows a high density of logic functions on a chip.  

Static CMOS Inverter 

The composition of a pMOS transistor creates low resitance between its source and drain 

contacts when a low gate voltage is applied and high resistance when a high gate voltage 

is applied. On the other hand, the composition of an nMOS transistor creates high 

resistance between source and drain when a low gate voltage is applied and low 

resistance when a high gate voltage is applied. 

 
Fig 2.8 (a) Circuit schematic for a CMOS inverter  (b) Simplified operation model with a 

high input applied (c) Simplified operation model with a low input applied 

In Fig 2.8, when vI is pulled high (to VDD), the pMOS transistor is turned off, while the 

nMOS device is turned on pulling the output down to VSS. When vI is pulled low (to VSS), 

the NMOS transistor is turned off, while the PMOS device is turned on pulling the output 

up to VDD. In short, the outputs of the PMOS and NMOS transistors are complementary 

such that when the input is low, the output is high, and when the input is high, the output 

is low. Because of this opposite behavior of input and output, the CMOS circuits' output 

is the inversion of the input. 

Duality 

An important characteristic of a CMOS circuit is the duality that exists between its pMOS 

transistors and nMOS transistors. This can be easily accomplished by defining one in 



 51

terms of the NOT of the other. Due to the De Morgan’s laws based logic, the PMOS 

transistors in parallel have corresponding NMOS transistors in series while the PMOS 

transistors in series have corresponding NMOS transistors in parallel. 

a) CMOS NAND gate 

More complex logic functions such as those involving AND and OR gates require 

manipulating the paths between gates to represent the logic. When a path consists of two 

transistors in series, then both transistors must have low resistance to the corresponding 

supply voltage, modeling an AND. When a path consists of two transistors in parallel, 

then either one or both of the transistors must have low resistance to connect the supply 

voltage to the output, modeling an OR. 

Fig. 2.9 shows the circuit diagram of a NAND gate in CMOS logic. If both of the A 

and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will 

conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path 

will be established between the output and Vss (ground), bringing the output low. If either 

of the A or B inputs is low, one of the NMOS transistors will not conduct, one of the 

PMOS transistors will, and a conductive path will be established between the output and 

Vdd (voltage source), bringing the output high. 

 
Fig 2.9  CMOS NAND gate implementation  
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An advantage of CMOS over NMOS is that both low-to-high and high-to-low output 

transitions are fast since the pull-up transistors have low resistance when switched on, 

unlike the load resistors in NMOS logic. In addition, the output signal swings the full 

voltage between the low and high rails. This strong, more nearly symmetric response also 

makes CMOS more resistant to noise. 

b) CMOS NOR gate : Fig. 2.10 shows the circuit diagram of a NOR gate in CMOS 

logic. 

 
Fig 2.10  CMOS NOR gate implementation  

SYSTEM IMPLEMENTATION USING BiCMOS 

In integrated circuit technologies, BiCMOS, also called BiMOS, refers to the integration 

of bipolar junction transistors and CMOS technology into a single integrated circuit 

device. This technology has commercial application in amplifier and discrete component 

logic design. 

 Advantages of CMOS over bipolar  

• Lower static power dissipation 

• Higher noise margins 

• Higher packing density – lower manufacturing cost per device 

• High yield with large integrated complex functions 
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• High input impedance (low drive current) 

• Scaleable threshold voltage 

• High delay sensitivity to load (fan-out limitations) 

• Low output drive current (issue when driving large capacitive loads) 

• Low trans conductance, where trans conductance, gm α Vin 

• Bi-directional capability (drain & source are interchangeable) 

• A near ideal switching device 

Advantages of Bipolar over CMOS 

• Higher switching speed 

• Higher current drive per unit area, higher gain 

• Generally better noise performance and better high frequency characteristics 

• Better analogue capability 

• Improved I/O speed (particularly significant with the growing importance of 

package limitations in high speed systems). 

• high power dissipation 

• lower input impedance (high drive current) 

• low voltage swing logic 

• low packing density 

• low delay sensitivity to load 

• high trans conductance, where trans conductance, gm α Vin  

• high unity gain band width at low currents 

• essentially unidirectional 

Combine advantages in BiCMOS  Technology 

• It follows BiCMOS technology that goes some way towards combining the virtues  

of both CMOS and Bipolar technologies 
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• Design uses CMOS gates along with bipolar totem-pole stage where driving of high 

capacitance loads is required 

Resulting benefits of BiCMOS technology over solely CMOS or solely bipolar : 

• Improved speed over purely-CMOS technology 

• Lower power dissipation than purely-bipolar technology (simplifying packaging 

and board requirements) 

• Flexible I/Os (i.e., TTL, CMOS or ECL) – BiCMOS technology is well suited for 

I/O intensive applications. ECL, TTL and CMOS input and output levels can 

easily be generated with no speed or tracking consequences  

• high performance analogue 

THE BiCMOS INVERTER : Fig 2.11 shows the circuit diagram of Bi CMOS inverter. 

Two bipolar transistors (T3 and T4), one nMOS and one pMOS transistor (both 

enhancement-type devices, OFF at Vin=0V). The MOS switches perform the logic 

function & bipolar transistors drive output loads 

 
Fig 2.11 BiCMOS Inverter 
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When Vin = 0 :  T1 is off.   Therefore T3 is non-conducting, T2 ON - supplies current to 

base of T4. T4 base voltage set to Vdd. T4 conducts and acts as current source to charge 

load CL towards Vdd. Vout rises to Vdd - Vbe (of T4) 

Note :  Vbe (of T4) is base-emitter voltage of  T4.   

        5V - Vbe (of T4) 

 When Vin = Vdd : T2 is off. Therefore T4 is non-conducting. T1 is ON and supplies current 

to the base of T3 . T3 conducts and acts as a current sink to discharge load CL towards 0V. 

Vout falls to 0V+ VCEsat (of T3) 

Note : VCEsat (of T3) is saturation V from T3 collector to emitter.  

BiCMOS NAND GATE   

 
Fig 2.12 Two input BiCMOS NAND gate 

ADVANTAGES AND DISADVANTAGES OF BiCMOS TECHNOLOGY :   
Advantages of BiCMOS  Technology :  

• Analogue amplifier design is facilitated and improved 

•  High impedance CMOS transistors may be used for the input circuitry while the 

remaining stages and output drivers are realized using bipolar transistors 
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• In general, BiCMOS devices offer many advantages where high load current 

sinking and sourcing is required. The high current gain of the NPN transistor 

greatly improves the output drive capability of a conventional CMOS device. 

• MOS speed depends on device parameters such as saturation current and 

capacitance. These in turn depend on oxide thickness, substrate doping and channel 

length. 

• Compared to CMOS, BiCMOS’s reduced dependence on capacitive load and the 

multiple circuit and I/Os configurations possible greatly enhance design flexibility 

and can lead to reduced cycle time (i.e., faster circuits). 

• BiCMOS is inherently robust with respect to temperature and process variations, 

resulting in less variability in final electrical parameters, resulting in higher yield, 

an important economic consideration. 

• Large circuits can impose severe performance penalties due to simultaneously 

switching noise, internal clock skews and high nodal capacitances in critical paths - 

BiCMOS has demonstrated superiority over CMOS in all of these factors. 

• BiCMOS can take advantage of any advances in CMOS and/or bipolar technology, 

greatly accelerating the learning curve normally associated with new technologies. 

Disadvantages with BiCMOS technology 

• Main disadvantage : greater process complexity compared to CMOS  

• Results in a 1.25 -> 1.4 times increase in die costs over conventional CMOS. 

• Taking into account packaging costs, the total manufacturing costs of supplying a 

BiCMOS chip ranges from 1.1-> 1.3 times that of CMOS. 

• However, as CMOS complexity has increased, the percentage difference between 

CMOS and BiCMOS mask steps has decreased.  

2.4.1 RESULTS AND DISCUSSIONS : We had studied relating how TNF, EGF 

and Insulin work and its pathways in detail and explain each and every possible path for 

that. Based on pathways we had made truth tables for every possible path for cell 
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survival/cell death. Than we realize the truth tables by Karnaugh Map (K-Map) and get 

the Boolean expression for its individual possible paths. We simulate the results of each 

path, then combine all the results, and simulate through SPICE simulator using CMOS 

and BiCMOS, get result of TNF, EGF and Insulin for its cell survival/ cell death. In 

output, ‘1’ signifies cell survival and ‘0’ signifies cell death. For cell survival the ten 

different proteins i.e. P13K, TNFR1, EGFR, IRS, IKK, Grb2, SOS, Ras, TRADD, Traf2 

should present. If any one of them is absent than there is a cell death.  

2.4.1.1 TNF signal cascade : The response of input signal TNF, in presence of key 

players regulating different pathways by using CMOS is shown in Fig 2.13 and by using 

BiCMOS is shown in Fig 2.14. As the ten marker proteins are present (‘1’) then, it 

activates five different pathways. V(35) is represented as output for CMOS and V(49) is 

represented as output for BiCMOS.  Details of input notation for CMOS and BiCMOS 

are shown in Table 2.2. 

Table 2.2  : Different key proteins involved in communicating signal of TNF through different pathways for 
CMOS and BiCMOS implementation  

 Input Combination of marker proteins 

 CMOS BiCMOS  

Pathway 1 V(5) V(8) RAF, MEK, ERK 

Pathway 2 V(11) V(16) RAL, MEKK, JNK 

Pathway 3 V(7) V(24) RIP, IκB, NFκB 

Pathway 4 V(23) V(31) MAP3k, p38, MK2 

Pathway 5 V(34) V(9) FAS 

Now to activate first pathway all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 3, and 4. But to activate 

pathway 5, marker protein FAS  should be absent (‘0’) than it will lead to cell survival. 
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Fig 2.13 System Implementation of TNF signal cascade using CMOS 

 

 
Fig 2.14 System Implementation of TNF signal cascade using BiCMOS 

  

2.4.1.2 EGF signal cascade : The response of input signal EGF, in presence of key 

players regulating different pathways by using CMOS is shown in Fig 2.15 and by using 

BiCMOS is shown in Fig 2.16. As the ten marker proteins are present (‘1’) then, it 

activates five different pathways. V(70) is represented as output for CMOS and V(106) is 

represented as output for BiCMOS.  Details of input notation for CMOS and BiCMOS 

are shown in Table 2.3. 
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Table 2.3  : Different key proteins involved in communicating signal  of EGF through different pathways 
for CMOS and BiCMOS implementation  

 Input Combination of marker proteins 

 CMOS BiCMOS  

Pathway 1 V(5) V(8) RAL, RAC, Rho 

Pathway 2 V(11) V(16) RAL, MEKK, JNK 

Pathway 3 V(17) V(24) RAF, MEK, ERK 

Pathway 4 V(28) V(36) p38, MK2 

Pathway 5 V(44) V(61) PTEN, AkT, NFκB 

Pathway 6 V(51) V(71) PTEN, AkT, BAD 

Pathway 7 V(58) V(81) PTEN, AkT, p53 

Pathway 8 V(67) V(94) PTEN, AkT, FKHR 

Pathway 9 V(32) V(41) JAK, STAT 

Now to activate first pathway, all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 3, 4 and 9 all the marker 

proteins should present. To activate pathway 5, 6 and 7 marker protein PTEN should be 

absent (‘0’)  and to activate pathway 8 PTEN and FKHR should be absent (‘0’)  than it 

will lead to cell survival.  

 
Fig 2.15 System Implementation of EGF signal cascade using CMOS 
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Fig 2.16 System Implementation of EGF signal cascade using BiCMOS 

 

2.4.1.3 Insulin signal cascade : The response of input signal Insulin, in presence of key 

players regulating different pathways by using CMOS is shown in Fig 2.17 and by using 

BiCMOS is shown in Fig 2.18. As the ten marker proteins are present (‘1’) then, it 

activates five different pathways. V(81) is represented as output for CMOS and V(124) is 

represented as output for BiCMOS.  Details of input notation for CMOS and BiCMOS 

are shown in Table 2.4. 

Table 2.4  : Different key proteins involved in communicating signal of Insulin through different 
pathways for CMOS and BiCMOS implementation  

 Input Combination of marker proteins 
 CMOS BiCMOS  
Pathway 1 V(5) V(8) RAL, RAC, Rho 
Pathway 2 V(11) V(16) RAL, MEKK, JNK 
Pathway 3 V(17) V(24) RAF, MEK, ERK 
Pathway 4 V(28) V(36) p38, MK2 
Pathway 5 V(44) V(61) PTEN, AkT, NFκB 
Pathway 6 V(51) V(71) PTEN, AkT, BAD 
Pathway 7 V(58) V(81) PTEN, AkT, p53 
Pathway 8 V(67) V(94) PTEN, AkT, FKHR 
Pathway 9 V(37) V(51) PTEN, AkT, mTOR 
Pathway 10 V(32) V(41) JAK, STAT 

Now to activate first pathway, all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 3, 4, and 10 all the marker 

proteins should present. To activate pathway 5, 6 7 and 9 marker protein PTEN should be 
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absent (‘0’) and to activate pathway 8,  PTEN and FKHR should be absent (‘0’)  than it 

will lead to cell survival.  

 

Fig 2.17 System Implementation of Insulin signal cascade using CMOS  

 
Fig 2.18 System Implementation of Insulin signal cascade using BiCMOS 

 

2.4.1.4 TNF, EGF and Insulin signal cascade : The response of input signal (in the 

combination of TNF, EGF and Insulin) in presence of key players regulating different 

pathways by using CMOS is shown in Fig 2.19 and by using BiCMOS is shown in Fig 

2.20. As the ten marker proteins are present (‘1’) then, it activates five different 
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pathways. V(31) is represented as output for CMOS and V(46) is represented as output 

for BiCMOS. Details of input notation for CMOS and BiCMOS are shown in Table 2.5. 

Table 2.5  : Different key proteins involved in communicating signal through different pathways for 
CMOS and BiCMOS implementation 

 Input Combination of marker proteins 
 CMOS BiCMOS  
Pathway 1 V(5) V(8) RAF, MEK, ERK 
Pathway 2 V(11) V(16) RAL, MEKK, JNK 
Pathway 3 V(22) V(42) p38, MK2 
Pathway 4 V(27) V(38) mTOR, PTEN, AkT 
Pathway 5 V(17) V(24) RIP, IκB, NF-κB 

Now to activate first pathway all the three marker proteins should be present (‘1’) leading 

to cell survival. Similarly for pathways 2, 4 and 5. But to activate pathway 3, marker 

protein PTEN should be absent (‘0’) than it will lead to cell survival. 

 
Fig 2.19 System Implementation of TNF, EGF and Insulin combined signal cascade using CMOS 

 
Fig 2.20 System Implementation of TNF, EGF and Insulin signal cascade using BiCMOS 
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2.5 SYSTEM IMPLEMENTATION USING HDL 

VLSI stands for "Very Large Scale Integration". This is the field which involves packing 

more and more logic devices into smaller and smaller areas.  

Without going into details, we can say that the VHDL, can be called as the "C" of the 

VLSI industry. VHDL stands for "VHSIC Hardware Definition Language", where 

VHSIC stands for "Very High Speed Integrated Circuit". This language is used to design 

the circuits at a high-level, in two ways. It can either be a behavioural description, which 

describes what the circuit is supposed to do, or a structural description, which describes 

what the circuit is made of. It is a hardware description language that can be used to 

model a digital system at many levels of abstraction, ranging from the algorithmic level 

to the gate level. The complexity of the digital system being modeled could vary from 

that of simple gate to the complete digital electronic system, or any thing in between. The 

digital system can also be described hierarchically. Timing can also be explicitly modeled 

in the same description. VHDL has many features appropriate for describing the behavior 

of electronic components ranging from simple logic gates to complete microprocessors 

and custom chips. Features of VHDL allow electrical aspects of circuit behavior (such as 

rise and fall times of signals, delays through gates, and functional operation) to be 

precisely described [70, 71]. The resulting VHDL simulation models can then be used as 

building blocks in larger circuits (using schematics, block diagrams or system-level 

VHDL descriptions) for the purpose of simulation. 

VHDL is also a general-purpose programming language; just as high-level 

programming languages allow complex design concepts to be expressed as computer 

programs.  

2.5.1 RESULTS AND DISCUSSION:  We have implemented the system model 

regulating the binary decision of cell survival (‘1’) and cell death (‘0’) using VHDL and 

simulated with the help of Xilinx tool. Only the key players such as P13K, TNFR1, 

EGFR, IRS, IKK, Grb2, SOS, Ras, TRADD, Traf2  if present then the cell survive else 

the cell die. 
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2.5.1.1 TNF signal cascade : The response of input signal of TNF in presence of key 

players regulating different pathways. Table 2.6 shows the five different pathways, its 

input notation and output notation used to implement VHDL coding which is shown in 

Fig 2.21. As the ten marker proteins are present (‘1’) then, it activates five different 

pathways.  

Table 2.6 Different key proteins involved in communicating signal through different pathways for VHDL 
implementation of TNF 

 Input Combination of marker proteins output 

Pathway 1 ‘b’ RAF, MEK, ERK ‘k’ 

Pathway 2 ‘c’ RAL, MEKK, JNK ‘l’ 

Pathway 3 ‘e’ RIP, IκB, NFκB ‘n’ 

Pathway 4 ‘f’ MAP3k, p38, MK2 ‘o’ 

Pathway 5 ‘g’ FAS ‘p’ 

Now to activate first pathway all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 3, and 4. But to activate 

pathway 5, marker protein FAS  should be absent (‘0’) than it will lead to cell survival. 

 
Fig 2.21 System Implementation of TNF signal cascade using VHDL 
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2.5.1.2 EGF signal cascade : The response of input signal of EGF in presence of key 

players regulating different pathways. Table 2.7 shows the nine different pathways, its 

input notation and output notation used to implement VHDL coding which is shown in 

Fig 2.22. As the ten marker proteins are present (‘1’) then, it activates nine different 

pathways.  

Table 2.7  Different key proteins involved in communicating signal through different pathways for VHDL 
implementation of EGF 

 Input Combination of marker proteins output 

Pathway 1 ‘b’ RAL, RAC, Rho ‘k’ 

Pathway 2 ‘c’ RAL, MEKK, JNK ‘l’ 

Pathway 3 ‘d’ RAF, MEK, ERK ‘m’ 

Pathway 4 ‘f’ p38, MK2 ‘o’ 

Pathway 5 ‘g’ PTEN, AkT, NFκB ‘p’ 

Pathway 6 ‘h’ PTEN, AkT, BAD ‘q’ 

Pathway 7 ‘i’ PTEN, AkT, p53 ‘r’ 

Pathway 8 ‘j’ PTEN, AkT, FKHR ‘s’ 

Pathway 9 ‘w’ JAK, STAT ‘y’ 

Now to activate first pathway, all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 3, 4 and 9 all the marker 

proteins should present. To activate pathway 5, 6 and 7 marker protein PTEN should be 

absent (‘0’) and to activate pathway 8 PTEN and FKHR should be absent (‘0’)  than it 

will lead to cell survival.  

2.5.1.3 Insulin signal cascade : The response of input signal of Insulin in presence of 

key players regulating different pathways. Table 2.8 shows the nine different pathways, 

its input notation and output notation used to implement VHDL coding which is shown in 

Fig 2.23. As the ten marker proteins are present (‘1’) then, it activates ten different 

pathways.  

Now to activate first pathway, all the three marker proteins should be present (‘1’) 

than only it will lead to cell survival. Similarly for pathways 2, 3, 4, and 10 all the marker 
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proteins should present. To activate pathway 5, 6 7 and 9 marker protein PTEN should be 

absent (‘0’) and to activate pathway 8,  PTEN and FKHR should be absent (‘0’)  than it 

will lead to cell survival.  

Table 2.8 Different key proteins involved in communicating signal through different pathways for VHDL 
implementation of Insulin 

 Input Combination of marker proteins output 

Pathway 1 ‘b’ RAL, RAC, Rho ‘k’ 

Pathway 2 ‘c’ RAL, MEKK, JNK ‘l’ 

Pathway 3 ‘d’ RAF, MEK, ERK ‘m’ 

Pathway 4 ‘f’ p38, MK2 ‘o’ 

Pathway 5 ‘g’ PTEN, AkT, NFκB ‘p’ 

Pathway 6 ‘h’ PTEN, AkT, BAD ‘q’ 

Pathway 7 ‘i’ PTEN, AkT, p53 ‘r’ 

Pathway 8 ‘j’ PTEN, AkT, FKHR ‘s’ 

Pathway 9 ‘u’ PTEN, AkT, mTOR ‘t’ 

Pathway 10 ‘w’ JAK, STAT ‘z’ 
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Fig 2.22 System Implementation  of  EGF signal cascade using VHDL 
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Fig 2.23 System Implementation  of  Insulin signal cascade using VHDL 
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2.5.1.4 TNF, EGF and Insulin combined signal cascade : The response of input signal 

(in the combination of TNF, EGF and Insulin) in presence of key players regulating 

different pathways. Table 2.9 shows the five different pathways, its input notation and 

output notation used to implement VHDL coding which is shown in Fig 2.24. As the ten 

marker proteins are present (‘1’) then, it activates five different pathways.  

Table 2.9 Different key proteins involved in communicating signal through different pathways for 
VHDL implementation of TNF, EGF and Insulin combined 

 Input Combination of marker proteins output 

Pathway 1 ‘b’ RAF, MEK, ERK ‘k’ 

Pathway 2 ‘c’ RAL, MEKK, JNK ‘l’ 

Pathway 3 ‘d’ p38, MK2 ‘m’ 

Pathway 4 ‘e’ mTOR, PTEN, AkT ‘n’ 

Pathway 5 ‘f’ RIP, IκB, NF-κB ‘o’ 

Now to activate first pathway all the three marker proteins should be present (‘1’) than 

only it will lead to cell survival. Similarly for pathways 2, 4 and 5. But to activate 

pathway 3, marker protein PTEN should be absent (‘0’) than it will lead to cell survival. 

  
Fig 2.24 System Implementation  of  TNF, EGF and Insulin combined signal cascade using VHDL 
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2.6 SYSTEM IMPLEMENTATION USING FUZZY LOGIC 

Fuzzy systems are an alternative to traditional notions of set membership and logic 

that has its origins in ancient Greek philosophy, and applications at the leading edge of 

Artificial Intelligence. Fuzzy logic has rapidly become one of the most successful of 

today's technologies for developing sophisticated control systems [72]. The reason for 

which is very simple. Fuzzy logic addresses such applications perfectly as it resembles 

human decision making with an ability to generate precise solutions from certain or 

approximate information.  

Fuzzy Logic is a departure from classical two-valued sets and logic, that uses "soft" 

linguistic (e.g. large, hot, tall) system variables and a continuous range of truth values in 

the interval [0,1], rather than strict binary (True or False) decisions and assignments [73]. 

Formally, fuzzy logic is a structured, model-free estimator that approximates a function 

through linguistic input/output associations. Fuzzy rule-based systems apply these 

methods to solve many types of "real-world" problems, especially where a system is 

difficult to model, is controlled by a human operator or expert, or where ambiguity or 

vagueness is common. A typical fuzzy system consists of a rule base, membership 

functions, and an inference procedure.  

FUZZY SET REPRESENTATION   

A FUZZY SET is a set with a smooth boundary. Fuzzy set theory generalizes classical set 

theory to allow partial membership. The best way to introduce fuzzy sets is to start with a 

limitation of classical sets. A set in classical set theory always has the sharp boundary 

because membership in a set is a black and white concept- an object either completely 

belongs to the set or does not belong to the set at all.   

Even though some sets do have sharp boundaries many others do not have sharp 

boundaries. Fuzzy set theory addresses this limitation by allowing membership in a set to 

be a matter of degree. The degree of membership in a set is expressed by a number 

between zero and one. Zero means entirely not in the set, one means completely in the set 

and number in between means partially in the set. 
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This way, a smooth and gradual transition from the regions outside the set to those in 

the set can be described. A fuzzy set is thus defined by a function that maps objects in a 

domain of concern to their membership value in the set. Such a function is called the 

membership function and is denoted by the Greek symbol (µ). Even though one may 

attempt to define a membership function of arbitrary shape it is strongly recommended to 

use parameterizable functions that can be defined by a small number of parameters. The 

parameterizable membership functions most commonly used in practice are the triangular 

membership functions and that trapezoid membership function. The former has three 

parameters and then later has four parameters. The common method of representing 

fuzzy set is  

{ , ( )}AA x x x Xµ= ∈     

...(2.1)  

where x is an element in X and µA(x) is the membership function of set, A which defines 

the membership of fuzzy set A in the universe of discourse, X. An alternative method to 

represent the singleton function is 

( )
i

A i
x X

A x xµ
∈

= ∑  

...(2.2)  

 

 The above representation is for the discrete universe of discourse. The fuzzy set 

representation for the continuous membership function is given by 

( )A i
x

A x xµ= ∫  

...(2.3)   

 

BLOCK DIAGRAM OF FUZZY SYSTEM:  In the Fuzzy Logic , there are five parts 

of the fuzzy inference process shown in Fig 2.25. Fuzzification of the input variables, 

application of the fuzzy operator (AND or OR) in the antecedent, implication from the 

antecedent to the consequent, aggregation of the consequents across the rules, and 

defuzzfication. 
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Fig 2.25 Fuzzy System Model  
 

Step 1 : Fuzzification :  The first step is to take the inputs and determine the degree to 

which they belong to each of the appropriate fuzzy sets via membership functions. In the 

Fuzzy Logic Toolbox, the input is always a crisp numerical value limited to the universe 

of discourse of the input variable and the output is a fuzzy degree of membership in the 

qualifying linguistic set (always the interval between 0 and 1). 

Step 2 :  Apply Fuzzy operator : Rule Composition :  Once the inputs have been 

fuzzified, we know the degree to which each part of the antecedent has been satisfied for 

each rule. If the antecedent of a given rule has more than one part, the fuzzy operator is 

applied to obtain one number that represents the result of the antecedent for that rule. 

This number will then be applied to the output function. The input to the fuzzy operator is 

two or more membership values from fuzzified input variables. The output is a single 

truth value.  

In the Fuzzy Logic Toolbox, two built in AND methods are supported : min 

(minimum) and prod (product). Two built in OR methods are also supported : max 

(maximum) and the probabilistic OR (probor or algebraic sum) 

Step 3 : Implication : Before applying the implication method, we must take care of the 

rule’s weight. Every rule has a weight (a number between 0 and 1), which is applied to 

F 
U 
Z 
Z 
I 
F 
I 
C 
A 
T 
I 
O 
N 

RU
LE  
C 
O 
M 
P 
O 
S 
I 
T 
I 
O 
N 

I 
M 
P 
L 
I 
C 
T 
I 
O 
N 

A 
G 
G 
E 
R 
E 
G 
A 
T 
I 
O 
N 

D
E 
F
U
Z
Z 
F 
I 
C 
A
T 
I 
O 
N 

CRISP 
INPUT 

CRISP 
OUTPUT 



 73

the number given by the antecedent. Generally this weight is 1 and so it has no effect at 

all on the implication process. From time to time we may want to weight one rule relative 

to the others by changing its weight value to something other than 1. 

Once proper weighting has been assigned to each rule, the implication method is 

implemented. A consequent is a fuzzy set represented by a membership function, which 

weights appropriately the linguistic characteristics that are attributed to it. The 

consequent is reshaped using a function associated with the antecedent (a single number). 

The input for the implication process is a single number by the antecedent, and the output 

is a fuzzy set. Implication is implemented for each rule. Two built in methods are 

supported, and they are the same functions that are used by the AND method : min 

(minimum), which truncated the output fuzzy set, and prod (product), which scales the 

output fuzzy set. 

Step 4 : Aggregation : Since decision are based on the testing of all of the rules in an 

FIS, the rules must be combined in some manner in order to make a decision. 

Aggregation is the process by which the fuzzy sets that represents the output variable, 

just prior to the fifth and final step, Defuzzification. The input of the aggregation process 

is the list of truncated output functions returned by the implication process for each rule. 

The output of the aggregation process is one fuzzy set for each output variable. 

Notice that as long as the aggregation method is commutative, then the order in which 

the rules are executed is unimportant. Three built-in methods are supported : max 

(maximum), probor (probabilistic OR) and sum (simply the sum of each rule’s output 

set). 

Step 5 : Defuzzification : The input for the Defuzzification process is a fuzzy set (the 

aggregate output fuzzy set) and the output is a single number. As much as fuzziness helps 

the rule evaluation during the intermediate steps, the final desired output for each variable 

is generally a single number. However, the aggregate of a fuzzy set encompasses a range 

of output values and so must be defuzzified in order to resolve a single output value form 

the set. Perhaps the most popular Defuzzification method is the centroid calculation, 

which returns the center of area under the curve. There are five built in methods 
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supported : centroid, bisector, middle of maximum, largest of maximum and smallest of 

maximum. 

Fuzzification Technique  : Fuzzification is the process of changing a real scalar value 

into a fuzzy value. This is achieved with the different types of fuzzifiers.  

Membership function of a Fuzzy set is defined as the characteristic function or curve of a 

fuzzy set, which assigns to each element in a Universe of Discourse a value between 0 

and 1 defining its degree of presence in the fuzzy set and is known as the membership 

value and is designated as µ(x). We have mentioned different membership functions like 

sigmoid MF, Anti sigmoid MF, etc.  

1. TRIANGULAR FUNCTION 

The equation for triangular membership function is shown in Eq.2.4. Points a, b, 

c, and x are defined in Fig 2.26. 
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( )
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⎪ −
⎪ >⎩

 

...(2.4)  

 

Fig 2.26 Showing parameter a, b, and c, and variable x point of equation of Triangular function  

2. TRAPEZOIDAL FUNCTION 

The trapezoidal membership function has a flat top with membership value of 1 

for a small range about the central point of the function. It eliminates the 

problems associated with the triangular membership function. The equation for 
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trapezoidal membership function is shown in Eq 2.5. The variable x and the 

parameters a, b, c and d are shown in Fig 2.27. 
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⎪ −

≤ ≤⎪
−⎩

  

...(2.5)   

        
Fig 2.27 Showing parameter a, b, c, and d point of equation of Trapezoidal function 

3. SIGMOIDAL FUNCTION  

The Sigmoidal membership function is defined by parameter: ‘a’ defines the 

slope of the curve (Eq 2.6) and also the sign of the parameter ‘a’ decides whether 

the curve will be right-open or left-open shown in Fig 2.28. Also parameter ‘b’ 

defines the point µA(b) = 0.5. It can be defined as, 

        ( )

1( )
1A a x cx

e
µ − −=

+
      

...(2.6)   
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Fig 2.28 Showing Sigmoidal Function 

 

Knowledge Base : The knowledge base is the module around which the expert system is 

built. It contains the formal representation of the information provided by the domain 

expert. This information may be in the form of problem-solving rules, procedures, or data 

intrinsic to the domain.It contains application domain and procedural knowledge. It 

consists of data base and rule base. 

Data Base   

1. It provides the necessary definitions which are used to define linguistic variable of 

control roots. 

2. It gives the choice of membership function. 

3. It provides the fuzzy partitioning between input and output space. 

Rule Base :  

1. It is the condition in which antecedent is process variable and consequent is control 

output variable. 

2. It gives the choice of process state variables. 

3. It gives the different type of control rules.  

Fuzzy Implication : The process of shaping of the consequent variable based upon 

antecedent is called implication. As discussed earlier, the If-Then rules for fuzzy logic 

can be written as If <fuzzy proposition> Then <fuzzy proposition>. The propositional 

variables A and B are replaced by fuzzy propositions, and the implication can be replaced 

by fuzzy union, fuzzy intersection and fuzzy complement. There are many fuzzy 

implications: 
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1. Mamdani Style 

2. Larson Style 
 

Mamdani Min Implication : Mamdani proposed a fuzzy implication rule for fuzzy 

control in 1977. It is a simplified version of Zadeh implication operator expressed in Eq. 

2.7.  

[ ]( ) , ( ) ( ) ( )A B A Bx x x xφ µ µ µ µ≡ ∧  

...(2.7)   

Larsen Product Implication  : The Larsen product implication is given by Eq. 2.8. 

[ ]( ) , ( ) ( ). ( )A B A Bx x x xφ µ µ µ µ≡  

...(2.8)    

Defuzzification Technique : Fuzzy logic is a rule-based system in which the input to the 

fuzzy system is a scalar value that is fuzzified. The set of rules is applied to the fuzzified 

input. The output of each rule is fuzzy. These fuzzy outputs need to be converted into a 

scalar output quantity so that the nature of the action to be performed can be determined 

by the system. The process of converting the fuzzy output is called Defuzzification. 

Before an output is defuzzified all the fuzzy outputs of the system are aggregated with a 

union operator which can be expressed as Eq. 2.9 

( ( ))UA ii
xµ µ=  

...(2.9)  

There are many Defuzzification techniques but primarily only three of them are in 

common use. These Defuzzification techniques are  

1. Maximum Defuzzification Technique  : This method gives the output with the 

highest membership function. This Defuzzification technique is very fast but is only 

accurate for peaked output. This technique is given by algebraic expression as  
*( ) ( )A Ax xµ µ≥  

...(2.10)   

 where x* is the defuzzified value. This is shown graphically in Fig. 2.29. 
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Fig 2.29 Max-membership Defuzzification methods 

2. Centroid Defuzzification Technique  : This method is also known as center of 

gravity or center of area Defuzzification. This technique was developed by Sugeno 

in 1985. This is the most commonly used technique and is very accurate. The 

Centroid Defuzzification technique can be expressed as    

*
( )

( )
i

i

x x dx
x

x dx

µ

µ
= ∫
∫

 

...(2.11)   

where x* is the defuzzified output, µI (x) is the aggregated membership function and 

x is the output variable. The only disadvantage of this method is that it is 

computationally difficult for complex membership functions.   

3. Weighted Average Defuzzification Technique : In this method the output is 

obtained by the weighted average of each output of the set of rules stored in the 

knowledge base of the system. The weighted average Defuzzification technique can 

be expressed as  

1*
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...(2.12)   
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where x* is the defuzzified output, mi is the membership of the output of each rule, 

and wi is the weight associated with each rule. This method is computationally 

faster and easier and gives fairly accurate result. 

2.6.1 RESULTS AND DISCUSSION :     

Among logic-based methods, the simplicity of Boolean models makes them attractive as 

a means to render biological networks. For example, a discrete-state representation of the 

level of phosphorylation of JNK might use three input edges TNF, TRAF2 and MAPK 

(where ‘1’ means present or active, and ‘0’ absent or inactive; Figure 2.30(a)). In 

Boolean logic, interactions among inputs are cast as combinations of elementary ‘AND’ 

gate that generate logic rules such as ‘(TNF AND TRAF2 AND MAPK)’ and are most 

easily specified using gates (Figure 2.30(b)) and truth tables. Truth tables consist of 

lookup values for the outputs (consequent value) based on all possible combinations of 

input values (antecedents). Despite the appeal of Boolean models a two-state ‘‘on-off’’ 

representation of many biological signals is quite unrealistic. Working with FL models 

involves manipulating logic gates based on several adjustable parameters: (i) 

Membership functions (MFs) are used to assign values of inputs to a descriptive input 

class. (ii) MFs define the degree of membership (DOM) that quantifies the mapping 

between inputs and MFs and is always between 0 (no membership) and 1 (full 

membership). Fuzzy logic is so-named because inputs can have non-zero DOM to more 

than one MF, unlike discrete-state logic in which MFs and DOMs only take on values of 

0 and 1. Figure 2.30(c) illustrates example MFs for Boolean and fuzzy logic models. (iii) 

The steepness of the membership functions is parameterized by the degree of fuzziness 

(note that Boolean logic models have a degree of fuzziness of 0). (iv) Logic rules relate 

the input state to the output state. In doing so, these rules encode how the input proteins 

regulate the activity of output protein. Once the logic rules are established, an FL gate is 

generated by first fuzzifying the inputs, a step that computes the DOM of each input state 

over the current input values and the pre-specified MFs. The degree of firing (DOF), then 

specifies whether a rule should be used (1) or not (0) as determined from the lowest 

DOM amongst the antecedents and the rule weight, a value between 0 and 1 that allows 

additional tuning of a rule’s importance. In contrast to Boolean logic (BL) gates in which 
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only one rule can fire for any set of input values (that is, only one row in the truth table is 

applied) FL gates allow multiple rules to fire to varying degrees (as defined by the DOF, 

Figure 2.30(d)). Defuzzification is the final step in which the superposition of multiple 

rules is resolved to determine the output value for the gate.  

    

(a)               (b) 

   
(c)               (d) 

Fig 2.30   Fuzzy Logic Implementation (a) Logic-based models use incoming edges to contain activity 
level of input or regulatory network species (for JNK, the inputs were TNF, TRAF2, and MAPk) with the 
logic gate at the node that performs the logic operation to update output signal (JNK) (b) A Boolean logic 
gate for JNK could be represented in terms of the logic statement ‘‘(TNF and TARF2 and MAPK)’’, 
represented here in schematic form where the shape is an ‘‘AND-gate’’). (c) To set up a FL gate, the first 
step is to assign membership functions (MFs) to the input variables. Each input variable has two or three 
membership functions (‘L’, ‘M’, and ‘H’ representing low, medium, and high states, respectively). An 
MF relates an input value to that state’s degree of membership (DOM). MFs for Fuzzy and Boolean (2 
MFs)/discrete multi-state (.2 MFs) logic forms are illustrated with the same state thresholds. (d)  To set 
up a FL gate, the MFs for the inputs and for the outputs are defined. For simplicity, we use normalized 
input and output values. Next, logic rules are listed as ‘‘if A (the antecedent), then B (the consequent)’’ 
using the input and output states as descriptors. Weights between 0 and 1 are assigned to each rule, which 
is helpful for rules that should have minor influence. The rules for TNF, TRAF2, MAPK are each 
graphically listed with the outline of the membership functions specified for that rule’s antecedent. The 
consequent for each rule is also indicated by MF.  

2.6.1.1 TNF cascade :  The pathways involving TNF that regulates cell survival and cell 

cell death are as follows    
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→ = =

→
  

To get the output of all the above pathways of TNF, we have used Fuzzy Tool box of 

MATLAB by taking data as: Type =’Mamdani’, And Method =’Min’, Or Method 

=’Max’, Implication method =’Min’, Aggregation Method =’Max’, Defuzzification 

Method =’Centroid’ shown in Fig 3.31 (a-e). Yellow filled boxes are treated as ‘1’ i.e. 

high, while blank ones are ‘0’ i.e. low. In last column, blue filled part in Fig. 3.31 (a, b, c, 

d) represents Cell Survival while Fig 3.31(e) represents Cell death. 

  
          (a)            (b)    

  
      (c)               (d) 
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(e) 

Fig 2.31  System Implementation of TNF signal cascade using Fuzzy (a) Output for TNF/ TRAF2/ 
MAPK = JNK pathway. (b) Output for TNF/ MAPK/ p38 = MK2 pathway. (c) Output for 
TNF/ RIP1/ IKK = NF-κB pathway. (d) Output for TNF/ RAS/ MEK = ERK pathway. (e) 
Output for TNF/ FAS = Caspase 8 pathway. 

2.6.1.2EGF cascade : Following are the pathways of EGF regulating cell survival/ cell 

cell death . To get the output of all the above pathways of EGF, we have used Fuzzy Tool 

box of MATLAB by taking data as: Type =’Mamdani’, And Method =’Min’, Or Method 

=’Max’, Implication method =’Min’, Aggregation Method =’Max’, Defuzzification 

Method =’Centroid’ shown in Fig 3.32 (a-g). Yellow filled boxes are treated as ‘1’ i.e. 

high, while blank ones are ‘0’ i.e. low. In last column, blue filled part in Fig 3.32(a, b, c, 

d, f, g) represents Cell Survival while Fig 3.32 (e) represents cell death. 
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       (a)             (b) 

   
        (c)           (d) 

   
       (e)                (f) 
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(g) 

Fig 2.32 System Implementation of EGF signal cascade using Fuzzy (a) Output for EGF/ RAS/ MEK = 
ERK pathway; (b) Output for EGF/ RAS/ MEKK1= JNK pathway; (c) Output for EGF/PI3K/ 
AkT = NF-κB pathway; (d) Output for EGF/PI3K/ AkT = BAD pathway; (e) Output for 
EGF/PI3K/ AkT = FKHR pathway; (f) EGFR/ JAK = STAT Pathway; (g) EGFR/ p38 = MK2 
Pathway. 

 

2.6.1.3  Insulin Cascade :  To get the output of all the above pathways of Insulin, we 

have used Fuzzy Tool box of MATLAB by taking data as: Type =’Mamdani’, And 

Method =’Min’, Or Method =’Max’, Implication method =’Min’, Aggregation Method 

=’Max’, Defuzzification Method =’Centroid’ shown in Fig 3.33 (a-h). Yellow filled 

boxes are treated as ‘1’ i.e. high, while blank ones are ‘0’ i.e. low. In last column, blue 

filled part in Fig 3.33(a, b, c, d, f, g, h) represents Cell Survival while Fig 3.33 (e) 

represents Cell death. 

Pathways which lead to cell survival/death using INSULIN are as follows: 
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        (a)             (b) 

    
(c)             (d) 

   
(e)               (f) 
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(g)              (h) 

Fig 2.33 System Implementation of Insulin signal cascade using Fuzzy. (a) Output for Insulin/ RAS/ 
MEK = ERK pathway; (b) Output for Insulin / RAS/ MEKK1= JNK pathway; (c) Output for 
Insulin/PI3K/ AkT = NF-κB pathway; (d) Output for Insulin/PI3K/ AkT = BAD pathway; (e) 
Output for Insulin/PI3K/ AkT = FKHR pathway; (f) IRS/ JAK = STAT Pathway; (g) Insulin/ 
p38 = MK2 Pathway; (h) Insulin/ AkT /mTOR = IRS Pathway. 
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CHAPTER 3 

MATHEMATICAL MODELING OF CELL SURVIVAL 

AND CELL DEATH 

 
The experimental observation of cell survival/ cell death treated with (TNF), in 

combination with epidermal growth factor (EGF) or insulin, were obtained from Gaudet 

et al (2005). The fate of cell decision is depends on the concentration of  eleven marker 

proteins such as Mitogen-activated protein kinase-activated protein kinase 2 (MK2), c-jun 

N-terminal kinases(JNK), Forkhead transcription factor (FKHR), Mitogen-activated protein 

kinase and extracellular-regulated kinase (MEK), Extracellular-regulated kinase (ERK), 

Insulin receptor substrate (IRS), AkT, IKK,  Phospho-to-total EGFR (ptEGFR),  Phospho-

to-total Akt (ptAkt), pAkT. Therefore, it is possible to built self consistent compendia 

cellular response based on the above eleven proteins that can be simulated 

computationally to yield important insights into the control of cell survival/ cell death. In 

this study we have implemented two computational models for the prediction of cell 

survival/ cell death utilizing the concentration of eleven proteins as follows : 

1. System Implementation using Non Linear Modeling (Artificial Neural Network) 

2. System Implementation using Linear Modeling (Deterministic Modeling) 

3.1 SYSTEM IMPLEMENTATION USING NON-LINEAR MODELING 

(ARTIFICIAL NEURAL NETWORK)  

An artificial neural network (ANN) model was developed for the prediction of cell 

survival/ cell death considering eleven marker proteins. For training the ANN model [74, 

75, 76] experimental data form ten different concentrations of each marker proteins was 

taken as input, and their corresponding possible experimental output. We have 

implemented the Neural Network model using STATISTICA data miner software. It 

consists of two layers of multiple layer perceptrons (MLP) [77, 78]. The first layer 

consists of 11 input nodes, 6 hidden nodes and 4 output nodes, whereas the second layer 
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of Neural Network consists of 4 input nodes, 9 hidden nodes and 1 output node. If the 

predicted output in the second Neural Network is > 0.5 it will lead to cell survival 

otherwise it lead to cell death. The data from the four treatments were used as test set to 

validate the predictive accuracy of ANN model. 

3.1.1 RESULTS AND DISCUSSION :  We have developed two layer ANN for the 

prediction of cell survival/ cell death based on the concentration of eleven marker proteins as 

input. The first layer consists of one input layer with eleven node, where each node 

corresponding to the marker protein. It consists of one hidden layer with 6 hidden nodes and 

one output layer with 4 nodes. The first layer of ANN predicts different physiological state of 

the cell; (1) PS exposure, (2) Membrane permeability, (3) caspases cleavage and (4) DNA 

fragmentation shown in Fig 3.1. The output of first layer of ANN is the input to second layer 

of ANN that ultimately predicts the state of cell survival / cell death. The results reveal that 

ANN model is most adequate to estimate the physiological functions from intracellular 

protein expressions.  

 
Fig 3.1 Architecture of Neural Network Model (MLP) 

However, prediction performances of the first layer of ANN model (11:4) was not 

enough to estimate because the training data might only include a relatively small number 

of data points against the number of variables. For prediction performance of the ANN 
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model, second layer of ANN model (4:1) was built using the synthesized training data. 

The training perfection and test perfection of 10 possible combinations of 11: 4 and 4:1 

data are given in Table 3.1 and Table 3.2.  

 The experimental data and predicted output from our simulator using artificial neural 

network is included in Table 3.3.The small differences between the predicted score and 

experimental score for cell survival/ cell death reveals good predictivity of ANN model. 

 
Table 3.1  The output for every possible set using 11: 4 

S. No Possible Values Network Name   Training 
perfection 

Test 
perfection 

1 0-0-0 MLP 11-14-4 99.14 %  98.94% 
2 5-0-0 MLP 11-8-4  99.76 % 99.67 % 
3 100-0-0 MLP 11-5-4  99.77 % 99.76 % 
4 0-100-0 MLP 11-15-4  99.20 % 99.22 % 
5 5-1-0 MLP 11-15-4  99.58 % 99.30 % 
6 100-100-0 MLP 11-16-4  98.48 % 98.43 % 
7 0-0-500 MLP 11-15-4  94.47 % 90.58 % 
8 0.2-0-1 MLP 11-4-4  99.70 % 99.67 % 
9 5-0-5 MLP 11-6-4  99.89 % 99.86 % 
10 100-0-500 MLP 11-7-4  98.33 % 98.12  
 

 
Table 3.2 The final output for every possible set using  4: 1 

S. No Possible Values Network Name   Training 
perfection 

Test 
perfection 

1 0-0-0 MLP 4-10-1  99.55 % 99.54 %  
2 5-0-0 MLP 4-7-1  99.79 % 99.81 % 
3 100-0-0 MLP 4-14-1  99.12 % 99.40 % 
4 0-100-0 MLP 4-10-1  98.72 % 98.62 % 
5 5-1-0 MLP 4-3-1 99.91 % 99.90 % 
6 100-100-0 MLP 4-14-1  99.85 % 99.85 % 
7 0-0-500 MLP 4-5-1  99.16 % 97.83 % 
8 0.2-0-1 MLP 4-15-1 99.08 % 98.65 % 
9 5-0-5 MLP 4-9-1  99.93 % 99.93 % 
10 100-0-500 MLP 4-13-1  99.94 % 99.93  
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Table 3.3  Experimental output and its comparison with predicted output using ANN. 

S.No TNF-EGF-

Insulin 

Treatments 

Experimental  output Predicted output using our 

simulator 

  Score Categorical Score Categorical 

1 100-100-0 0.559 Cell Survival 0.552 Cell Survival 

2 0.2-0-1 0.605 Cell Survival 0.608 Cell Survival 

3 5-0-5 0.553 Cell Survival 0.551 Cell Survival 

4 100-0-500 0.359 Cell death 0.352 Cell death 

3.2 SYSTEM IMPLEMENTATION OF DETERMINISTIC MODELING :   There 

is a balance between cell death and survival in living organisms. The ability to sense their 

environment and decide to survive or die is dependent largely upon growth factors. 

Studies of signaling pathways have traditionally focused on delineating immediate 

upstream and down stream interactions, and then organizing these interactions into linear 

cascades that relay and regulate information from cell surface receptors to cellular 

effectors such as metabolic enzymes, channels or transcription factors [79]. This work 

examines signaling networks that control the survival/ death decision treated with 

combinations of three primary signals the pro death cytokine, tumor necrosis factor-α 

(TNF) and the pro survival growth factors, epidermal growth factor (EGF) and insulin.  

3.2.1 TNF α SIGNAL CASCADE 

Modeling TNF activity on cells 

TNF is a homo trimeric molecule that binds to two different receptors: TNF-R1 and TNF-

R2. TNF-R1 appears to be the key mediator of TNF signaling in both normal and tumor 

cells and for this reason we focus our analysis on this receptor. TNF-R1 has three 

subunits, and their cytoplasmic tails must be juxtaposed to trigger intracellular signaling. 

Two models of TNF-R1 subunits recruitment have been proposed over the years: the first 

assumes that the receptor subunits juxtapose upon binding of homo trimeric TNF which, 

therefore, would drive the assembly of active TNF-R1; the second, which is supported by 

recent experimental evidences, suggests that TNF-R1 subunits self-assemble in the 
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absence of TNF thanks to a conserved extra cellular domain called the Pre-Ligand 

Assembly Domain (PLAD). In this case, signaling by pre-assembled receptors before 

TNF binding would be prevented by cytosolic negative regulators such as the Silencer of 

Death Domain (SODD). Binding of TNF to TNF-R1 initiates a series of biochemical 

events in the cell that take place at the cytoplasmic tails of the receptor subunits and, in 

particular, at their specialized domains called Death Domains (DD). DD recruit the 

adaptor protein TRADD that acts as an assembly platform for at least two other proteins, 

RIP-1 and TRAF-2. This multi protein complex initiates the signaling cascades resulting 

in NF-κB activation and JNK activation and hence gene activation and cell survival. 

Among the genes that are expressed after NF-κB activation and JNK activation, there are 

those that code for the two proteins FLIP and IAP that inhibit the TNF apoptotic pathway 

[80, 81].  

It has been recently demonstrated that the TNF apoptotic pathway is initiated by 

TNF/TNF-R1 complexes internalized into endocytic vesicles. At this intracellular level, 

the multi protein complexes associated to the receptors' tails modify and form the so-

called Death Inducing Signaling Complex (DISC), whereby TRADD recruits FADD and 

pro-caspase-8. This caspase then triggers the irreversible pathway leading to cell death. It 

has also been demonstrated that the fate of endosomes containing TNF/TNF-R1 

complexes prior to their maturation into lysosomes is to fuse with vesicles from the trans-

Golgi network. The NF-κB, JNK and the apoptotic pathways comprise a series of 

complex intracellular reactions involving a number of enzymes and substrates. These 

have been the subject of intense modeling efforts aimed at explaining the response of 

individual cells to TNF from a systemic perspective at the molecular level.  

3.2.1.1 Binding and internalization of TNF/TFN-R1 complexes 

The model by Bajzer et al. (1989) fitted experimental data well; we use it to describe the 

early events of TNF interactions with cells. However the original model of Bajzer et al. 

(1989) must be updated to account for some novel aspects of TNF biology. In particular, 

Bajzer et al. (1989) assumed that internalized ligand/receptor complexes could be 

recycled back at the cell surface. It is highly probable that TNF/TNF-R1 complexes do 
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not recycle at all but are finally degraded into lysosomes. Therefore we modify the model 

by Bajzer et al (1989) and Chignola et al (2009) model as follows 
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where square brackets denote molar concentrations of free TNF-R1 receptors (R), free 

TNF (L), TNF/TNF-R1 complexes bound at the cell membrane (NC) and internalized 

complexes (Nin). Here kon and koff are the association and dissociation rate constants for 

TNF binding to TNF-R1, respectively, kin is the internalization rate constant of 

TNF/TNF-R1 complexes and kdeg is the rate constant of lysosomal degradation of the 

complexes. 

 The two parameters Vr and kd were introduced by Bajzer et al 1989 although with a 

slightly different notation, to describe “the zero-order rate of insertion of receptors into 

the membrane and the turnover (internalization) rate constant of ligand-free receptors” 

[79, 80] respectively.  

3.2.1.2 Modeling the intracellular signaling pathways triggered by TNF 

Fig.3.2 shows how our minimal model maps onto the main biochemical paths triggered 

by TNF binding to its receptors that demonstrates the pathway leading to NF-κB 

activation, JNK activation and cell survival is initiated at the cells surface upon the 

formation of TNF/TNF-R1 complexes, whereas the one that leads to cell death and cell 

death by internalized complexes. In addition to the basic observations by Schneider-

Brachet et al., we have integrated these circuits by implementing the NF-κB and JNK-

mediated transcription of genes coding for caspase-8 inhibitors such as FLIP. In this way, 



 93

the three intracellular pathways interact dynamically, in as much as the cell survival 

pathway - that starts earlier since it does not require internalization of TNF/TNF-R1 

complexes - can inhibit the apoptotic path. Here we model both biochemical circuits by 

means of three molecular species, that we denote with C, B and A, that collectively 

summarize the various reactions leading to cell survival and death, respectively, and the 

interplay between the three paths. The, molecules C, B and A can be loosely identified 

with JNK/FLIP, NF-κB/FLIP and caspase-8, respectively (Fig. 3.1). We assume that after 

the initial trigger pathways proceed irreversibly to their endpoint. In this way we neglect 

many details of pathways which involve a number of different molecular actors, and thus 

we neglect all those reactions that probably serve to fine tune the effects of TNF. The 

equations for A, B, and C are: 

deg

deg

[ ] [ ] [ ]

[ ] [ ] [ ]

c B

c C

d B N k B
dt

d C N k C
dt

β

δ

= −

= −
 

...(3. 2)  

where the variables NC and Nin are the same as in the differential system shown in Eq 3.1. 

We see from the differential system Eq 3.2, that the cell survival signal, modeled 

phenomenologically by means of the chemical species B and C, depends on the number 

of TNF-TNF-R1 complexes at the cell surface (e.g. NC), with rate constant parameter β 

and δ. Finally, C and B can be degraded by means of ubiquitination and proteasome 

cleavage and/or irreversibly inhibited by other molecular species, and these processes are 

described by the rate constants kCdeg  and  kBdeg, respectively. 
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Fig 3.2 Modeling TNF cytotoxicity. A. Biological view of the main TNF paths. B. Scheme of the 

biochemical paths that have been considered in the present model. 
 

3.2.2  EGF SIGNAL CASCADE 

Modeling EGF activity on cells 

The epidermal growth factor (EGF) and EGF receptor (EGFR) were among the first 

growth factor ligand-receptor pairs discovered. The epidermal growth factor receptor 

(EGFR) family plays an important role in cell lineage determination, the morphogenesis 

of many organs and in cell survival in the adult. Moreover, activating mutants and over-

expression of these family members contribute to oncogenesis by inducing cells to 

proliferate and to resist cell death. Subsequent phosphorylation of the EGF itself and/or 

other proteins, which then pass on to various signaling cascades [e.g., 

phosphatidylinositol 3-kinase (PI3K)/Akt, JAK/STAT and Ras/ ERK pathway], can lead 

to different cellular events such as growth, migration, and division. 

 Upon ligand-binding receptors homo-dimerise or hetero-dimerise triggering tyrosine  

trans-phosphorylation of the receptor sub-units. Intracellular tyrosine kinases of the Src 

family and Abl family are also able to tyrosine phosphorylate ErbB receptors. These 

tyrosine phosphorylated sites allow proteins to bind through their Src homology 2 (SH2) 

domains leading to the activation of downstream signaling cascades including the 
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RAS/extracellular signal regulated kinase (ERK) pathway, the phosphatidylinositol 3 

kinase(PI3K)/ AkT pathway. Intermediate transcription factors involved in this process 

are NFκB and JNK. The activation of phosphatidylinositol 3 (PI3) kinase by extracellular 

growth factors induces phosphorylation, nuclear export, and transcriptional inactivation 

of FKHR1, a member of the FKHR subclass of the forkhead family of transcription 

factors. Protein kinase B (PKB)/Akt, a key mediator of PI3 kinase signal transduction, 

phosphorylated recombinant FKHR1 These results indicate that phosphorylation by 

PKB/Akt negatively regulates FKHR1 by promoting export from the nucleus.  

 EGF activates the ERK pathway through the binding of Grb2 or Shc to 

phosphorylated ErbB receptors, which in turn results in the recruitment of the son of 

sevenless (SOS) to the activated receptor dimmer SOS then activates RAS leading to the 

activation of RAF 1. RAF-1 subsequently phosphorylates MEK1 and MEK2 which 

activate ERK1 and ERK2 respectively. This pathway results in cell proliferation and in 

the increased transcription of Bcl2 family members and inhibitors of cell death proteins 

(IAPs), thereby promoting cell survival. The ERK pathway also responds to mitogen 

activation which leads the activation of  JNK/SAPK pathway SAPK stands for stress 

activation protein kinases and within this class of kinases the Jun N-terminal kinases 

(JNK) for a subfamily.  

 Another signaling cascade initiated by EGF is the JAK/STAT pathway, which is also 

implicated in cell survival responses. JAK phosphorylates STAT proteins localized at the 

plasma membrane. This leads to the translocation of STAT proteins to the nucleus where 

they activate the transcription of genes associated with cell survival.  

3.2.2.1 Modeling the intracellular signaling pathways triggered by EGF 

Fig.3.3 shows how our minimal model maps onto the main biochemical paths triggered 

by EGF binding to its receptors. The figure, i.e. our modeling effort, demonstrates that 

the pathway leading to NF-κB activation, JNK activation, MEK/ERK activation, JAK/ 

STAT activation and cell survival is initiated at the cells surface upon the formation of 

EGF/EGFR complexes, whereas the one that leads to cell death by internalized 

complexes. We have integrated the circuits by implementing the NF-κB and JNK-
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mediated transcription of genes coding for caspase-3 inhibitors such as FLIP. In this way, 

the intracellular pathways interact dynamically, in as much as the cell survival pathway - 

that starts earlier since it does not require internalization of EGF/EGFR complexes - can 

inhibit the apoptotic path [81]. Here we model biochemical circuits by means of six 

molecular species, that we denote with G, F, E, C, and B that collectively summarize the 

various reactions leading to cell survival and death respectively, and the interplay 

between the six paths. The, molecules G, F, E, C, and B can be loosely identified with 

JAK/ STAT, FKHR, MEK/ERK, JNK/FLIP and NF-κB/FLIP respectively (Fig.3.2). We 

assume that after the initial trigger pathways proceed irreversibly to their endpoint. The 

equations for B, C, E F and G are: 
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where the variables NC and Nin are the same as in the differential system (Eq. 3.1). We 

see from the differential system (Eq. 3.3), that the cell survival signal, modeled 

phenomenologically by means of the chemical species B, C, E and G depends on the 

number of EGF/EGFR complexes at the cell surface (e.g. NC), with rate constant 

parameter β, δ, η, and χ. On the other hand, the apoptotic signal, modeled 

phenomenologically by means of the chemical species F that denotes for FKHR pathway 

with rate constant parameter µ, depends on the number of internalized ligand/receptor 

complexes (e.g. Nin) with rate constant α. Finally, G, F, E, C and B can be degraded by 

means of ubiquitination and proteasome cleavage and/or irreversibly inhibited by other 

molecular species, and these processes are described by the rate constants kGdeg, kFdeg, 

kEdeg , kCdeg  and kBdeg, respectively. 
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Fig 3.3 Modeling EGF cytotoxicity. A. Biological view of the main EGF paths. B. Scheme of the 

biochemical paths that have been considered in the present model.  

3.2.3 INSULIN 

Modeling INSULIN activity on cells 

Insulin is a hormone that regulates the amount of glucose (sugar) in the blood and is 

required for the body to function normally.  It is synthesized as one chain, which is then 

cleaved at one site by a protease to form a two chain (A and B) protein.  The two chains 

are covalently linked by a bond (disulfide) between a cysteine, an amino acid with a -

CH2SH side chain, with a cysteine side chain on the other chain.  This protein binds to its 

receptor, the insulin receptor, on cell membranes, which initiates a process of signal 

transduction. The insulin receptor is a hormone-dependent kinase.  When insulin binds on 

the extracellular part of the insulin receptor, shape changes, communicated to the 

intracellular part, cause it to bind ATP and phosphorylate proteins, specifically on 

tyrosine side chains.  The insulin receptor is an insulin-dependent tyrosine kinase. Insulin 

binds to the extracellular α-subunit of the receptor and induces a conformational change 

that brings the α-subunits closer together. This leads to a rapid autophosphorylation of the 

receptor.  This then allows other intracellular proteins to bind to the intracellular domain 

of the receptor, and become phosphorylated.  
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 PI3K is activated by insulin, insulin-like growth factor-1 and other growth factors. 

PI3K is a heterodimeric lipid kinase with a broad range of cellular functions, including 

growth and differentiation, synthesis and degradation of carbohydrates, proteins and 

lipids, and membrane trafficking. PI3K consists of a regulatory subunit that associates 

with a catalytic subunit. The regulatory subunit binds the IRSs, whereas the catalytic 

subunit phosphorylates in the membrane. PDK (phosphoinositide-dependent protein 

kinase)/Akt (protein kinase B, c-Akt) is one of the serine/threonine kinases downstream 

of PI3K. Intermediate transcription factors involved in this process are NFκB and JNK. 

 Using cell biological, biochemical, genomic, and proteomic approaches, we have 

uncovered the complex molecular understanding of a signaling network centered around 

a G protein switch involving the tuberous sclerosis complex (TSC) tumor suppressors 

(TSC1 and TSC2) and the Ras-related small G protein Rheb.  A complex between TSC1 

and TSC2 is regulated by multi-site phosphorylation and acts as a point of integration for 

a diverse array of cellular signals, including those arising from growth factors, nutrients, 

and a variety of stress conditions.  When active, the TSC1-TSC2 complex [36, 37] acts as 

a GTPase activating protein (GAP) for Rheb, thereby turning Rheb off by stimulating its 

intrinsic GTPase activity.  In the presence of growth factors and nutrients, this complex is 

turned off, allowing the GTP-bound active version of Rheb to accumulate and turn on 

downstream pathways.  The best-characterized downstream effectors of Rheb is the 

mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of cell growth 

and cell proliferation.   

 Although genetic analysis has demonstrated that members of the winged helix, or 

forkhead, family of transcription factors play pivotal roles in the regulation of cellular 

differentiation and proliferation, little is known of the mechanisms underlying their 

regulation. Here we show that the activation of phosphatidylinositol 3 (PI3) kinase by 

extracellular growth factors induces phosphorylation, nuclear export, and transcriptional 

inactivation of FKHR1, a member of the FKHR subclass of the forkhead family of 

transcription factors. Protein kinase B (PKB)/Akt, a key mediator of PI3 kinase signal 

transduction, phosphorylated recombinant FKHR1. These results indicate that 
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phosphorylation by PKB/Akt negatively regulates FKHR1 by promoting export from the 

nucleus.  

 Another signaling cascade initiated by Insulin is the JAK/STAT pathway, which is 

also implicated in cell survival responses. JAK phosphorylates STAT proteins localized 

at the plasma membrane. This leads to the translocation of STAT proteins to the nucleus 

where they activate the transcription of genes associated with cell survival. 

3.2.3.1. Modeling the intracellular signaling pathways triggered by INSULIN 

Fig.3.4 shows how our minimal model maps onto the main biochemical paths triggered 

by Insulin binding to its receptors. The figure demonstrates seven molecular species, that 

we denote with H, G, F, E, C and B, that collectively summarize the various reactions 

leading to cell survival and death, respectively, and the interplay between the seven paths. 

The, molecules H, G, F, E, C and B can be loosely identified with mTOR, JAK/STAT, 

FKHR, MEK/ERK, JNK/FLIP and NF-κB/FLIP respectively (Fig.3.4). We assume that 

after the initial trigger both pathways proceed irreversibly to their endpoint. In this way 

we neglect many details of both pathways which involve a number of different molecular 

actors, and thus we neglect all those reactions that probably serve to fine tune the effects 

of Insulin. The equations for B, C, E, F, G and H are: 
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We see from the differential system (Eq. 3.4), that the cell survival signal, modeled 

phenomenologically by means of the chemical species B, C, E and H depends on the 
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number of Insulin/ IRS complexes at the cell surface (e.g. NC), with rate constant 

parameter β, δ, η, χ and λ. On the other hand, the apoptotic signal, modeled 

phenomenologically by means of the chemical species F, that denotes FKHR pathway, 

with rate constant parameter µ respectively. Finally, H, G, F, E, C and B can be degraded 

by means of ubiquitination and proteasome cleavage and/or irreversibly inhibited by 

other molecular species, and these processes are described by the rate constants kHdeg 

,kGdeg,  kFdeg, kEdeg, kCdeg  and  kBdeg respectively. 

 
Fig 3.4 Modeling Insulin cytotoxicity. A. Biological view of the main Insulin paths. B. Scheme of the 

biochemical paths that have been considered in the present model.  

We have developed a minimal quantitative model of TNF, EGF and Insulin cytotoxicity. 

The model is minimal because it takes into consideration only those reactions that, in our 

opinion, are essential to describe the action of TNF, EGF and Insulin on cell survival and 

cell death. We have modeled TNF, EGF and Insulin binding and its uptake by cells 

shown in Fig 3.5, and it is worth noting that the estimated parameter values are 

biologically relevant.  

The approximation of cell signaling induced by TNF, EGF and insulin leading to cell 

survival/ cell death model used for mathematical implementation is shown in Figure 14. 

We define six molecular species, B, C, E, F, G and H that collectively summarize the 

various reactions leading to cell survival/ cell death. The molecules B, C, E, F, G and H 

can be loosely identified with NF-κB/FLIP, JNK/FLIP, MEK/ERK, FKHR, JAK/STAT 

and mTOR respectively. We assume that after the initial triggering of the pathway, it 
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precedes irreversibly to its endpoint -- the equations for B, C, E, F, G and H can be 

written as: 
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...(3. 5)  

 
Fig 3.5  Schematic representation of the minimal system model triggered by TNF, EGF and insulin 

regulating cell survival/ cell death. 
 

We see from the differential system (Eq. 3.5), that the cell survival signal, modeled 

phenomenologically by means of the chemical species B, C, E, G and H depends on the 
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rate constant parametersβ, δ, η, χ and λ. On the other hand, the apoptotic signal, modeled 

phenomenologically by means of the chemical species F that denotes FKHR pathway, 

with a rate constant µ. Finally, B, C, E, F, G and H can be degraded by means of 

ubiquitination and proteasome cleavage and/or irreversibly inhibited by other molecular 

species, and these processes are described by the rate constants kBdeg,  kCdeg ,kEdeg,  kFdeg, 

kGdeg and kHdeg respectively. 

Numerical Methods  
Let us consider a differential equation as 
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Now our main equation is deg
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...(3. 9)  

If we compare the above equation i.e Eq. 3.9 with Eq. 3.7 we get  
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Putting all these values in Eq. 6 , we get  
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After solving the above equation we get 
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Now applying the initial condition i.e. t = 0 and B = 0; in the Eq. 3.11,  we get 
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Similarly we can solve all the equations. 

3.2.4 RESULTS AND DISCUSSION 

3.2.4.1 Differential equation modeling activity of JNK 

We have solved the differential equation of JNK as  
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By assuming the values of deg[ ] &C CN kδ  from Bajzer et al (1989) and Chignola et al 

(2009) and considering the different values of time  from Gaudet et al (2005) we have 

calculated the corresponding values of C. Figure 3.6 shows the theoretical and 

experimental results of JNK. 

 
Fig 3.6 : Scatter plot of experimental and theoretical values of JNK. The Root mean square (RMS) error 

is in the range of 5.33 to 21.39 
 

3.2.4.2.Differential equation modeling activity of MEK/ERK 

We have solved the differential equation of MEK/ ERKas  
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By assuming the values of values of deg[ ]&C EN kη from Bajzer et al (1989) and 

Chignola et al(2009)  and taking different values of time  from Gaudet et al (2005) we 

have calculated the values of E. Figure 3.7 shows the theoretical and experimental results 

of MEK. 

 
Fig 3.7 : Scatter plot of experimental and theoretical values of MEK. The Root mean square (RMS) error 

is in the range of 0 to 21.9. 
 

3.2.4 3.   Differential equation modeling activity of FKHR 

We have solved the differential equation of FKHR as  
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By assuming the values of values of deg[ ]&C FN kµ from Bajzer et al (1989) and 

Chignola et al(2009)  and by taking the different values of time  from Gaudet et al (2005) 

we  have calculated the values of F. Figure 3.8 shows the theoretical and experimental 

results of FKHR. 

 
Fig 3.8 : Scatter plot of experimental and theoretical values of FKHR. The Root mean square (RMS) 

error is in the range of 1.62 to 18.1. 
 

We have presented an integrated theoretical framework for describing the balance 

between cell survival/ cell death regulated by TNF, EGF and insulin. The theoretical 

models consider here for mathematical intervention is minimal in the sense it takes into 

consideration only those reactions that are essential to describe the action of TNF, EGF 

and Insulin on cell survival/ cell death. We have modeled TNF, EGF and Insulin binding 

and its uptake by cells, and it is worth noting that the essential parameter values are 

biologically relevant. The results illustrated that the rate constants defined in the 

deterministic models are biologically relevant of key proteins in the signaling pathway 

which decide the fate of cell. The quality of fit between theoretical and experimental 
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values has been represented. The minimum root mean square error (RMSE value) 

between theoretical and experimental values for the marker proteins revealed good 

accuracy of the model. 
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CONCLUSION 

 

Cells respond to stress in a variety of ways ranging from activation of pathways that 

promote survival to eliciting programmed cell death that eliminates damaged cells. The 

data in this paper show that cytokine-signal-response compendia should be constructed 

using measurements that are well distributed across a signaling network, although sparse 

coverage of the network is acceptable. Nonetheless, re sampling a subset of nodes using 

multiple assays helps to verify the consistency of heterogeneous data. Experimental 

validation of measurements is best carried out under conditions in which all signals have 

a sufficiently large dynamic range for correlation coefficients to be meaningful. Our work 

illustrates how a complex signaling network can be reduced empirically to a much 

simpler computational model that is directly tied to biological mechanism. 

In a multi-cellular organism, cells constantly receive signals on their internal condition 

and surrounding environment. In response to various signals, cells proliferate, move 

around or even undergo suicide. The signal-response is controlled by complex molecular 

machinery, understanding of which is an important goal of basic molecular biological 

research. Such understanding is also valuable for clinical application, since lethal 

diseases like cancer show maladaptive responses to growth-regulating signals. Because 

the multiple feedbacks in the molecular regulatory machinery obscure cause-effect 

relations, it is hard to understand these control systems by intuition alone. Here we 

translate the molecular interactions into differential equations and recapture the cellular 

physiological properties with the help of numerical simulations and non-linear dynamical 

tools. The models address the physiological features of programmed cell death, the cell 

fate decision. 

 It has been revealed that survival and cell death signals induced by TNF, EGF and 

insulin are temporarily separated and this is reflected in our model by the differences 

between the values of the parameters used. Simulations based on electronic 

implementation (VHDL, SPICE, Fuzzy) and mathematical modelling (non-linear 

modelling and deterministic model) recapitulate most features of the data and generate 

several predictions involving pathway crosstalk and regulation. We uncover a 
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relationship between the key proteins involved in TNF, EGF and insulin cellular 

signalling pathways that might account for the cell survival and cell death decision of the 

cells. More generally, these models are flexible, able to incorporate qualitative and noisy 

data, and powerful enough to produce quantitative predictions and new biological 

insights about the operation of signalling networks. 
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