ENERGY SUSTAINABLE USER CENTRIC
FRAMEWORK AND ALGORITHMS TO MINIMIZE
POWER CONSUMPTION BY PERSONAL
COMPUTERS

Thesis submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Computer Science and Engineering
by

PRADEEP KUMAR GUPTA

of \NFORy,
< <,

vﬁE UNfl/e/?@
"/,

%

™

Q

EE

=z

) 3
@

L4

=
—

&

—

ol —
|\

e

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN-173 234
INDIA

ROLL NO. 086202 DECEMBER 2012

©Jaypee University of Information Technology
Waknaghat, Solan — 173234
India
December 2012

All rights reserved.

2
2

FEE ey,

KN

E

R JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

1

9 (Established by H.P. State Legislature vide Act No, 14 of 2002)
» P.O. Waknaghat, Teh, Kandaghat, Distt. Solan - 173234 (H.P.) INDIA
g Wabsito | www juit.ac.in

Phone No, +91.01792-257999 (30 Lines)
' Fax: +91-01792.245362
oyt

CERTIFICATE

Uhis is to certify that the thesis entitled “ENERGY SUST, UNABLE USER CENTRIC
FRAMEWORK — AND — ALGORITHMS — TO MINI M1zl POWER
CONSUMPTION BY PERSONAL COMPUTERS™ which is being submitied by Mr.
PRADEEP KUMAR GUPTA in the partial tultilment for the awird of degree of Doctor of
Philosophy i Department of Computer Science and Engincering by the Jaypee
University of Information Technology, Waknaghat, Solan, India s the record ol
candidate’s own work earried out by him under my supervision. This work has not been
submitted partially or wholly 1o any other LUniversity or Institute tor the award of this or any

other degree or diploma

thanshyam Singh
Associate Professor

Department of Eleetronics and Communication Lngineering
Juypee University of Information Technology (JUIT)
Waknaghat, Solan-173 234, India.

(Adviser)

Prof. (Dr.)

ACKNOWLEDGEMENT

It would not have been possible to write this doctoral thesis without the help and support of the
kind people around me, to only some of whom it is possible to give particular mention here.

This thesis would not have been possible without the help, support and patience of my adviser,
Prof. (Dr.) G. Singh. It was really an experience to work with and to learn from him. I salute
him for his unbroken faith in experimentation and deep quest for scientific knowledge. I thank
him not only for the guidance he rendered in the field of research but also unflinching
encouragement and support for enlightening the path of my life with deep love for the
environment. His truly scientist intuition has made him as a constant oasis of ideas and passion
in research field, which exceptionally inspired and enriched my growth as a student and a
researcher.

Words are inadequate to express my deepest appreciation and respect to Prof. Y. Medury, Chief
Operating Officer of Jaypee Education System. [salute his vision and mission which makes me
to compete with the world. I would like to express my sincere thanks to Honorable Vice
Chancellor Prof. Ravi Prakash for the inspiration and support. My Sincere thanks to our
Director, Brig. (Retd.) Balbir Singh for his constant support and encouragement. He is really
an excellent gentleman who is always ready to give full support for education.

I am greatly thankful to Prof. (Dr.) S.P. Ghrera, (Head of the department, Computer Science
and Engineering) for their valuable discussions and kind support during my research work. My
sincere thanks also goes to Prof. Tejinderbir S. Lamba, (Dean, Academic and Research), who
always challenged me to explore new ideas and never quit learning.

I sincerely acknowledge the help and cooperation rendered by library staff for arranging the
books and papers whenever required, and also by computer lab staff specially Mr. Ranvijai
Singh and Mr. Vijay Kumar for making my tenure in lab happy and memorable with joyful
discussions.

I bow my head towards in the memory of (Late) Shri. Ram Niwas Varsheny (Father-in-law)
whom I lost in the early stage of my work and I greatly acknowledge him for his big moral
support and encouragement towards start of my research work.

Last, but not the least, my parents Er. D. P. Gupta and Smt. Usha Gupta deserve special
mention for their inseparable support and prayers. Their love, support and constant patience
taught me so much about sacrifice, discipline and persistent confidence in me has made me able
to bear the load on my shoulder. My brother Shri Raj Kumar Gupta continuously supported and
encouraged me to complete my research. Finally, my special thanks goes to my daughter Prisha
and son Raedik, and to my cute nephew Akshraj and niece Priyal as without their sweet
memories and happiness it was not possible for me. They have been a constant source of
inspiration to me.

(Pradeep Kumar Gupta)
December 12, 2012

TABLE OF CONTENTS

Acknowledgement
List of Figures

List of Tables

List of Publications
Abstract

CHAPTER 1 INTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

CHAPTER 2 MINIMIZING ENERGY CONSUMPTION

2.1

2.2

23

24

2.5

2.6

Introduction

Facts related to use of electricity by personal computers
Power consumption by personal computers

Eco-labeling

Power management in personal computers

1.5.1 Advanced power management

Power saving modes and problems with power management
Energy-sustainable computing

1.7.1 Energy sustainability

Organization of the thesis

Introduction
Drawbacks of available power scheme in operating system
Power aware system design
Power measuring and profiling

2.4.1 Power model
Simulation based power management approaches
Hardware-based power management approaches

2.6.1 Power measurement with power meters

2.6.2 Power measurement by specially designed devices

i-ii
iii

v-viii

12

14

15

16

18

20

21

22

23

25

26

26

27

2.6.3 Power measurement by integrating sensors
2.6.4 Power management by using benchmarks
2.7 Software-based power management approaches
2.7.1 Dynamic power management scheme
2.8 Dynamic voltage and frequency scaling
2.8.1 CPU utilization algorithms
2.9 Designing power-efficient architectures
2.9.1 Programming approaches for power efficient architecture

2.10 Conclusion

CHAPTER 3 ENERGY SUSTAINABLE FRAMEWORK

3.1 Introduction

3.2 Energy and power consumption modeling

3.3 User centric energy management

34 Proposed energy sustainable framework
3.4.1 Internal view of the framework

35 Comparison of proposed framework with existing power schemes
3.5.1 Existing scenario of power scheme in windows operating system
3.5.2 Comparison with swift mode
3.5.3 Comparison with exhaustive mode

3.6 Conclusion

CHAPTER 4 ENERGY SUSTAINABLE ALGORITHMS

4.1 Introduction

4.2 Proposed swift mode algorithm

4.3 Proposed energy sustainable snapshot technique
4.3.1 ESSA framework
4.3.2 ESSA algorithm

44 Experimental methodology

28

28

29

29

34

35

38

39

40

41

42

47

49

52

55

56

56

57

58

60

61

63

64

66

68

4.5

4.6

CHAPTER 5 PERFORMANCE EVALUATION OF FRAMEWORK

5.1

5.2

53

54

55

CHAPTER 6 CONCLUSIONS AND FUTURE SCOPE

6.1

6.2

4.4.1 Experiment setup
4.4.2 Evaluation
Results

4.5.1 Usage scenario 1
4.5.2 Usage scenario 2
4.5.3 Internal scenario

Conclusion

Introduction

Thread monitoring

5.2.1 Thread monitoring in swift mode
5.2.2 Thread monitoring in exhaustive mode
Analyze memory performance

5.3.1 Heap analysis

5.3.2 Memory leakage

5.3.3 Thread analysis

Analyze cpu performance

5.4.1 CPU performance in swift mode
5.4.2 CPU performance in exhaustive mode

Conclusion

Conclusions

Future scope

REFERENCES

69
70
70
71
72
73

80

82
83
85
85
87
87
88
90
92
92
93

96

98

101

102

LIST OF FIGURES

Figure No. Title of Figure Page No.
Figure 1.1 Worldwide market segments of the Server, Desktop and 2

Mobile PC.
Figure 1.2 Percentage of power usage by ICT devices. 3

Figurel.3 Power consumption of various devices during the year 1988 6
to 2001.

Figure 1.4 Personal computer power management and communication 11
paths.

Figure 2.1 Power saving schemes in operating systems (a) Windows 95 19

to XP and (b) Windows Vista & Windows 7.

Figure 3.1 Relationship between the workload intensity and power 43
consumption.
Figure 3.2 Power consumption as a function of utilization such as: a) 43

System utilization and b) CPU utilization.

Figure 3.3 Power consumption (%) with CPU utilization. 44

Figure 3.4 Energy management schemes for (a) existing systems and 48

(b) proposed systems.

Figure 3.5 Framework of the proposed power saving scheme. 49
Figure 3.6 GUI implementation of the proposed algorithms. 50
Figure 3.7 Repository of losable and non-losable software’s. 51
Figure 3.8 User prompt to input login duration time. 52

Figure 3.9 Package dependency diagram of the proposed framework. 54
Figure 4.1 Framework of the energv-sustainable snapshot technique. 64

Figure 4.2 Snapshots of total CPU usage (%): (a) below threshold value 66
and (b) above threshold value.
Figure 4.3 Total CPU usage (%) for idle computer systems in the 72

cluster.

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Total CPU usage (%) for active computer systems in the
cluster.

Maximum CPU usage (%) by cluster machines for each
snapshot when active and idle (a) M1 (b) M2 (¢) M3 (d) M4
(e) M5 (f) M6 (g) M7 (h) M8 (i) M9 (§) M10 (k) M11 ()
M12 (m) M13 (n) M14 (o) M15.

Various active threads during the framework monitoring in
swift mode.

Various active threads during the framework monitoring in
exhaustive mode.

Analyze memory performances for allocated heap size vs.
used-heap. For each graph, x-axis denotes the time in
(HH:MM) and y-axis shows the used-heap size in (MB) (a)
Swift Mode and (b) Exhaustive Mode.

Analysis of memory performance for Surviving generations
vs. Relative time spent in GC. For each graph, x-axis denotes
the time in (HH:MM) and y1-axis shows the surviving
generations and y2-axis shows the relative time spent in GC
(%). (a) Swift Mode and (b) Exhaustive Mode.

Analysis of memory performance using ESSA algorithm for
threads versus loaded classes. For each graph, x-axis denotes
the time in (HH:MM) and y1-axis shows the running threads
and y2-axis shows the loaded classes. (a) Switt mode, (bl)
and (b2) Exhaustive mode. (b2 is an extension of b1).
Analysis of CPU performance in Switt mode (al) call tree
methods for AWT-EventQueue-0, Thread-8 and main (a2)
call tree methods for Thread-7, Thread-10 and Thread-9.
Analysis of CPU performance in exhaustive mode (al) call
tree methods for AWT-EventQueue-0, Thread-8, main, and
Thread-7 (a2) various user threads to monitor user activity

(a3) few expanded user threads with methods.

73

76-79

85

88

89

91

92,93

94,95

ii

LIST OF TABLES

Table No. Title of Table Page No.

Table 3.1 Detailed view of each package and JAVA program files. 55

Table 4.1 Cluster configuration. 69

Table 4.2 Usage scenario 1. 71

Table 4.3 Usage scenario 2. 72
Maximum CPU usage (%) by each cluster machines (M1

Table 4.4 —MI1S5) in active (A) and in idle (I) mode up to 20 75
minutes.

Table 5.1 Thread details.]84

iii

LIST OF PUBLICATIONS

(1]

(2]

(3]

[4]

[5]

P. K. Gupta and G Singh, “Energy-Sustainable Framework and Performance
Analysis of Power Scheme for Operating Systems: A Tool,” International Journal
of Intelligent Systems and Applications, vol. 5, no. 1, pp. 1 — 15, 2013.

P. K. Gupta and G Singh, “Energy-sustainable snapshot algorithm for operating
systems to minimize power consumption,” Elsevier journal of Sustainable
Computing: Informatics and Systems, 2012. (Under revision)

P. K. Gupta and G Singh, “Minimizing power consumption by personal
computers: A Technical Survey,” International Journal of Information
Technology and Computer Science, vol. 4, no. 10, pp. 57- 66, 2012.

P. K. Gupta and G Singh, “A framework of creating intelligent power profiles in
operating systems to minimize power consumption and greenhouse effect caused
by computer systems,"” Journal of Green Engineering, vol. 1, no. 2, pp. 145 — 163,
2011.

P. K. Gupta and G Singh, “User centric framework of power schemes for
minimizing energy consumption by computer systems,” IEEE International

Conference on Radar, Communication and Computing, (ICRCC-12), Jan. 2013.

iv

ABSTRACT

With the explosive development of the Information and Communication Technology
(ICT) devices, the increase in energy consumption and heat dissipation by these devices
poses the problem of an energy crisis and exacerbation of the greenhouse gas problem
with global warming. Recently, ongoing focus on the environmental sustainability
proliferating in various domains and sustainable computing/green computing has been
getting increased attention. The principle aspects of sustainable computing is the
reduction of energy requirement for running any computing infrastructure, energy
longevity of computing equipment to reduce need for their replacement and ensuring
energy consumption within the energy available from the renewable energy sources in
the environment. Therefore, these factors are getting more attention and a lot of work
has been carried out on “Green computing”, which represents an environmentally
responsible way for the above discussed scenario by reducing the energy consumption,
and also address to various environmental related issues such as waste management,
greenhouse gases etc. An emerging issue of the power dissipation has imposed a very
significant question on the system and software design and it is well understood that in
the future, there will be a great demand for energy-sustainable software. Therefore, the
vision of a sustainable planet and minimization of the energy consumed by computer
systems motivated us to find more energy-sustainable computing methods for personal

computers.

Earlier, the computer systems were extremely inefficient with low computing power
and high energy consumption. In newer computer systems, the average power
requirements are decreased by almost 50% (nearly 100 watts to 50 watts) and standby
power consumption stayed relatively constant at approximately 25 watts. The overall
computer system power consumption is increasing however, the standby power

consumption is decreasing.

In this thesis, we have emphasized on the need of minimizing this standby power

consumption of 25 watts, which can be used for other purposes and discussed various

techniques used to minimize the energy consumption of computer systems. Currently,
Advanced Configuration and Power Interface (ACPI) is used by various designed
operating systems for personal computer systems to reduce the energy consumption,
which sets the display to low power-modes after specitied periods of inactivity on the
mouse and keyboard and its efficiency strongly depends upon the inactivity intervals set
by the users. There are various techniques which are categorized into different
categories such as hardware based approaches, simulation based approaches, software
based approaches, and energy-sustainable approaches. In this thesis, we have used the
various case scenarios of power schemes available in Windows operating systems to
evaluate the working of proposed user centric framework and algorithms. As we know
that these available power saving schemes in Windows operating system are used to
minimize the power consumption of computer system but in case, if these power saving
schemes are not configured properly they do not provide power saving and most of the
time computer systems remain switched on and this not only consumes the energy but

also not good for the environment due to its continuous heat dissipation.

We have designed an energy sustainable user centric framework for understanding of
user-application behavior and their interactions with machine sub-systems. We have
presented a power model of a system that demonstrates the relationship between the
serviced workload and power consumed for it. This is 2 common power model of the
computing equipment, which provides the information about power consumed over the
system utilization. To represent the system utilization, we have used the CPU utilization
as a scalar value for this model, which demonstrates that the CPU’s power consumption
increases linearly with its utilization. We have developed the graphical user interface
(GUI), based on this power model for user centric energy management. In contrast to
the existing energy management policies, which are device centric either ignore the user
by assuming unchangeable operational environment of the device or rely on very
simplified policies that causes to large energy losses. The proposed and developed
energy sustainable user centric framework implements the two different working modes
known as Swift mode and Exhaustive mode, for power saving. In the comparison
scenario, we have compared the existing power schemes of Windows operating systems
with the proposed two modes of operation. In discussed comparison scenarios we found
that Swift mode provides 66% of energy saving and Exhaustive mode provides 93%

more energy savings over the existing power schemes.

vi

We have also proposed the algorithms for aforementioned energy sustainable user
centric framework. To design an energy efficient computer system ultimately require
the development of fundamental frameworks, algorithmic techniques, and principles
that can be used to guide practical solutions. However, several dynamic voltage and
trequency scaling (DVFS) techniques has been evolved, which work around CPU
utilization. These techniques explore the opportunities for minimizing the energy
consumption by computer systems. Here, we proposed the algorithms like Swift
algorithm and Energy Sustainable Snapshot Algorithm (ESSA) for the two
aforementioned modes, respectively and both the algorithms are user centric that check
the user activity on the computer system continuously and switches the system into
hibernate or shutdown whenever no user activity is found on the computer system. The
proposed ESSA is very much effective and considers for total CPU usage of the system.
We have been focused on user activity and proposed a concept of the repository for the
installed programs on the computer system. The main role of this repository is to
provide zero loss to user’s data while switching the computer system to power saving

mode.

We have also evaluated the performance of proposed energy sustainable user centric
framework under both the modes and obtained the various real time results. As the main
objective of the proposed framework is to reduce the energy comsumption while
maintain the satistactory level of performance. This also becomes important as there are
several more problems associated with the modern software’s, which include the
underutilization of client resources, installation of additional hardware equipments and
computer system congestion either because of complete memory or CPU utilization.
We have used the profilers to find the overall appropriate level and bottlenecks in the
proposed and implemented energy sustainable user centric framework. The
performance measures include the various system components like thread monitoring,
analyzing memory and CPU performance under specific workload and obtained various
results from this profiled session, which are very much satisfactory for both the
aforementioned modes without degradation on the performance of CPU, memory, or
overall system performance.

The proposed energy sustainable user centric framework is very much effective for
minimizing the energy consumption by the computer systems without compromising

the performance and also finds the user’s activity efficiently, which is missing in all the

user centric devices. The contributions and implications of this work for future research
are also discussed in this thesis. This work can be extending by introducing the concept
of image processing that will be more user’s centric. As we know, that modern mobile
computers and personal computers are equipped with webcam facility where we can use
it to know the presence of the user on the machine. This future work will not only
strengthen proposed ESSA algorithm but also will be able to make more appropriate

decision to minimize energy consumption.

viii

INTRODUCTION

1.1 INTRODUCTION

Currently, globe is facing major three kinds of crisis known as Energy crisis,
Environmental crisis and Economic crisis and it is predicted if these crisis are not
controlled then the scenario will become worst in future. In this regard Government of
India has approved the National Mission on Enhanced Energy Efficiency (NMEEE) [1]
which is one of the eight missions planned under the National Action Plan for Climate
Change (NAPCC). Explosive growth in the technological sector is also one of the major
reasons behind these crises. The information and communications technologies are one
of them as in this sector various technological breakthroughs have been taken place and
more are yet to come. The rate at which information and communication technology
(ICT) devices are being produced is proportional to the increase in the energy
consumed and heat dissipated by these devices, which poses the problem of an energy
crisis and the exacerbation of the greenhouse gas problem and global warming. We
cannot escape the fact that the world is becoming more and more dependent upon the
use of ICT. All over the world, personal computers are being increasingly used right
from kids to professionals in the course of their everyday lives. In the late 1990s,
power, energy consumption, and power density had become the limiting factors not
only for the system design of portable and mobile devices, but also for high-end
systems [2, 3]. The design of computer systems has been changed from the
performance-centric stage to power-aware stage [4]. The predicted worldwide growth
rate [5] of sales of Servers, Desktops, and Mobile computers up to year 2015, is shown
in Fig.1.1, which reveals that the demand of PCs from 1990s onwards have been driven
by the evolution of PC from command line-driven machines with floppy disk drives and
capable of limited tasks, to user friendly, powerful PCs with Pentium processors and
add-ons capable of doing anything. The decreasing cost of personal computers also

allowed more people access to personal computers and added to their increasing

Pagel 1

popularity. During the 1990s, personal computers continued to increase in popularity
and this was the time when internet users had started increasing. Romm et al. [6] have
estimated that the number of Internet users in the United States soared from 5 million in
1993 to 62 million in 1997, to over 100 million by mid-1999. Kawamoto et al. [7] have
estimated that annual shipments of the computers increased by a factor of five in the
1990s. Matthews et al. [8, 9] estimated that in 1998 about one in four personal
computers sold were laptops. There could be basically two major reasons behind this
growth, first the technology is becoming cheaper with each passing day, and secondly
people are getting more and more addicted to these ICT products and use of Internet is
one of them. However, the offshoot in getting used to these technologies are the
innumerable other adverse effects caused to our environment, health and economy [4].
Explosive growth rate of the sales of personal computer is proportional to the energy
consumption, which can be observed form Fig 1.2 that personal computers occupy the
largest share among the several available ICT products in the market and making them

also responsible for the high quantum of power consumption [10].

I \
[oridwide PC Server Sales (# Millions)
[Worldwide Desktop PC Sales i# Millions)
[Voridwide Mobile PC Sales (# Millions)

280

=250

=200

=150

Sales (# Million)

N

Ny

s

NN

199 195 2000 2005 2008 2000 2015

Year

Figure 1.1: Worldwide market segments of Server, Desktop and Mobile PC.

Page |2

30

30%
4

e
b

Power Usage (%)

en

PCs and Monitors ~ Servers Including Cooling ~ Fixed line Telecom Mobile Telecom LAN & Office telecom Printers
Devices

Figure 1.2: Percentage of power usage by ICT devices.

This emerging issue of power dissipation has imposed a very significant question on the
system and software design and it is believed that in the future there will be a great
demand for the energy-sustainable software. Therefore, the vision of a sustainable
planet and the minimization of the energy consumed by computer systems motivated us

examine energy-sustainable computing methods [11].

There are vast majority of the users, which leaves the computer systems running on all
the time. There are various myths among the users related to powering off personal

computer. These myths are listed as follows [4, 12]:

a) One of the main myths is that turning off the computer system and then back on
uses more energy than leaving it on. Whereas, the reality is the power used by a

computer to boot up is far less than the energy your computer uses when left on

for more than three minutes.
b) The second major myth is that computer system is designed to handle 40,000

on/off cycles. If you are an average user, significantly more cycles than you will

Page |3

)

d)

e)

initiate in the computer’s five to seven year life. Whereas, the reality is when
you turn your computer oft, you not only reduce energy use, also lower the heat
stress as well as wear on the system.

Screen savers save energy. This is a common misconception among the users of
the personal computer whereas, the reality is totally different as the screen
savers were originally designed to help prolong the life of monochrome
monitors and nowadays these kinds of monitors are technologically obsolete.
This is one of feature of the Windows operating system, which exists till now
from its initial version-3.1. These Screen savers save energy only if they
actually turn off the monitor’s screen.

LCD monitors use less energy than CRTs, so we can leave it on all the time is
another common myth. Whereas, in reality these LCD monitors are considered
to be “vampire energy users,” meaning the display will still be drawing power,
even in Standby mode. Moreover, if we consider the case of business
organization where hundreds to thousands of LCDs are in use simultaneously,
this adds up in cost.

Network connections are lost when computers go into low-power or Standby
mode. Whereas in reality this was true with the older computer system. Newer
computer systems are designed to Standby on networks without loss of data or
connection. Central Processing Units (CPUs) of these computer systems are

designed with Wake on LAN technology and can be left in Standby mode.

1.2FACTS RELATED TO USE OF ELECTRICITY BY PERSONAL

COMPUTERS

In this section, we have listed some interesting facts about the electricity used by
personal computers that focuses on the need of proper use of these systems [12]. As
proper management of these systems not only save energy but also good for

environment [4].

An average desktop computer system requires 85 Watts just to idle, even with
the monitor off. If that system were in use or idling for only 40 hours a week

instead of a full 168, over $50 in energy costs would be saved annually.

Page | 4

One computer system left on 24 hours a day costs you between $120 and $175
in electricity costs annually while dumping 1,500 pounds of CO, into the
atmosphere.

A tree absorbs between 3 and 15 pounds of CO, each year that means up to 500
trees are needed to offset the annual emissions of one computer left on all the
time.

If each household in a metro city turned off its computer for just one additional
hour per day, it would save $3.2 million in electricity costs and prevent 19,000
tons of CO; from heating the atmosphere.

The added heat from inefficient computers can increase the demand on air
conditioners and cooling systems, making your computing equipment even more
expensive to run.

Even though, presently most of the today’s desktop computers are capable of
automatically transitioning to a Standby or Hibernate mode when inactive, but
about 90% of the systems have this function disabled.

Some 25% of the electricity used to power home electronics like computers,
DVD players, stereos, and televisions is consumed while the products are turned
off because anything that uses a remote continues to consume power even when
they are turned off. This phenomenon is called “vampire emergy wuse” or
“phantom energy use” where a device draws Standby power in home.

This vampire energy loss represents between 5 to 8% of a single-family home’s
total electricity use per vear. This is on average equals one month’s electricity
bill and adds up to at least 68 billion kilowatt-hours of electricity annually.

On a global scale, standby energy accounts for 1% of the world’s carbon
emissions.

Electricity production is the largest source of greenhouse gas emissions in most

of the countries like United States, India and China, ahead of transportation.

1.3 POWER CONSUMPTION BY PERSONAL COMPUTERS

Very early, the computers were extremely inefficient with low computing power and

high energy consumption. The energy efficiency of computers increased from the mid-

1980s until the mid-1990s, as demonstrated in [13-16] and also depicted in Fig. 1.3. In

carly 1990s, personal computer’s energy consumption first entered the literature of the

Page |5

energy conservation communities [17, 18]. The power requirements of computer system
have changed considerably since the 1980s and are indicated in two modes, active mode
is when the device is in operation and Standby mode refers to a mode which attempts to
conserve power with instant recovery. In 1988, Norford and Dandridge [17] have
reported that newer models of computers with equivalent performance were often more
energy efficient. In newer systems, the average power requirements is decreased by
almost 50%, from nearly 100 watts (W) in the mid-1980s to 50 W in the mid-to late
1990s, and standby power consumption stayed relatively constant at approximately 25
W. The computer power consumption is on the increase, however, while standby power
consumption is decreasing. The Pentium 4 computer systems consume more power than
its predecessors at 67 W in active mode, while consuming only 3 W in Standby mode
[19, 20]. There is much more variation in the power requirements of the modern
computer systems, due to the addition of consumer-specified features, such as increase
in speed of Hard disk drives (HDDs) capacity and add-on cards, which vary power
requirements of similar models [21-24]. In Fig. 1.3, the power consumption of average
computer system was compared [4]. We can also find that the modern HDDs require
significantly less power than earlier models (10W compared with 35W), as does the
motherboard (25W compared with 52W in 1988) [4]. The modern CPU is one of the
tew computer components that use more energy than earlier models. The CPU was not
recorded in the study because it consumed minimum power — compared with an

average of 34W in 2001 [17, 18].

60

| II
0
HDD

Figurel.3: Power consumption of various devices during the year 1988 to 2001.

I 103
I 2001

s
&
T

Power Consumption (W)
8
T

=
2
T

I NA NA NA

Power Supply Mother Board Floppy Drive cPu CDROM
Various Devices

Page | 6

The power required by the CPU can be expressed as “the product of the processing
speed, the number of transistors being switched, and the energy required to switch each
transistor, which in turn varies with the capacitance and the square of the voltage™ [17].
The number of transistor in a CPU has increased faster than the transistor size has
decreased, as indicated by the growing overall dimensions of CPUs [17]. Power
consumption of an electronic chip depends mainly on the type of transistor used like
NMOS and CMOS. Both types of transistors drew similar amounts of power when
switched, but CMOS requires almost no power when in a quiescent state. Use of CMOS

transistors has reduced power consumption by around 30 to 40% [17, 18].

1.4ECO-LABELING

Eco-labels are a primary tool available to inform consumers about the environmental
characteristics of the products [4]. They appear as a label or logo that gives consumers
actual data on the product and/or lets them know that it meets a fixed set of
environmental criteria. Eco-labels are often characterized in three categories: type-I,
type-1I and type-II1. Type-I, Eco-label is essentially a “certificate of approval” for the
product and given by the third party organization like government agency. Type-II Eco
label, a company declares that its product meets independent standards such as for
recyclability or energy-efficiency [4]. A type-III, Eco-label is designed to provide a set
of quantitative environmental data to consumers so that the consumers can use this
information themselves to evaluate the product. Eco-labeling of personal computers
poses a number of difficulties, however, one major difficulty is that personal computers
are complex and rapidly changing products and in many cases new models are
introduced every six months means that the environmental issues associated with
personal computers can change more rapidly. The criteria for an Eco-label for a
personal computer should address the major environmental issues like energy
consumption, effect of heat dissipation, the impacts of hazardous substances, and
possible exposure to chemicals during production processes. A great variety of eco-
labels for computer systems have been introduced over the years and most existing
labels are of type-I. On this way, the Energy Star program [25-27] launched by the
United States Environmental Protection Agency (EPA) in June 1992 is one of them,
which is designed to promote energy efficiency via a voluntary, EPA-certified, Eco-

label on a wide variety of equipment. This label has been widely adopted by number of

Page | 7

organizations and computers and monitors were addressed from the program’s
inception. Swedish Confederation of Professional Employees introduced the
certification and labeling system developed and managed by the TCO which focuses on
the workplace environment issues, such as limiting the electromagnetic radiation from
cathode ray tube (CRT) monitors, sound emitted by devices, ergonomics, and electrical
safety. Currently, there are two types of TCO labels: TCO” 95 and TCO’ 99 [4, 28, 291.
The Japan Electronics and Information Technology Industries Association (JEITA)
developed the PC Green label [4, 30]. Its criteria cover energy use (must satisfy Energy
Star), content of hazardous material (similar to TCO’ 99), and ease of recycling issue.
Nordic Council of Ministers have introduced Nordic Swan certification label which is
used in Finland, Iceland, Norway, and Sweden [4, 31]. At last, India’s ecomark is an
earthern pot [32], which is chosen as the logo for the Ecomark scheme in India.
Government of India also set up Bureau of Energy Efficiency (BEE), a statutory body
under Ministry of Power, on 1¥ March 2002, under the provisions of the Energy
Conservation Act 2001 [33]. One of the regulatory functions of BEE, under this Act, is
to develop minimum energy performance standards & labeling, for
equipment/appliances and buildings, starting from one star for the least energy-efficient,
and going up to five stars, for the most energy efficient. These star labels have been
created to standardize the energy efficiency ratings of different electrical appliances and
indicate energy consumption under standard test conditions. BEE star label is now
mandatory for equipments from January 7, 2010 onwards. Similarly, there are various
others eco-labels exist like Blue Angel from Germany [34], E.U. Flower from European

Union [35]. and Eco Mark from Japan [36] are roughly similar in the issues they cover.
1.5 POWER MANAGEMENT IN PERSONAL COMPUTERS

Power management technology has been developed for personal computer to reduce the
energy consumption when they are not in active use. This not only provides the
environmental benefits of reduced energy consumption, power management but also
can improve the equipment reliability by reducing the waste heat. The heat produced by
these devices has the adverse effect on the environment as well as on human health [37,
38]. First developed for laptop computers, power management is now common in
desktop computers. As of early 1996, the EPA estimates that upwards of 70% of all

new personal computers and nearly 100 % of all personal computer monitors sold have

Page | 8

power management capability [39]. Computer systems are supposed to use a variable
amount of power when they are switched on and this depends on their configuration,
add-on devices, and the various software processes running on them [11, 12, 40].
Though power management interact with every part of computer system but still there
is the potential for unexpected interactions between power management and computing
environment. Computer manufacturers have addressed this problem by making power
management more flexible and more compatible with current personal computer
networks. As the technology has matured, power management has emerged as an
effective tool for saving energy. Early power management systems had long recovery
times, awkward configuration methods, and low energy savings. However, the power
management has improved rapidly, becoming more powerful, reliable, and easier to
use. It also now delivers considerably more energy savings. In 1992, U.S EPA has
introduced the Energy Star [25, 26] program which is among the one of Eco-label that
provides guideline for power saving by the computer system. In 1993, Intel and
Microsoft introduced Advanced Power Management (APM) [41, 42], which is
becoming an industry standard. The APM protocol supports power management by
defining how power management commands are communicated within the personal
computer system. Power-management does not reduce the performance of a computer,
but simply adds features to reduce their power consumption when not in use. These
energy-etficient machines save money on electricity bills and reduce pollution from
power plants. Most power management savings come from reducing power when the
machine is not fully active by adding low-power or “sleep” modes that kick in when

idle.

1.5.1 ADVANCED POWER MANAGEMENT
APM saves energy by putting the computer and monitor into a low power mode during

periods of inactivity by temporarily reducing their speed or functionality. In response to
Energy Star program in 1993, Intel and Microsoft first introduced APM [41, 42], which
defines how power management commands are communicated within the personal
computer system and established an industry standard in power management. Before
the release of Microsoft Windows 95 operating system software was only minimally
involved in desktop personal computer power management. At that time application
software was only used to monitor power management not for controlling the personal

computer itself. Thus the basic Input/output system (BIOS) was, and remains, a critical

Page | 9

component. Later, in 1998, Microsoft and Intel have developed the Advanced
Configuration and Power Interface (ACPI) [43-45] and primary control of power
management shifted from BIOS to the operating system [4] in the form of power
schemes. ACPI has allowed manufacturers to produce computers that automatically
power up as soon as the keyboard is touched [23, 24]. In computer systems, the
operating system acts like a manager and controls a computer’s hardware and software,
therefore, it is considered as a major source of power consumption. Advanced power
management interacts with every part of the computer — the operating system, software
CPU, and various other peripheral devices. To manage the power consumption, there
are several predefined power schemes at one’s disposal. These power-saving options
are responsible for switching a computer system to different states, such as standby
mode, sleep mode and, monitor and Hard Disk Drive (HDD) shutdown, depending on
the inactivity period defined by the power scheme of the operating system. As shown in
Fig. 1.4, computers are logically organized as a hierarchy of layers [4, 46]. Those at the
top are the software that the user directly interacts with, those closer to the bottom
direct the physical control of electrical signals. Power management can involve the
application software and the operating system, and always requires an action by the
firmware (BIOS), processor and peripheral hardware. However, the control signals
must still pass through each intermediate layer for action to occur. The working of these
power management schemes is also shown in Fig. 1.4, which accomplishes four
different levels. First is to monitor activity levels of the processors, input devices like
keyboard mouse and other devices. Second, component is to utilize timers to decide
when to switch the computer system to low power mode. Third component, changes in
the power management status need to be communicated to the correct device and must
occur actually. Finally, power management must find out when the activity gets resume
and return to a full power mode. In Fig. 1.4, The BIOS monitors the keyboard, mouse
and other input devices activity (as per number 1) and sends periodic signals to the
operating system to begin power management (as per number 2). Here the operating
system will only pass the signal through if it detects no activity from the user
application software (as per number 3) and triggers the start of the power management
timers in the BIOS. In case, no activity is detected, the operating system passes the
signal back to the BIOS (as per number 4) and once the time-out occurs the BIOS will
initiate power management by sending a message to various connected devices like

CPU, HDD etc. (as per number 5). After initiating a change in mode, the BIOS begins

Page | 10

another timer which indicates when to initiate the next lower power management mode.
The BIOS continues to monitor keyboard, mouse, and network activity. If activity is
detected, the BIOS will send the appropriate messages to return the personal computer
to an active state. The timing of the power management modes is determined by the
settings (usually in BIOS or in Power Scheme), specifying the delay between each
power management mode and the next. Each successive power management mode
represents a decrease in energy consumption and CPU function, and therefore more
time is required to bring the computer back to active mode [4, 46].

In addition to the direct electricity savings, power-managed computers generate less
heat, and since most offices have to cool the air more than they heat it, for every four
kWh of energy saved by the computer, an additional kWh is saved in the cooling and
ventilation system [47, 48]. Power management in personal computer relies on the fact
that for most of the time a typical personal computers is on, it is not doing anything
productive. As long as the computer is idle, energy use can be reduced without

interfering with work.
R

Application APM
Software Software
User Level mT)
3
PR A

Operating
System

Software

Firmware @/. /

User IRQ Activity
{Keyboard or @ @

(crusmeea] (w0]

Mouse)

Device

Hardware

Figure 1.4: Personal computer power management and communication paths.

Page | 11

Common methods used to reduce the energy use are slowing down or stopping the
processor clock, spinning down the hard disk, and turning oft entire system components

such as video or sound cards or disk controllers.

1.6 POWER SAVING MODES AND PROBLEMS WITH POWER
MANAGEMENT

In computer systems, for minimizing the energy consumption various power saving
modes are defined by the power scheme of operating system [2, 4]. The following
section lists about the various power saving modes implemented either by APM or by

operating systems in personal computer to save the energy.

Full-Power-on: In this mode all the connected devices and components with the
computer systems are fully powered with no power management activated. This mode

supports no energy savings.

APM-Enabled: In this mode, power management features are activated and based on
the BIOS settings CPU is slowed or stopped whereas other connected devices and
components draw the power similar to full-power-on mode. This mode supports up to

25% of energy savings.

Standby mode: In this mode, power management features works actively and CPU may
stopped its operations depending upon the activity detected on the personal computer as
well as connected devices and components also gets switches to low power saving
mode. This mode claims up to 30% of energy savings. In case of any activity is detected

may trigger the personal computer back to enabled or full-power-on mode.

Suspend mode: In this mode, CPU is stopped and most power managed devices or
components are not powered except network card and provides the maximum power
savings under APM. This mode claims up to 45% of energy savings. In this mode, any
activity can trigger the change of state of computer system from suspend to standby,

enabled or full-power-on mode.

HDD-off mode: this mode is not a part of APM; hence it is not a system mode and
normally managed by the operating system. In this mode, HDD spin is stopped to save
energy used by HDDs. This mode is independent of other power saving modes and

hence other connected devices or components may remain at full-power-on mode or in

Page | 12

enabled, standby and suspend mode. This mode claims up to 10% of energy savings
only and any activity on the personal computer can facilitate quick reactivation of HDD

to operational mode.

Hibernate mode: This mode is also not a part of APM mode and normally managed by
the operating systems. In this mode, all available memory coutents and current state of
the PC saved to the HDD and further PC gets switch off. When user wants to work
again on hibernated PC, then he/she has to power on the PC and system takes 15 to 60
seconds to recover the user’s state. This mode claims 90 to 100% of energy savings.

This mode must be properly configured to take its advantage.

Shutdown mode (Off mode): In this mode, the computer system, various connected
devices and components gets switch off. As compared to previous hibernate mode no
operational parameters are saved to the HDD. This mode supports 96 to 100% of
energy savings and whenever user wants to perform some operations on the computer

system then he/she has to switch the system to full-power-on mode.

Though, with the change of time, the power management feature has been shifted from
BIOS to Operating system and more power saving modes are being designed to save
power but a small amount of power ranges from 3W to 15W is consumed in these
modes [4]. However, most of the time, these power saving modes are not properly
configured or most of time users rely on the default settings of power saving modes,
which allow for only up to 20% in energy savings [4, 12]. The difficulties in properly
configuring power management in computers and monitors are the largest barrier for
achieving energy savings from automatic energy management. Earlier, many power
management systems for both monitors and computers had long recovery time,
awkward configuration methods, and low energy savings [46, 47]. In [49], Webber et
al. estimated that 80 percent of monitors and 50 percent of computers are Energy Star-
activated. A study of power management features and configuration of Energy Star-
compliant machines found only 11 percent of CPUs fully enabled and about two-thirds
of monitor’s power managed [23, 24] whereas Kawamoto et al. [7] have obtained in
their study that only 25 percent are correctly power-managed to achieve maximum
power savings [7]. It is very difficult to determine whether power management is
properly operating in machines. The only indication to the user that power management

is occurring in their computer is when the HDD audibly spins down or delays in the

Page | 13

appearance of keystrokes when spinning up. Other than this, it is difficult to know
whether the computer is accomplishing any further power management [23, 24]. There
is an illusion among the users of personal computer that their system is power-managed
because the Energy Star logo appears during start up. Many users do not realise that

they must first activate the power management features to save energy [15, 50].

Once enabled, the power management may present some further challenges. Power
management interacts with every part of the computer, and therefore there is potential
for unexpected interactions, which may cause problems [51, 52]. In most cases,
however, automatic power management is not a substitute for switching the machine oft
when not in use for extended periods of time. However, substantial energy savings can
also be made by switching the personal computer off, since it has been found that more

than 50 percent of computers are left on at night [4, 12, 17, 18].

1.7ENERGY-SUSTAINABLE COMPUTING

To handle the issue of power management in efficient manner in the computer systems,
the concept of ‘Sustainable Computing’ is gaining a lot of popularity presently and is
being considered as one of the most promising technology by the designers of
Information Technology (IT) industry. Sustainable computing is also known as ‘Green
computing’ of which computing methods provide the benefits of solving the energy-
consumption issue by computer systems and being environmentally friendly [11, 53].
There are basically three major aspects of sustainable computing: i) reduction of energy
consumption from any running computing process on the system ii} to ensure the longer
life cycle of any computing equipment, and iii) ensuring the need of energy
consumption within the energy available from all resources in the environment [11].
Therefore, the sustainable computing performed from energy perspective is known as
energy-sustainable computing. A major issue in addressing the different aspects of
sustainable computing is the need for awareness of the non computing processes in the
physical environment like dependency of the equipment life cycle on the environmental
tactors and the availability of energy from the available resources in the environment.
On this way, energy sustainable computing can also be defined as the balance between
the power required for computation and power available from sources like renewable
sources, green sources etc. However, the power required and available power may vary

according to the time as solar power will not be available in the night and computing

Page | 14

operations will become unsustainable if the required power is higher than the power

available. This varied nature of energy sustainability can be defined as follows:

1.7.1 Energy Sustainability
Energy-sustainable computing needs to ensure minimum energy requirement from the

grid or battery and emphasizes a lot on green sources. In case, if there is no or less

energy available from green sources then energy sustainability brings down the average

energy required by reducing the computing operations. There are different directions in

achieving energy-sustainable computing [2] such that need for grid and battery power is

minimized.

a)

b)

c)

Energy storage

Here, energy storage devices are used to store the energy available from green
sources with the help of various available techniques like ultra-capacitors,
compressed air storage, batteries, fuel-cells, and flywheels [16-18 paper]. This
storage of energy is constrained by the energy capacity limit of the storage
device.

Reducing energy requirement

Another major direction for emergv sustainability is to reduce the energy
requirement to avoid unsustainable operations or to reduce the energy need from
grid or batteries which, can be achieved in variety of ways: 1) by using spatio-
temporal distribution of operations, where computing operations are distributed
among multiple computing units and no machines gets overloaded. These types
of spatio-temporal distributions are used in data centers [12, 24, 25, paper]. 2)
by using computing power management methods to reduce the power
requirements. This can be achieved by switching the computing units in to
different power saving modes for example, processor not performing any
operation can be switched to sleep mode or hibernate mode to reduce the power
requirement [paper, 27, 28, 29]. 3) by managing non-computing systems where
power requirement by the computing units is followed with the requirement
from some associated non computing processes like for cooling, for server
longevity etc.

Scavenging energy from various sources: This is another complimentary

option for energy-sustainable computing which focuses on need of energy

Page | 15

harvesting and requires identification of different energy sources to scavenge

energy from them [2.7,30,31 - paper].

1.80RGANIZATION OF THE THESIS

This thesis aims to understand the limitations of existing power schemes available in
the operating systems and to investigate new ways of designing energy sustainable
tramework and algorithms for minimizing the power consumption by personal
computers. The framework discussed in this thesis is a user centric energy sustainable

tramework. The remainder of the thesis is organized as follows:

Chapter 2 concerns with the various ways of the minimizing energy consumption in
the computer systems. Here, we have represented various simulation based, hardware
based, and software based scenarios to minimize the power consumption and focused
on the software based sustainable techniques. We have also discussed the need of
enhancement of the dynamic power management and dynamic voltage and frequency

scaling methods to achieve this goal.

Chapter 3 presents the user centric energy sustainable framework. In this chapter,
we have modelled the energy and power consumption, which is build around the CPU
utilization and presented a user centric energy sustainable framework. This framework
also considers the total CPU utilization and implements two different modes known as
Swift mode and Exhaustive mode for the power saving. We have also discussed about
the various advantages of the proposed framework over traditional power schemes

available in the operating systems.

Chapter 4 focuses on the algorithmic implementation of the proposed energy
sustainable framework. This framework implements two algorithms known as Swift
algorithm and Energy Sustainable Snapshot algorithm (ESSA) for the proposed modes,
respectively. The various results are obtained using these algorithms for the respective
modes using scenario when there is no load on the machine and when there is
processing going on which shows that the CPU of the machine is utilized. Here, only
the proposed ESSA algorithm is designed around the percentage of total CPU usage,
which is recorded for each minute whereas the proposed swift algorithm focused on its

smooth functioning for the supplied login-duration time.

Page | 16

Chapter 5 evaluates the performance of proposed energy sustainable framework for
its two different modes in the real time environment. By using profiling, we have
evaluated the framework for thread monitoring, memory performance like heap
analysis, thread analysis, memory leakage, and garbage collection is done. Finally, we
have also analyzed the CPU performance by using three methods for finding
invocations of each method during login-duration. Using profiler, various results have

been obtained in real time environment and are presented in this chapter.

Finally, we conclude the thesis and recommend the future scope of the work in
Chapter 6.

Page | 17

MINIMIZING ENERGY CONSUMPTION

2.1 INTRODUCTION

As we have seen in the previous chapter that most of the power saving schemes if not
configured, are unable to save the power and most of the time computer systems remain
switched on and this not only consumes the energy but also not good for the
environment because of its continuous heat dissipation, and sadly, the power
management tools are not active on 90% of desktop personal computers [4]. Though,
these power saving modes are designed to save power but a small amount of power
ranges from 3W to 15W is consumed in these modes [13]. In this chapter, we have
discussed about the techniques used for minimizing the energy consumption by the
computer systems. Therefore, the vision of a sustainable planet and minimization of the
energy consumed by computer systems motivated us to examine the energy-sustainable

computing methods [10].

Over a period of time, various techniques have been proposed by the
researchers/scientists for minimizing the power consumption by the computer systems.
These techniques can be categorized into various classes such as hardware based
approaches, software based approaches, tool based approaches, and energy-sustainable
approaches. Here, in this thesis, we have used the example of Microsoft Windows
power schemes [54], as it is one of the most widely used operating system since last
two decades and will remain the favorite to many users. According to the various
quarterly results [55], it is found that Microsoft Windows still leads the market with a
market share of around 88-90% among the other key players like Linux, Mac OS, and
Android. Thus, we can conclude that the Windows OS is one of the most popular and
people still prefer to work with it. Though it is most widely used operating system and
has become energy efficient with the introduction of energy star program [15, 16] and

Advanced Power Management [41, 42]. In Microsoft Windows power management

Page | 18

features are implemented with the help of various power schemes. These power saving

schemes are shown in Fig. 2.1 (a) and Fig. 2.1 (b).

—

wer Management Properties 2]]

Fower Schemes | Advanced |

Select the power scheme with the most appropriate settings for
this computer. Mote that changing the setings below will modify
the selected scheme.

— Pawer schem

[HemesOtice Desk =l

Sawe As. | Delete |

[~ Settings for Home/Office Desk. power schems

Spztem standby: Mewver LI

After 1 min
After 2 ming
After 3 mins
after 5 mins
— Afrer 10 mine
T off maritar: after 15 mins
_ after 20 mins
Turn off hard disks: after 25 mins

after 45 ming
| After T hour
After 2 hours
After 3 hours
After 4 hours
| After 5 hours
T W& —aaw = |Mever

Il

(a)

@\V,v\g « Fewsr Options » Ecit Plan Sett rgs ~T4

Changz settings for the plar: Power saver

Zhocsethe slzzo erd display settings that yo.4 wan: your computr o usz
j On kettery A Plucced n

& “um offthe displays 3 mirtes -] wmnis -

® Putthecomprertoskes Sminttes +] 1hour -

Adustdisp gy brigatness: 5 ° i

Change advanced power setirgs

Restore defat settings orthis oer

(b)

Figure 2.1 Power saving schemes in operating systems () Windows 95 to XP and (b) Windows Vista & Windows
1

Fig. 2.1 (a) shows the available power options from Windows 95 to XP, and Fig. 2.1(b)
shows the available power options for Windows Vista and 7. If we compare both the

scenarios, then in these power saving schemes, we see that various options are available

Page | 19

for power management that address the issue of human inactivity, using that a personal
computer can enter automatically into the sleep mode, standby mode, hard disk drive
turn-off, monitor turn-off, and switching the personal computer to hibernate. Another
interesting fact that we can find from Fig. 2.1(a) and Fig. 2.1(b) are the option to turn-
off the hard disk drive after a certain period of time, which is available in Fig. 2.1(a), is
no longer available in Fig. 2.1(b). This reveals that the organization has started thinking
seriously about the issue of power consumption by the computer systems. In one of the
recent blog of Microsoft Developers Network (MSDN) [56] from the Windows
engineering team of Microsoft, have emphasized in the need to minimize the power

consumption of your personal computer.

2.2 DRAWBACKS OF AVAILABLE POWER SCHEME IN
OPERATING SYSTEM

As we have seen in Fig. 2.1(a) and Fig. 2.1(b), number of power-saving options are
available in these power saving schemes, but a significant question arises is: “Are they
sufficient enough to save power?” The answer to this question is very clear and direct:
maybe not because all these available options as discussed in previous section are
totally based on the time-out approaches, they consider the keyboard and mouse event
for switching back on the system’s state in any of the options available in the power
schemes. Presently, the available power schemes in Microsoft Windows 95/XP/Vista or
in any other operating system are not sufficient for effective power management or to
save power completely and reduce the heat dissipation by the personal computers. This

situation is described in the following two cases [54]:
Case A:

The user of a personal computer selects the following settings in the power scheme

available in the operating system to save power:
Turn-off monitor/display = After 45 min.
Turn-off hard disks = After 45 min.

System standby/sleep = After 1 hour

Page | 20

The user of this system has to leave the system for some reason just after login into the
system, and he/she came back to the system after 30 minute or more and continues his

work.
Case B:

The user of a personal computer selects the following settings in the power scheme

available in the operating system to save power:
Turn-off monitor/display = After 10 min.
Turn-off hard disks = After 10 min.

System standby/sleep = After 30 min.

The user of this system has to leave the system for some reason just atter login into the
system, and he/she came back to his system after 30 minute or more and continues his

work.

In the above scenarios, though the users have configured the power schemes differently
in both the cases. the power consumption of the computer system is very low in Case B
as compared to Case A even though the inactivity period of the user is the same, that is,
30 minute in both the cases. So, in spite of having the power scheme options in the
operating system, we could not minimize the power consumption in Case A. The one
major reason for this could be that these power schemes are very much personal
computer and peripheral oriented and have nothing to do with the operator’s behavior,
which means that they are unable to say something about the operator’s inactivity [57]
period on the computer system. Therefore from the above cases, we can easily find out
that inactivity is the enemy of the power consumption and one cannot minimize it

without predicting the inactivity period of the operator.

2.3POWER AWARE SYSTEM DESIGN

In the early age, researchers/scientist tried to minimize the energy consumption during
the architecture design stage, because the power problem obstructs the development of
computer system. Most of the worked out techniques by the researchers/scientist are
designed to decrease the energy consumption of the processor, which is considered as a

dominant energy consumer in a typical computer system. Some of these techniques

Page | 21

include multi-core on-chip processor, dynamic voltage and frequency scaling, clock
gating, phase-change memory and solid-state disk drive are few of them used to
decrease the power consumption in computer systems. Although these hardware based
approaches have been proven useful for reducing the energy consumption of the
computer system and they will be of continuing importance in the future and it is also
found that these techniques alone are not enough. However, some higher-level
strategies are to be used for reducing the energy consumption [58, 59]. From previous
section, we can see that current operating systems are not by considering the power
problem, thus, even if the system is running in idle mode it consumes a large amount of
energy and considered as waste, which is not used for any kind of computing. Vahadat
et al.[60] have proposed the traditional operating system design, which should be
revisited for the energy efficiency. H. Zeng et al. [61] have presented Ecosystem, which
tries to manage power as one kind of system resource, except for designing new
operating systems, some other high-level power aware strategies like power aware
scheduling [62] is also providing a better option for minimizing the energy

consumption.

2.4 POWER MEASURING AND PROFILING

Power measuring and profiling is emerging as a new area with a rising concern over the
energy consumption when designing computer systems. In the early work [58, 59, 63-
65] researchers/scientist have used simulation based hardware based design to minimize
the energy consumption and most of them estimate the power consumption of the
hardware circuits based on the classical power model [66-68]. The major drawbacks of
these circuit-level power models is that they cannot be used to estimate the power
consumption of real products and researchers/scientist have used the instruments to
measure the power consumption of these real products directly. To cope with the
limitations of direct measurement, in this thesis, we have tried to use software methods
to estimate the power of the online computer systems. These works are performed in
different levels and categorized as component level [69], core level [70], CPU
tunctional unit level [71], process level [72], and virtual machine level [73]. In these
techniques either use operating system events or hardware performance counter events
to build their power model. Basically, these power measuring and profiling techniques

are divided into three categories: simulation based approaches, hardware-based

Page | 22

approaches, and software power profiling. These approaches are discussed in detail in

tollowing sections.
24.1 Power model

The software-based approach usually builds power models to estimate the power
dissipation of different levels like instruction level, program block level, process level,
hardware component level, system level, etc. These methods first try to find the power
indicators that could reflect the power of these software or hardware units and then they
build the power model with these power indicators and fine tune the parameters of the
power model. Based on the difference of the power indicators, we categorize these
methods into two categories known as: a) system profile-based method and b) hardware

performance counter (PMC)-based methods.

A) System Profile-Based Power Model: As we know that system profile or systems
events are a set of performance statistical information supplied by the operating system
and reflect the current state of hardware and software. For example, CPU utilization is
the performance metric that can reflect the current workload of the processor. Nearly all
operating systems support these system events. Microsoft Windows support this event
by supplying a set of Application Programming Interfaces, called the performance
counter to access various values. The operating system, which constituted with a set of
system processes, consumes the large amount of power even when the system is idle,
and it is the main cause of disproportional system usage and power dissipation. In [60,
61, 74], researchers/scientist have presented the review of traditional operating system
design with energy as one of the foremost important considerations. Thus,
understanding the power dissipation of these system processes is very important for
designing a significant energy sustainable operating system. In [75], Li and John have
estimated the power dissipation caused by the operating system and find the power
behavior of three types of operating system routines like interrupts, process and inter-
process control, and file system. These operating system routines have different power
behavior. However, author’s find the power of these operating system routines has a
linear relationship with instructions executed per cycle (IPC) and build the power model
based on IPC. In [72], Do et al. have built the process-level energy models for three
main components CPU, disk, and wireless network interface card (WNIC). Here, the

CPU energy model is based on system events like active time of the CPU, the time that

Page | 23

the CPU worked on each frequency and frequency transition time. The energy
consumed by the disk and WNIC is computed with the amount of data operated by
these devices. In [73], Kansal et al. have also built the energy model for three main
components, CPU, memory and disk and proposed CPU energy model which is based
on CPU utilization, memory energy model is based on number of LLC (last level cache)
misses, and the disk energy model based on the bytes of data that the disk reads and
writes. Similar to Kansal et al. [73], Dhiman et al. [76] also proposed an online power

prediction model for virtualized environment.

B) Hardware Performance Counter Based Power Model: The hardware performance
based counter is a group of special registers, which are designed to store the counts of
hardware-related activities within computer system. These hardware performance
counters provide low overhead access to the detailed pertormance information related
to the CPU’s functional units, main memory, and other components. Bellosa et al. [77]
first propose the idea of using hardware performance counter and analyzed the various
hardware events like integer operations, floating point operations, second-level address
strobes, and memory transactions with the power of the component and observed that
these events are tightly related to the functional units. Similar to Bellosa et al. [77], in
[78] Joseph et al. validated the correlation of more than 10 CPU functional units and
used several performance events that are most related to CPU power. In [79], Contreras
et al. build power models for the Intel PXA255 processor and memory. Their processor
power model is based on for hardware events like instructions execute, data
dependencies, instruction cache miss, and translation look aside buffer (TLLB) whereas,
memory power model was based on three counters like instruction cache miss, data
cache miss, and number of data dependencies. In [80], Bircher et al. discussed the
events that have higher correlation with power are all IPC related. In [70], Bertran et al.
proposed a core level power model and categorized the processor components into three
categories, the in-order engine, the memory subsystem, and the out-of-order engine,
based on the extent that the performance monitoring counters can monitor their

activities.

Page | 24

2.5 SIMULATION BASED POWER MANAGEMENT
APPROACHES

The complexity of modern computer systems have increased dramatically and software
simulation has become the only method of testing, evaluating, and prototyping the
system. Simulation based approach has become the key step for the system designer for
evaluation of the research ideas, to verification of hardware design, and once the system
is ready then for its performance tuning. In all kinds of simulations designers face the
problem between its speed and accuracy and they have to reduce the accuracy to make
the simulation run in an acceptable amount of time. In [81, 82], the authors have
proposed a simulation-based power model using FAST simulator and stated that
traditional power models that is used with software simulators can directly benefit from
this simulator. This simulator is able to tolerate the overhead communication between
functional model and Timing Model. Rosenblum et al. [83] have presented a SimOS
simulation environment for complete computer system modeling, which also support
tor full operating system and application programs that run on it. It provides speed,
accuracy, and flexibility during simulation. It simulates the CPU by using the process
abstraction provided by the host operating system. Ye et al. [65] presented the design of
an execution driven power estimation tool SimplePower. The SimplePower energy
simulator uses transition sensitive energy models and simulates the Simple scalar
instruction sets which are a suite of publicly available tools for simulation of modern
CPUs. It also provides the energy consumed in the memory system and on-chip buses
using analytical energy models. Gurumurthi et al. [82] investigated the existing power
simulators for their proposed design and obtained that they are mainly targeted for
particular hardware such as CPU and memory and do not capture the interaction
between other components. The SoftWatt tool proposed and developed by them
considers the disk drives in addition to the CPU and memory and quantifies the power
behavior of applications and operating systems. This tool also locates the power hot
spots in system components and identifies the power-hungry processes in operating
systems. Brooks et al. [58] presented an architectural simulator for estimating the CPU
power consumption using Wattch. This simulator is very much faster than any existing
lower level power tools. They have quantified the power consumption of all the major
units of CPU and show how these power estimates can be integrated into a high-level

simulator. Chen et al. [84] investigated a user-level simulator at the micro-architectural

Page | 25

and memory level, and observed that the operating system activity is not modeled in
them. They introduced the tool SimWattch — a system-level simulation tool and a
flexible user-level simulation tool for predicting performance and power dissipation.
Do et al. [72] developed a tool, pTop, to estimate the amount of energy consumed by
each application in a system. This is basically a process-level profiling tool that runs
parallel to services of the operating system at the kernel level and provides energy-

consumption data.

2.6 HARDWARE-BASED POWER MANAGEMENT APPROACHES

Hardware-based power management approaches uses instruments to measure the
current or voltage of the hardware devices and further uses these measured values to
compute the power of the measured object. This measurement instrument includes
different types of meters, special hardware devices that can be embedded into hardware
platforms and power sensors that are designed within hardware. Normally, these
methods make the use of micro-benchmarks [66, 71] and can only measure the
component level power. Direct measurement of the energy consumed by the
infrastructure is used to validate the models, but these measures suffer from two flaws:
if one wants to evaluate very precisely one component of one host, sensitive power
meters and oscilloscopes are used. These measures are very costly in maintenance and
shipping. Other less-expensive and easy-to-use solutions measure the power directly at
the electrical plug. This hardware measurement will be simplified as more and more
hardware components start to include some measurement system designed especially
for processors attributes like temperature, energy consumption, etc. However, the
heterogeneity of such hardware and the size of large distributed systems put back the
complexity on the measurement, interoperability, and management software

infrastructure.
2.6.1 Power measurement with power meters

Direct power management with power meters is a common method to understand the
power dissipation of devices as well as whole system. Various research [72, 85] focus
on the power meters to measure the real power and use it to validate the research work
or to do analysis. Moreover, some works [86, 87] focus on measuring the hardware

components power and break it into lower levels based on some indicators that could

Page | 26

reflect the activity of these lower-levels units. The only difference in these methods are
which type of power meter is used to do the measurement and at which place the

measurement is performed.

A globally available power meter is digital multimeter which is easy to use and able to
sample the measured object each second. In [66] Joseph et al. have discussed the use of
multi-meters to measure the power while executing different benchmarks and make
power trade-offs. By using the same method Feng et al.[88] measured the node level
and component level power for node of the distributed system. In another type of meter,
which is also used by many researchers/scientist, is the clamp meter, which measures
the current without disconnecting the wire. In general, these kinds of meters has the
larger measurement range than the digital multi-meter and thus can be used to measure
the power of systems in which the current is quite more. In [67] Kamil et al. presented
the direct power measurement method with clamp-meters to measure the power on a
CrayXT4 supercomputer under several high performance computer workloads. Here,
multi-meter and clamp meters are used to measure the DC power by connecting them
between the power supply and the measured component. In addition, there is one more
kind of power meter, such as ‘Watts-up’ [89] to measure the AC power which is used to
measure the system level power because only power supplies are powered by AC that is
good to understand the overall system behavior but it is not suitable for lower-level

power analysis.
2.6.2 Power measurement by specially designed devices

As we have seen in the previous section that direct measuring with the help of various
power meters is simple, however it is unable to control the measurement process.
Therefore, to overcome from this problem some specially designed power measurement
devices are designed for the power measurement. Viredaz and Wallach [90] has worked
towards the development of flexible research platforms for pocket computing and
developed a project with name ITSY. This project is used to measure the power of
mobile devices and battery lifetime under different loads, while continuously
monitoring the power consumption. Snowdon et al. [91] represented the structure of
PLEB which is a single board on computer and designed with a set of current sensors
on board. The microcontroller of this device is integrated with an analog-to-digital

converter to read the sensors. PLEB platform can also be used to isolate the power of

Page | 27

processor, memory, and other input/output devices. In various other approaches used by
the researchers/scientist [92-96], used a National Instruments (NI} data acquisition card
[92, 93] as it can measure 16 components simultaneously, or by using basic laboratory

equipment [94-96] that measures the voltage and current of the system.
2.6.3 Power measurement by integrating sensors

This type of approach is basically used by the high-performance servers. In the last
decades, number of designed servers contains a service processor [97, 98], which is
hardware and software integrated platform that works independently of the main
processor and server’s operating system. In this architecture, most of the hardware of
service processor includes power sensors to monitor the power supplied to the
administrator for power management. For example, Intel’s service processor Intelligent
Platform Management Interface (IPMI) [99] supports APIs to read the power
information monitored by the sensors. There are few other techniques have been
discussed in detail in [100, 101] to improve the energy efficiency of data centers that
are used on servers integrate power sensors at a deeper level. Though online power-
aware applications can use this method but it is difficult to gain lower-level power
information, in which case hardware circuits are too complicated to distinguish the
originality of the power dissipation. Moreover, there power monitoring circuits also

dissipate a large amount of power as well.
2.6.4 Power management by using benchmarks

Several standards have been proposed for evaluating the energy consumption of nodes
in cluster, of multitier servers and of supported applications and later on these standards
were evaluated on specific hardware like the benchmark [102], which evaluates both
the application and the infrastructure. The Green500 [103] initiative is a challenging for
the most powerful machines in terms of flops/watts. SpecPower [104] is a widely used
industry standard that evaluates the power and performance of servers and multimode
computers. It exercises the CPUs, caches, memory hierarchy, and scalability of shared
memory processors as well as the implementations of Java Virtual Machine (JVM), Just
in Time (JIT) compiler, garbage collection, threads, and some aspects of operating
systems and computes the overall server-side-Java operations per watt, including the
idle time on specific workloads. The Transaction Processing Performance Council

(TPC) proposes the TPC-Energy benchmark [105] for transactional applications like

Page | 28

Web application services, decision support, online transaction processing etc., TPC
measures Watts/operations on the TPC benchmarks. The Embedded Microprocessor
Benchmark Consortium has similar approach and provides a benchmark for energy
consumption of processors [106]. Additionally, manufacturers provide information
about the consumption of their components by using average loads. For example,
Advanced Micro Devices (AMD) describes the average CPU power [107], which
characterizes power consumption under average loads. In the best cases, all these
benchmarks provide information about standard applications on specific hardware.
They limit their purpose on ranking between different architectures for specific

workload.

2.7 SOFTWARE-BASED POWER MANAGEMENT APPROACHES

Although the hardware approach can supply very accurate power information but due to
some technical problems as we listed in the preceding sections limit its application
range. However, software-based approach can be used to supply more fine grained
online power information, which could be used by power aware strategies. The live
power information of systems is highly needed for designing high-level energy-efficient
strategies. For example, Eco-system [61, 74] proposes the concept of managing system
energy as a type of resource and requires the support of real-time power information at
different levels. Moreover, as a part of the energy-centric operating system, energy
profiles are also needed by new power aware scheduling algorithms [108, 109].
Furthermore, these software-based power management approaches provide more
flexibility in comparison to the hardware approaches and can be applied in different

platforms very easily.
2.71 Dynamic power management scheme

Recently, the dynamic power management (DPM) scheme has become essential for the
modern computer systems as well as for battery driven embedded systems. This is an
approach by which one can reduce power consumption by switching system
components into different states [110-118]. We consider a device with active, full-on,
standby, and sleep modes with different power consumptions and controller decides
when to change the power mode of the device. DPM also refers to the selective shutting

or slowing down of computer system components that are idle for a long time or rarely

Page | 29

used. DPM schemes at the operating system level refer to the adjustment of supply
voltage and clock frequency while tasks are running. These approaches can be
classified into three subcategories: a) predictive, b) stochastic, and c¢) time-out

approaches.

A) Predictive approach
In various practical systems, it is very difficult to predict the future input event
and DPM decisions have to be taken based on some uncertain predictions. The
rationale in all predictive techniques is that of exploiting the correlation between
the past history of the workload and near future in order to make reliable
predictions about future events [110]. The screen saver adopts the predictive
approach for the energy conservation and when there is no keyboard activity after
the screen display will be turned-off, and the same approach can be applied to
disk drives. Predictive policies for the hard disk drives [119-123] and for
interactive terminals [116, 117, 124] force the transition to low power state as
soon as the component becomes idle if the predictor estimates that the idle period
will last long enough whereas, an incorrect prediction can cause both performance
and energy penalties. The regression model is used for predicting the duration of
future idle periods. A simplified power management policy predicts the duration
of an idle period based on the duration of the last activity period. Predictive
approaches are categorized into two categories: 1) Static techniques where
predictive shutdown [117] and predictive wakeup methods [116] are used.
Srivastava et al. [117] conducted an extensive analysis of various system
predictive approaches and proposed a predictive system shutdown strategy for
event-driven applications in portable devices. They developed two predictive
formulas: one based on the general regression-analysis techniques to compare the
length of an upcoming off period with that of a previous one and the other
obtained by the observation of on-off activity. They have claimed that the simple
policy performs almost as well as the complex regression model and it is much
easier to implement. In [116], Hwang and Wu have focused on the need to switch
off a computer system running in idle or sleep mode and presented a predictive
system-shutdown method to avoid sleep mode operations and thereby save energy
when running event-driven applications. Authors have used static power

management and DPM techniques to define and detect the sleep modes and idle

Page | 30

period. 2) Another approach is an adaptive techniques where optimality of DPM
strategies depends on the workload statistics, static predictive technique are all
ineftective when the workload is either unknown a priori, or non-stationary.
Several adaptive techniques have been proposed to deal with non-stationary
workloads [117]. Douglis et al.[120] surveyed and classitied several predictive
policies and introduced an approach to keep only one timeout value and to
increase it when it is causing many shutdowns. Krishnan et al. [125] maintained
the set of time out values and each timeout is associated with an index indicating
how successful it would have been. The proposed policy selects the timeout for
each idle time that performs best among the available ones. In an another policy
presented by Helmbold et al.[121], also keeps a list of candidate timeouts and
assigns a weight to each timeout based on how well it would have performed
relatively to an optimum offline strategy for past requests. The actual timeout is
obtained as a weighted average of all candidates with their weights. Abbasian et
al. [115] introduced an adaptive method for DPM that is based on wavelet
forecasting theory, which allows for very accurate modeling of system
components with non-stationary behavior. In [115] it is also predicted that this
model can be used to capture the local information of a system very accurately
and achieved 95% accuracy in their results when predicting the state of a HDD.
B) Stochastic approach

These approaches are based on stochastic models and provide more optimal
results in comparison to predictive techmiques. Stochastic control based on
Markov models has several advantages over predictive techniques. 1) It captures
the global view of the system, thus allowing the designer to search for a global
optimum that possibly exploits multiple inactive states of multiple interacting
resources. 2) It enables the exact solution of the performance-constrained power
optimization problem. 3) It exploits the strength and optimality of randomized
policies. Here, the models use distributions to describe the times between arrivals
of user requests, the length of time it takes for a device to service a user’s request,
and the time it takes for the device to transition between its power states. Simunic
et al. [126-129] have discussed the system model for stochastic optimization,
which can be described with the memory-less distribution [130-132] or with
general distributions [126-129]. Similarly, the power management policies can

also be classified into two categories by the manner in which decisions are made

Page | 31

O

like discrete time and event driven. Qiu et al.[133] proposed a abstract model of
the power managed electronic system and formulated the problem of system-level
power management as a controlled optimization problem based on the theories of
continuous-time Markov decision processes and stochastic networks and solved
this problem by using linear programming. Huang et al. [114] focused on
implementing the DPM in hard real-time systems and proposed online algorithms
to change the mode of the system. Here, they have considered three different
modes for the system known as 1) active mode, 2) standby mode, and 3) sleep
mode. However, based on the controller’s decision the device can be switched to
any mode to reduce the energy consumption. Using these algorithms, they
predicted the next moment for mode switching. Jiang et al. [118] investigated the
timeout policy for DPM and formulated a semi-Markov control process model to
optimize and analyze the performance of the timeout DPM policy. It is also
predicted that the timeout policy is equivalent to a stochastic policy in terms of
the power performance tradeoffs, and this relationship is expressed as a
mathematical formula.

Time-out approach

The time-out approach is a widely used approach in the industry, and thus it is
easy and safe to implement. This policy is widely supported by number of
Operating Systems, like Linux, Microsoft Windows, and so on. In this kind of
DPM approach, whenever the time last at idle state reaches an assigned time-out
value, this approach switches the system component to low power mode. In
previous works on timeout policy, the timeout value [42, 134] was exploited to
identify the elapsed idle time as observed event used to predict the total duration
of the current idle period, and tested with simulations as well as measurements to
assess the effectiveness. Moreover, some researchers [113, 135,136] have
implemented the DPM approaches in different ways, that is, either they have
considered the architecture and algorithm to shut down the HDD irrespective of
the value declared by the “timeout after idleness” algorithm in most of the
Windows-based computer systems, or by considering the parameter of Dynamic
Voltage Scaling by proposing a smart Sleep [113, 136] power-saving scheme with
minimal performance impact. This scheme adopts the sleep mode and forces in
the system into sleep mode, though this may not be a good choice, as it is difficult

to find such a state where server utilization is low. Recently, several analytical

Page | 32

models have been introduced for power-management systems controlled by
timeout policy. Benini et al. [110, 111] explored several approaches to system-
level dynamic power management and modeled a power-management system as a
set of the interacting power-manageable components controlled by the power
manager and then analyzed the DPM implementation issue in the electronic
systems. Later, they used the stochastic approach to power-managed systems and
categorized the set of components into different states based on their performance
and power-consumption levels. They have created a power-management policy to
decide when to perform component state transitions and which transitions should
be performed, depending on the system history, work-load. and performance
constraints. Zheng et al. [137] modeled the timeout policy driven power
management systems with multiple vacations and an attention span. They have
presented their closed form solution based on queue theory. This analysis
revealed a tratfic load threshold based ‘best’ policy that is obviously equivalent to
the optimal deterministic policy and therefore is inefficient to trade-off power for
performance with tight constraints. Rong et al. [138] extended the continuous-
time Markov decision processes (CTMDP) model for designing a timeout policy
driven power management system and presented oftline and online gradient-based
algorithms for determining the optimal timeout value based on perturbation
analysis theory. This model suffers from modelling inaccuracy and brings extra
computational burden. Li [112] has investigated the multiprocessor environment
with dynamically variable voltage and speed and analyzed the problem of
minimizing schedule length with energy-consumption constraints and the problem
of minimizing energy consumption with schedule-length constraints. Moreover,
they compared the performance of the algorithms with optimal solutions
analytically and validated their results experimentally. Wang et al. [113]
investigated the smart power-saving scheme PowerSleep for servers with the aim
of reducing static power consumption using DPM. To minimize the mean power
consumption, authors have chosen the execution speed for servers with dynamic
voltage scaling and sleep periods when placing the servers into the sleep mode

with DPM.

Page | 33

2.8 DYNAMIC VOLTAGE AND FREQUENCY SCALING

The energy awareness of high performance computing systems has been achieved by
several ways which varies from electrical material to various circuit designs to system
integration and system software. The main goal of each technique is same that is to
reduce the overall system power consumption without compromising the performance
of the system. This section presents the study on dynamic voltage and frequency scaling
(DVFS) from system-software’s perspective. From this perspective, the strategy of
supplying the minimal power to various system components when they are not in use is
achieved by powering down them. DVFS is one of the most promising technology by
which one can allow the systems software to reduce the CPUs voltage and frequency.
This is because when there is no processing at the computer system then the CPU is
underutilized for the machine. The dynamic power of CPU depends upon the CPUs

voltage (V) and its operating frequency (f) [2]. This relation is shown as:
denamic o« V2, f (21)

The dynamic power is used for switching between O and 1 in the CPU registers when it
is not in use. Therefore from the above relation, we can find that by lowering the
voltage or frequency, can minimize the CPU power consumption, which shows that the

operating frequency of CPU is dependent on its supply voltage as:
Ef xV (2.2)

The equation (2.2) reveals that we can decrease both the voltage and frequency
simultaneously to reduce the CPU power consumption. DVFS allows the system
software to supply high power when it is required only. With the intent of bringing
power management into operating system’s control DVFS is introduced into ACPT [43-
45, 136, 139]. ACPI defines the various performance states to the CPU which is one of
the part of operating system power management [43-45]. From ACPI point of view, this
prediction model utilizes the concept of a variety of C-states [140]. These C-states are
Co, C1, Cs and Cs. Where Cg refers to active state, and rest states are the idle state where

power consumption of the CPU decreases as we move from C; to C; to Cs.

Though DVFS is a highly promising technology but system’s software needs to find the
correct voltage and frequency to execute the application process on the computer

system and if it is not correct then the overall performance of the systems gets down

Page | 34

and this results into more energy consumption by the non CPU components like
memory and HDDs [141, 142]. The task of finding the appropriate voltage and
tfrequency is performed with the help of algorithms and these algorithms are generally
implemented as running systems. In this chapter, we have investigated several
ubiquitous DVFS algorithms to facilitate an in-depth study about their behavior. DVFS
algorithms are ubiquitous if it merely looks into the performance status of the system
every time it makes a decision on which voltage and frequency to be used. Weiser et al.
[143] presented one of the earliest collections of DVFS interval-based scheduling
algorithms for general purpose operating system and the time has been divided into
tixed-length intervals and determine the CPU voltage as well as frequency at the start of
each interval for finding whether the CPU is underutilized and used the CPU utilization
ratio. Here, low CPU utilization ratio implies that CPU requires low amount of voltage
and frequency. Yao et al. [144] also presented the first task-based DVES scheduling
algorithms for real time systems. These two works [145, 146] have motivated lot of
researchers/scientists to work in this domain and several papers [145-154] targeting
embedded and mobile computing platforms using DVFES have been published like
Pering et al. [151, 152], Grunwald et al. [148] have implemented the modified version
of original DVES algorithms. There are various other scheduling algorithms [155-157],
which constantly monitor the memory access rate to know when a program is entered
into memory or exited from memory. On the basis of various design issues DVFS
scheduling algorithms can be characterized into three categories like the 1) Abstraction
of CPU utilization, 2) Prediction of the trend in CPU utilization, and 3) The association
of performance states with CPU utilization. These various design issues have been

discussed in the following sections.
2.8.1 CPU Utilization Algorithms

The CPU utilization ratio is the fraction of time which CPU spends non-idle in an
interval therefore its value is considered either O or 1. These CPU utilization algorithms
can be used to estimate future values of utilization based on the previous utilization
sample and broadly classified into two categories like utilization prediction and state

selection.

a) Utilization Prediction: For this category, two broad classes of technique are used

where one class of technique is to treat {uip } as a time series and use smoothing

Page | 35

techniques like moving average to predict the future events. The other class is to
view a DVFS scheduling algorithm as a control system and apply control-
theoretical techniques for utilization prediction. The various smoothing techniques
for utilization predictions are as follows:

Simple moving average (SMA): A SMAy is the un-weighted average of the
previous N data points. When calculating successive values, a new value uy_;
always comes in and old value u)_y_; drops out, which represents that a full
summation each time is unnecessary. However, a queue is needed to hold the most

recent N values [147].

i—1
1 ! uf g—uf
“F:ﬁz. W= ul | 4 (2.3)
j=i—N
LongShort: It is a type of weighted moving average and averages the 12 most
recent intervals of CPU utilizations, weighting the three most recent utilizations
three times more than the others [147].
L i-1 i—4
Ww=5(3) wey w Q4
12 j=i-3 j=i—12
Cumulative moving average: this represents the un-weighted average of all data

points up to the most current one. [147]
i-1 .
p__1 o — (izZ),p 20
W= =1 4= (i—l) Uit (i—l) Uiz 2-5)
Exponential moving average or EMA;: This is a weighted moving average with
weights decreasing exponentially over time. Here, A shows the degree of weight

decrease, and a lower values of the A discounts older observations faster [149, 158].
i-1
wP = (1—2) z GOV = A+ - Doy
=

(2.6)
AVG,: this is similar to EMA; with A = N/(N+ 1) [148, 151].
i-1)
e =) AR ey KRR Crey LS CYS
=1
PAST: it predicts that the upcoming interval’s utilization will be the same as the
past interval’s and is equivalent to AVGg and SMA;[144].

P
U

=, (2.8)

Page | 36

In another class of utilization-prediction technique is to view a DVFS scheduling

algorithm as a control system and applies control theoretical techniques for the

prediction. The following section list about these techniques:

b)

not quite PID: This technique is also known as nqPIDy. PID (proportional-integral-
derivative) is a classical control-systems technique, which is used to find the
appropriate value of changing workload system that represents the present and past
of the system. It simplifies the standard PID algorithm by eliminating feedback and
the continuous-time integral and derivative with their discrete-time counterparts

like summation and difference [159].

i1
w =Kp.uly + K. (% z _ Nujo) + Kp (il — uip) (2.9)
ji=i-

where Kp K; and Kp are the weights of the corresponding terms. Here, the
proportional term acts similarly to PAST [144], the integral term acts like a SMAy
and the derivative term expects the coming change in utilization to be the same as

the difference between the previous two utilization samples.

Proportional difference (PD): this is one of the old and traditional control theories,

which estimate the change concerning the direction of a slope [160].

u) = uly + Kp. (1—uy) +Kp. (1 —uy) — (1 —ul,)) (2.10)

1

Here, Kp and Kp are the weights of the corresponding term similar to the previous
technique.

State Selection: These kinds of algorithms, uses the simple PAST [144] methods
for utilization prediction and are commonly seen in the operating system’s
computing environment. Typically, state selection algorithms are divided into three
categories as listed in the following section and differ in the formula used for state
selection.

powernowd: This algorithm was developed by John Clemens [161], which is a very
simple algorithm used to adjust the CPU performance state based on the CPU
utilization ratio. For state selection algorithm establishes the high and low
thresholds to trigger a step either from a low-performance state to a high-

performance state or vice versa. Therefore, the selection of threshold value

Page | 37

becomes important but there are no formal guidelines available on selection of
threshold value and typically an end-user tune these values empirically according
to their workload.

e (CPUSpeed: This algorithm was developed by Carl Thompson [162], which can be
found in many LINUX platforms like SUSE Linux 9.3 or later and Fedora Core 4.
This is a part of every Dell PowerEdge server and is known as “demand-based
switching.” The state selection method is very much similar to powernowd and
considered as more conservative because it often uses high performance states.

o ondemand: This algorithm is also a part of Linux kernel [163] and in its very
earlier versions algorithm reduces CPU frequency at minimum steps of 5% of peak
frequency whereas in recent versions it is changed and it looks for lowest
frequency that can sustain the load by keeping idle time over 30%. Here, we can
say that the optimal frequency is the lowest frequency that can support the CPU

usage without changing the policy.

2.9 DESIGNING POWER-EFFICIENT ARCHITECTURES

The improvement in the architecture of single-core CPU performance has been slowed
down significantly because of the power wall and computer architects started targeting
alternative architectures to improve the CPU performance per watt. The path to power
efficiency can go through cutting transistors from performance-enhancing hardware
structures that do not contribute to the performance in proportion to their power
requirement, whereas on the software side, most of the performance is achieved by
manual coding, auto-tuning, and to a lesser extent by automatic code generation. A
power efficient architecture could provide the support for vector processing and

carefully written code can directly exploit the power of these architectures.

The difficulty of writing codes to power-efficient architectures is due to the burden put
on the software developer to manage all aspects of code optimizations that affect the
performance. For example, the developers need to understand the essential memory
operations required to manage the memory transfers and need to express the parallelism

in an explicit manner in the software.

Page | 38

2.9.1 Programming approaches for power efficient architecture

The code development productivity, portability, and efficiency are very critical issues
the success and the survival of any architecture. There are various programming
approaches that can be used with accelerator based architecture but there are some

difficulties and limitations associated with them. These approaches are discussed as:

A) Code generation
Recently, a lot of research work is performed on code generation for accelerators to
utilize their potential performance as well as their efficiency. Code generation can
be done manually [164-171] or this can be an automated process [172-175] or by
searching large optimization space [176-177]. Manual code rewriting has shown
best potential of accelerators for scientific computing.

B) Autoematic code migration
This code migration has been successfully prototyped to the various accelerators at
the functional level by multiple research projects and commercial compilers like
IBM Watson [175], PGI Compiler [178], CAPS Enterprise [179] and CellSS [180].
O’Brien et al. [175] demonstrated the difficulties, which is be faced by the
automated compilation process. Some compliers do not provide fully automated
process like CellSS compiler relies on manual data layout. Automatic code
migration of legacy code to GPUs [173, 174] is somewhat more successful because
of large memory of GPUs.

C) Autotuning
This is another approach to achieve the best performance for a wide set of
architecture. It usually requires an expertise beyond that is needed for code
optimization, because it demands good knowledge of optimization space, good
heuristics to search the optimization space and ability to produce the various
variants of the same code. These complexities are addressed by auto-tuning
libraries like ATLAS [181], Spiral [182], FFTW [183], and OSKI [184] but they

are not targeting newly emerging power-efficient architectures.

Page | 39

2.10 CONCLUSION

In this chapter, we have focused on the various techniques required to minimize the
energy consumption by the computer systems. Various discussed techniques, which
varies from hardware centric to software centric techniques and is easy to implement as
well as flexible too. We have discussed the case of Microsoft Windows power schemes
as it is one of the most popular operating system presently in the market, and showed
the various drawbacks of its power schemes. Power saving modes defined by these
schemes consumes the 3W — 15W of energy in these modes, which is critical from
energy saving point of view. Power measuring and profiling has already been studied
extensively and more work is being performed to improve the power profiling
techniques and various discussed techniques in this chapter, is very useful in power
aware system design. From the various discussed approaches like Simulation based,
hardware and software based, latter two approaches are getting more attention in this
direction. In the future, the operating system should supply a module for power
profiling and supply configurable accuracy. We have presented the general view of
DVEFS scheduling algorithms for energy-aware computing and these algorithms have
been characterized with three design issues: the abstraction of CPU utilization, the
prediction of the trend in CPU utilization, and the association of the voltage and
trequency values with CPU utilization. We have also discussed the utilization based

CPU utilization ratio as it present various algorithms to predict the CPU behavior.

We have discussed about the power efficient architecture which can be achieved using
custom designs or heterogencous architectures with specialized accelerators. The
potential challenge in designing the power efficient architecture is how to program them
in a productive way and the wide adoption of these architectures relies heavily on how

to automate porting legacy code to these architectures.

Page | 40

ENERGY SUSTAINABLE FRAMEWORK

3.1INTRODUCTION

The energy consumption and sustainability of the computing systems is an highly
demanding area of researchers and scientist [185, 186]. According to the IEA, the
energy used by computer systems and consumer electronics will be increased threefold
by 2030. Even with the improvements foreseen in the energy efficiency, consumption
by electronics in the residential sector is set to increase by 250% by 2030 and most
likely will become the largest end-use category before 2020, unless effective steps are
taken [187]. Therefore, the fundamental challenge for successful implementation of
“ereen computing” is to understand and then balancing of the energy efficiency with
system performance as well as application performance. The development of models
and interfacing of systems software like operating systems, job schedulers are highly in
demand today. In a typical computer system, to reduce the energy, the operating system
based ACPI [43-45, 135, 139, 140] sets the display to low power-modes after specified
periods of the inactivity on the mouse and keyboard. The ACPI efficiency strongly
depends upon the inactivity intervals set by the users. However, understanding of the
user-application behavior and their interactions with machine subsystems and other
applications continues to be under development. As a result, standardized interfaces
between the machine, its subsystems, and its operating environment do not yet exist.
The operating systems measurement tools like NWPerf as discussed in [188] are
designed to report metrics of the interest to system developers and administrators on a

global view of the system behavior.

Recently, sustainability-based approaches have received a very high response when
designing any energy-saving approach. These types of approaches directly focus on the
environment and categorized under sustainable computing aspect. This section lists the
various energy-sustainable approaches developed by various researchers over time.

Wang et al.[189] investigated the existing power models by re-evaluating on multi-core

Page | 41

computer systems (MCSs) and proposed a two-level power model that estimates the
power consumption for each core on MCSs. Moreover, based on this model, authors
designed and implemented a software power analyzer by using only one performance-
monitoring counter and frequency information from the CPUs to identify the power
behavior of MCSs. In [190], Chen et al. have investigated the adverse effects of
dynamic voltage and frequency scaling by running a virtual machine over system
performance, using energy conservation methods in server consolidation. In [190],
authors also proposed a new application-aware approach by introducing a new set of
metrics CPU gradients, which predict the impact of changes in CPU frequency.
Proposed gradients are simple models and represent the local point derivatives of the
end-to-end response time with respect to the resource parameters. They later used these
CPU gradients for the performance-aware energy conservation by deploying energy
controllers. Naumann et al. [191] have addressed the consumption of power and
resources by ICT and presented a software-based model of GREENSOFT. This model
addresses the issue of energy reduction and resource consumption in ICT and the use of
it to contribute to the sustainable development. Chen et al. [53] relied on operating-
system-level power-saving strategies to minimize the energy consumption of computer
systems and introduced the concept of process-level power management in their tool
pTopW. This tool captures the real-time power-consumption data at the process level to
make critical power-saving decisions. They then introduced a power-aware system
module called Energy Guard, which is used to terminate the abnormal behavior of an

application to curb energy consumption.
3.2ENERGY AND POWER CONSUMPTION MODELING

A general way of representing a power model of a system is expressing the relationship
between the serviced workload and power consumed by servicing it, which is shown in
Fig. 3.1. Despite the elegance of this definition, there is the fundamental question to
know about the “workload intensity.” However, the workload intensity known as
different measures depending on the system context. A common power model of
computing equipment is the power consumed over the system utilization. As we know
that system consist of many components, like HDDs, memory, peripheral devices, and
CPU, so the system utilization could be a multidimensional quantity. Hence the

conventional way of representing system utilization with a scalar value is to use CPU

Page | 42

utilization level as shown in Fig. 3.2 about CPU utilization, we have also discussed in
previous chapter in DVFS section and we have observed that various algorithms are
designed to find the CPU utilization ratio. Power versus utilization is the standard way
of profiling the power consumption of a system. Until recently, systems showed near-

linear power consumption with respect to utilization which is also observed by several

research studies [192-194].

A

Power Consumed

Workload Intensity

Figure 3.1: Relationship between the workload intensity and power consumption.

Power Consumed
Power Consumed

System Utilization CPU Utilization

(@ ()

Figure 3.2: Power consumption as a function of utilization such as: a) System utilization and by CPU
utilization.

Page | 43

Typically, a CPU’s power consumption increases linearly with its utilization. However,
the idle power (starting point of this linearity) accounts for a substantial portion of the

peak power. Fig. 3.3 gives a typical model of CPU power over utilization.

100

Power Consumption (%)

0 100
CPU Utilization (%)
Figure 3.3: Power consumption (%) with CPU utilization.

The power consumption P, at any specific CPU utilization in (%) can be calculated as:

By = (Poeak — Patte) 7oz + Puate 3.1

where:
Pyegr 18 the maximum power consumption at full utilization.
P, 41 is the power consumption when CPU is at the idle state.

In various CPUs, the idle power may be up to 50% of the peak power, resulting in
serious energy inefficiency, particularly, when the computation workload is low. To
save idle power, CPU can be commanded to enter a low-power mode known as C-state.
Modern CPUs have several power modes, from halt to deep sleep and even deep power
down. Therefore, this advancement in the CPU power management saves more energy
because the clock signal and power to idle units are cut inside CPUs. The more units are
stopped, the more energy is saved, but the more time is required to wake-up a CPU to

be fully operational. For example, with the new technique C6 known as ‘deep power

Page | 44

down’ state, a CPU’s internal voltage can be reduced to zero [140]. The wake-up time

trom C6 state is much longer because it does not preserve the CPU context.

The power performance function gives a simple relationship between CPU power and
supply voltage or frequency. However, CPUs are not the sole component consuming
energy. A substantial part of the power is also used by memory, disk, and other
peripheral devices, which does not change with supply voltage or frequency of the
CPU. Therefore, the total load of a system can be modeled in two ways: 1) the power of
CPU that can be adjusted by supply voltage and, 2) constant power consumed by other

components, which is show as follows:

Pioga = (R:pu + Pcanst) (3.2)

This is the amount of power consumed when the system is under load. Here, P, is the
capacitive power of CPU and known as power consumption of a CMOS-based CPU,

defined as the summation of capacitive, short-circuit, and leakage power. This can be

defined as:
Py = ACVEf (3.3)
and
;e (k(V - Vt)z)
%4
where:

A is the number of switches per clock cycle,

C is the total capacitance load,

V is the supply voltage,

f is the frequency that is roughly in proportion with V,
k is the constant of circuit, and

V, is the threshold voltage.

Page | 45

Therefore, the amount of power consumed is:
Pload = (Pcpu + Pconst) = ACsz + Pconst (35)

For the power at idle time, we assume the idle power of CPU can be ignored because of
the effective power-saving C-state, and the power decreasing in other components like
memory and HDDs is also ignorable compared to the total idle power on the system

board. So, the idle power of the system can be estimated as follows:

Paie = Peonst

Based on the aforementioned functions of load power and idle power, we can calculate
the energy efficiency of the servers under different CPU supply voltages or frequencies.

We can consider two resource usage scenarios for the proposed model.
1) When shutdown of system is not feasible to save power in idle time. For a given

computation work W, we assume

Tco mputation

v
f

Then, for certain time duration T under consideration, the idle time
Tige =T — Tcomputatian
The energy consumed during time T is:
E= Pload Tcomputation + Pidle Tidle
= (Pcpu + Pconst)Tcomputation + Pcanst (T - Tcomputation)

= Pcpu Tcomputation + Pconst T

=ACV?W + Pope T (3.5)

From the Equation (3.5), it is seen that by reducing the CPU supply voltage, the energy

consumption can be minimized.

2) We assume that the systems can be put into a deep sleep or even shutdown when
idling, especially when the cost of the wake-up is relatively negligible compared
with the total response time. Here, the idle power consumption is saved by shutting

down the energy consumption is [2, 59, 75, 101]:

Page | 46

E= P[oad Tcamputation
_ (Pcpu + Pconst)W
f
=ACV2W+W (3.6)

The energy consumption in this function includes two parts: CPU power that increases
with the square of supply voltage and consumed by other components during the
computation time, which increases inversely with CPU frequency. This shows that
when the CPU voltage is scaled down, less energy is consumed by CPU however more

is wasted by the components.

3.3USER CENTRIC ENERGY MANAGEMENT

Precise and detailed monitoring of the user activity is the basis for continuing to
improve the performance and energy efficiency of computing systems. Understanding
the user interaction provides valuable information about which resources is needed
ahead of time. This leads to the performance optimizations such as better resource
allocations for applications that can utilize a given resource more productively. The last
optimization refers to the situation where the device is turned-off to reduce the more
energy consumption. Energy efficient design requires systematic optimization at all
levels of the design abstraction, from the process technology and logic design for
architectures and algorithms. There are various static techniques applied during the
design phase at the algorithmic level — strength reduction [195], algorithmic and
algebraic transformation [196, 197], and retiming [198], at architectural level —
pipelining [199] and parallel processing [200], and at logic level — logic minimization
[201, 202], pre-computation [203], circuit [204], and technology [205]. An alternative
approach is to adjust the system operation and energy consumption to application
workload dynamically, that is, during the system operation and various methods like:
application-driven system reconfiguration [206], dynamic voltage-frequency scaling

[207], energy-quality scaling [208, 209] and network driven optimizations [210].

Despite differences, these dynamic methods exploit the same idea, namely, to keep the
system in the lowest power mode whenever there is no activity input, and activate the
system whenever the input signals change. To implement the idea, the system

incorporates an extra unit that constantly monitors the input activity or workload and it

Page | 47

determines the new operational mode for the system, as shown in Fig. 3.4(a).
Depending on the application, the workload can be measured by different metrics like
the average rate at which events arrive at processor [209] and idling time per sample
interval [207-211]. However, it is not always possible to make correct predictions due
to the peculiarities of application, operational environment, and/or user demands, which

are varying with time.

Activity Activity
Monitor Monitor
Operation Mode Operation Mode
System [—— System [——»
Worldoad Workload
(@) User) User

Figure 3.4: Energy management schemes for (a) existing system and (b) proposed system.

In general, there are two sources of energy losses in a device: intrinsic losses and user-
related losses. The intrinsic energy losses are normally caused by the engineering
design, technology, and materials used in construction of the device. However, the user
related losses are associated with varying and inefficient usage of devices. For example,
keeping a television set on when nobody watches it or leaving a computer system
running cause to energy losses associated with improper use of the device. Existing
energy management policies are device centric that is either ignores the user, assuming
unchangeable operational environment for the device, or rely on very simplified
policies, which causes to large energy losses. Therefore, it is clear if one want to reduce
the energy losses then the device energy management must be user centric, means
adaptable to varying user behavior [212, 213] as shown in Fig. 3.4(b). In the next
section we have proposed the user centric approach to energy management, which
monitors not only the system workload but also the user behavior and the environment.
The main idea of the proposed approach is to extend the controller functionality to
monitor the demands on system operation imposed by the user and adjust the system

performance for the variation in these demands.

Page | 48

3.4 PROPOSED ENERGY SUSTAINABLE FRAMEWORK

This section discusses the proposed energy sustainable framework of power schemes

for Windows Operating Systems, which is developed as a tool known as Green Power

tool (GP tool). This framework is shown in Fig. 3.5 and starts its functioning with the

execution of power saver module [214]. This power saver module starts as a local

services of the Windows Operating System and prompts the user to input the

approximate time also known as login duration of working on the computer system. As

soon as the user inputs the value of login duration, it is utilized by three major modules

of proposed framework that is power-saver main window, duration, and calculate CPU

usage.

Execution of
Powersaver
Module

Power saver
On Action _DMain
] 11 S -]
Window
N\ Endof
Timer
Input On Action
Login ‘L
Duration FM—3>{ Duration
Repofitory
i D ShutDown/
Hibernate
S Calculate
CPU Usage

Figure 3.5: Framework of the proposed power saving scheme.

Here, the power saver-main window represents the Graphical User Interface (GUI) of

proposed GP tool whereas further two modules are very much concerned about the

Page | 49

implementation of the proposed algorithms to minimize the power consumption by the
computer systems. Proposed algorithms are implemented as two different modes known
as: 1) Swift Mode and 2) Exhaustive Mode, which is part of GUI as shown in Fig. 3.6.

These two modes are different in their functioning.

Add Software rcntegury rprol:emes runemtiuns rmnde |

Figure. 3.6: GUI implementation of the proposed algorithms.

In Swift Mode, let us considers the time of user login-duration and computer system
continues its working till the time of login-duration comes to its end. Once the time
login-duration reached to its end, user of computer system notifies about that by
prompting a window asking, do you want to continue your work? By doing so, one can
found the availability of the user on the computer system. If user is there and wants to
proceed their working, they have to enter a new time value of login duration otherwise
proposed energy sustainable framework will switch the computer system to shutdown,
or hibernate mode based on the various running application software’s and repository

configuration.

The functioning of Exhaustive Mode is very much different with the Swift mode. In this
mode, we considered the time of login-duration as well as monitor the user activity

continuously on the computer system by calculating the total CPU usage of that

Page | 50

machine, which puts another check for minimizing the power consumption of the
computer system. If it is found that the total CPU usage of the computer system is zero
or below the user-defined threshold value and compares the defined number of
snapshots for ensuring that in each consecutive snapshot of total CPU usage is below
the defined threshold value, then only the computer system automatically switches to
shutdown, or hibernate mode, irrespective of what time is input by the user during the
login-duration. The snapshot of the total CPU usage is taken at each minute. Therefore,
this mode provides better way of energy sustainability by the proposed framework. In
this framework, we have used the concept of repository that provide the uniqueness to
proposed GP tool and keep the record of various installed application software’s on the

computer system into two categories, losable and non-losable, as shown in Fig. 3.7.

Figure 3.7: Repository of losable and non-losable software’s.

This repository is used by the shutdown/hibernate module to switch-off the computer
system while making the decision by the proposed framework. Here, if it is found that
any software running from the lossy category means that there is every chance to lose
the user data while making energy-sustainable decision then the proposed framework

switch the computer system to the hibernate mode otherwise it gets shutdown.

Page | 51

3.4.1 INTERNAL VIEW OF THE FRAMEWORK

This section describes about the internal view of proposed framework that includes the
details on various packages, JAVA files, major classes, methods and inter-dependency
of the packages. This internal view of the framework focuses on the five different
packages connected with each other, details of each package, major classes, and

methods detined are given below:

1) PowerSaver package
This is the main package of proposed framework and various other packages are
dependent on this. This package consists of single JAVA code file that calculates the
screen size and pop-up the window of login-duration in the middle of the screen as

shown in Fig. 3.8.

o |

Figure.3.8: User prompt to input login duration time.

2) org.juitw.visual package
This is the second next invoked package that consists of number of JAVA program files
with number of classes defined in it. These program files are used to capture the login-
duration from the user of the computer system to pop-up the main power saver window
and an inner timer thread starts in sleep mode which checks for the expiry of the login-
duration time. This package is also responsible to measure the percentage of total CPU

usage that is utilized by the exhaustive mode.
3) org.juitw.timer package

This package consists only JAVA program file that stores the login-duration time
entered by the user and when it get expires a pop-up message get invoked and also
starts an inner-timer thread of fixed duration of one minute, to get response from the
user. When no user activity is found on the computer system, a process that collects the

details of all running applications on the system gets started and performs a check on

Page | 52

repository with the collected details for making a decision whether to shutdown, or

hibernate the computer system.

4) org.juitw.process.collector package
This package consists of the number of JAVA program files that implements some
important methods for the proposed framework of power scheme. Here, CPUInfo.java
is used for fetching and displaying the CPU information, for example, in this
tramework we have used its percentage, CalculateCPUUsage.java declares the number
of methods, out of which there is one method ereateTimer() that takes input from the

tollowing configuration files:

¢ mode.config which is responsible for checking the running mode of proposed
tframework for power scheme. There are only two modes, swift and exhaustive, for
the proposed framework of power scheme.

e custom.config this file is basically used to store the value of threshold and snapshot
timing in minutes in the form of {20, 1} and is used by the exhaustive mode. Here,
20 refer to the threshold value for total CPU usage and 1 refers to the interval of
snapshots in minute. These are the user-defined values, as shown in Fig. 3.6, and
can be defined according to the user’s requirement. For better energy efficiency,
power-saving and management of computer system, it is suggested that the
threshold value should be kept always less than or equal to 20, and number of
snapshots must be collected for time interval greater than 1 minute whereas,
ProcessCollector.java program file is used to store the value of the various running
application programs on the computer system.

5) org.juitw.process.bean package

This package declares only the class about the ProcessBean and its various attributes

like pid, processname, memory, on behalf, and status. The defined class is just a

collection of various getter and setter methods for various declared attributes in the

proposed framework.

6) org.juitw.actions package

The role of this package is to include various execution files to the repository of the
proposed framework. This package includes two JAVA program files, firstly,
SimpleFileFilter.java, which is used to create a filter for various exiting files inside the

folders and secondly, program files SimpleFileView.java, which is used to show the

Page | 53

various filtered executable files with an extension .exe from various folders to the user

of the computer system and adds it to the repository.

Figure.3.9: Package dependency diagram of the proposed framework.

This internal view of the proposed framework of the power scheme also represents the
package dependency diagram of various packages in which they are used in the
proposed framework as well as connectivity of these packages with various other

packages used as import line in the respective program file as shown in Fig. 3.9.

Page | 54

Table 3. 1: Detailed view of each package and JAV A program files.

S. | Source Packages Files Line of Lines with

No Code Import

1 Power Saver PowerSaver java 35 4
Category.java 157 3
CurrentProcessPanel java | 67 2
Customization.java 309 4

2 | orgjuitw.visual LoginDuration.java 195 13
PowerSaverMainWindow. | 821 18
java
ProcessTableModel. java 74 4
SimpleFlleFilter.java 54 2

3 org.juitw.actions
SimpleFileView java 34 4

4 | org.juitw.timer Duration.java 173 17
CPUlInfo.java 62 6

5 | org.juitw.process.collector | CalculateCPUUsage.java | 173 17
ProcessCollector.java 116 7

6 org.juitw.process.bean ProcessBean.java 72 0

Table 3.1 gives the detailed overview of the discussed packages and details about

JAVA program files in them.

3.5 COMPARISON OF PROPOSED FRAMEWORK WITH
EXISTING POWER SCHEMES

For detailed comparison of working of existing power-scheme in Windows Operating

Systems with proposed user centric energy sustainable framework of the power-

scheme, we have compared the working function of both above discussed Switt mode

Page | 55

and exhaustive mode with the functioning of existing scenario that available in the

windows power scheme [214].

3.5.1 Existing Scenario of Power Scheme in Windows Operating System
This scenario represents the configuration of existing power scheme in Windows

Operating Systems. In this existing scenario of power scheme the user has performed
various settings, as given below, to minimize the power consumption by the computer

systems.

Turn-off meniter/display = after 30 minutes
Turn-off hard disks = after 30 minutes
System standby/sleep = after 30 minutes
User works for 2 minutes and leave the

computer system inactive.

Using the above scenario as defined by the user, system will start power-saving only
after the 30 minutes of inactivity of computer system. The drawbacks of this setting are

as follows:

a) The settings are very much system-oriented and are based on time-out approach
defined for various devices. There is no provision that detects the human activity
on the system.

b) The existing power scheme starts its functioning only after 30 minutes of inactivity
of keyboard and mouse, whereas user works for only 2 minutes.

c) After the inactivity of 30 minutes the computer system will be switched to sleep
mode. In sleep-mode computer system also consumes small amount of power and
consumption varies from computer system to computer system based on their
configuration.

3.5.2 Comparison with Swift Mode

We have compared the scenario of existing power scheme as stated above with the

Swift mode of the proposed framework of power scheme. The ounly setting implemented

by the proposed tramework for this mode is given below:

Page | 56

Login-duration =10 minutes

User works for 2 minutes and leave the

computer system inactive.

In Swift mode, user has to input the login duration just after the login to the Windows
Operating System. This framework gets the user consensus during the login to the
system about the user’s working on the computer system. This nature provides the
interactive and dynamic environment to proposed framework. Here, the user has
consensus that he/she will work only for 10 minutes, but due to some reasons he/she
leaves the computer system inactive after 2 min. of time. The comparison observations

with the existing power schemes are as follows:

The existing power scheme scenario, which is more static in nature, each time user has
to change the power scheme settings if he/she wants to work less than the defined

period in power scheme.

a) Though it is possible but irritating too, as most of the time users are not concerned
about the configurations in these power schemes.

b) For users, it is difficult to memorize the various time interval values defined in the
existing power scheme as these values are defined once and used forever.

¢) Proposed Swift mode overcome from the disadvantages discussed in (a) and (b),
one does not need to worry about the various time intervals values.

d) This mode offers more than 66% of power-saving over existing power scheme
scenario.

3.5.3 Comparison with Exhaustive Mode

Here, we have compared the scenario of existing power scheme with the exhaustive

mode of the proposed framework of power scheme. The various settings of this mode

are given as below:

Login-duration = 10 minutes
CPU usage (threshold) = <20
Number of snapshots= 2

User works for 2 minutes and leave the computer

system inactive.

Page | 57

When compared to the Swift mode, the exhaustive mode needs to be configured once
trom user side with minimal setting parameters like the threshold value of total CPU
usage and number of snapshots to be compared before taking any decision of
hibernate/shutdown the computer system. The comparison observations of exhaustive

mode with existing power schemes and Swift mode are given below:

a) The scenarios of exiting power scheme, where there is no power-saving up to 28
minutes and for Swift mode this time reduces to 8 minutes by knowing the user
consensus during the start up of the computer system.

b) In exhaustive mode, we have tried to minimize the outstanding time of Swift mode
for more energy saving.

¢) The exhaustive mode will switch the computer system to hibernate/shutdown mode
after 4 minutes of time interval and offers more than 93% of power-saving over
existing power scheme.

It is assumed that the user is not available on the computer system after the working of

’

2 minutes, therefore various prompts like “Are you available on the system...” or “Your
login duration is expiring very soon, want to enter new time value...” invoked by the
proposed framework of power schemes to check the user activity on the computer

system gets expired after a certain period of time
3.6 CONCLUSION

To reduce energy consumption of the electronic systems as well as personal computers,
however, represents the biggest challenge that designers will have to face in the next
decade according to the SMART2020 report [215]. Therefore, new technologies that
would transform energy used by the electronic systems such as personal computers,
televisions, and personal media gadgets etc. all these systems are user centric as they
receive inputs from the user and deliver services to them. For doing so, various works
are being done by the researchers/scientists to find the new techniques for the energy
management. In this chapter, we have discussed the discrepancies of ACPI as it is
mostly used in the computer systems for energy management and presented the energy

and power consumption model build on CPU utilization of the computer system.

We have also focused on the need of user centric framework for energy management of

the computer system which monitors not only the system workload but also the user

Page | 58

behavior and presented an energy sustainable framework for the power schemes of
Windows operating system. This framework is very much user centric as during login
to the system it tries to know the user consensus by knowing the approximate user’s
work time on the machine and implements the two different modes of working for this
tramework. The main objective of this framework is to structure concepts, strategies,
and activities to design an energy-sustainable power scheme. This framework is useful
tor both the desktops and laptops. The unique characteristic of this tool is that it

required minimal input and calculations for saving energy.

In this chapter, we have compared the functioning of existing power profile with the
proposed user centric energy sustainable framework and that the proposed modes, Swift
mode and Exhaustive mode detects the human activity on the computer system in an
effective manner. It is based on the time value supplied by the user during login to the
system. We have also obtained that Swift mode provides more than 66% of energy
saving and exhaustive mode provides more than 93% of energy saving over the existing

power scheme in operating system.

Page | 59

ENERGY SUSTAINABLE ALGORITHMS

4.1 INTRODUCTION

The main objective of power management systems is to reduce the energy consumed by
electrical devices while maintaining a satisfactory level of the performance. Research
on effective power management methods has intensified in recent years and energy
consumption is now emerging as a dominant performance measure in the computer
systems, rivalling the running time. To design an energy efficient computer system will
ultimately require the development of fundamental frameworks, algorithmic techniques,
and principles that can be used to guide practical solutions. Most of the algorithms-
related research on the energy-efficient computing has been focused on task scheduling.
These energy conservation techniques explore the opportunities for tuning the energy
delay trade-off [216]. In one of the pioneering paper, Weiser et al. [143] first proposed
the approach to energy saving by using fine grain control of CPU speed by an operating
system scheduler. The main idea is to monitor the CPU idle time and to reduce the
energy consumption by reducing clock-speed and idle time to a minimum. In another
work, Yao et al. [144] analyzed offline and online algorithms for scheduling tasks with
arrival times and deadlines on a single processor computer with minimum energy
consumption. These research studies have been extended in [217-221], most of them
tocused on real time applications namely, adjusting the supply voltage and clock
frequency to minimize the CPU energy consumption while still meeting the deadlines
tor task execution. In other works [149, 222-232], authors have addressed the problem
of scheduling independent or precedence-constrained tasks on single processor or multi
processor computers where the actual execution time of the task is less than the
estimated worst case execution time. In computer systems, low power and energy
efficient design techniques, and algorithms aim to minimize the energy consumption
while still meeting certain performance goals. In [233], Barnett has studied the

problems of minimizing the expected execution time given a hard energy budget and

Page | 60

minimizing the expected energy expenditure given a hard execution deadline for a
single task with randomized execution requirements. In [234] Bunde, has considered
scheduling jobs with equal requirements on multi processors. In [235] Cho and
Melhem, studied the relationship among parallelization, performance, and energy
consumption, and the problem of minimizing energy-delay product. In [109, 236],
authors have attempted joint minimization of energy consumption and task execution
time. In [112], authors have addressed the energy- and time-constrained power
allocation and task scheduling on the multiprocessor computers with dynamically
variable voltage and frequency, speed, and power as combinatorial optimization
problems. On the other hand, number of studies in [112, 220, 221] have added a new
dimension to the voltage scheduling problem, by considering energy-saving
opportunities within the task boundaries. Here, the operating voltage of the task is
dynamically adjusted according to the execution behaviour to accurately retlect the
changes in the required number of cycles to finish the task before the deadline and also
referred as intra task voltage scheduling. Some communities of the
researchers/scientists have worked on various algorithms to minimize the power
consumption by a computer system and its peripheral devices like CPU, HDD. These
algorithms are Back-off algorithm [237], PowerNap algorithm [238], Power-scheduling
algorithms [239-242], SoftWatt [82], and Power—aware algorithms [112, 243, 244].

4.2 PROPOSED SWIFT MODE ALGORITHM

This section represents an algorithm implemented for the discussed scenario in chapter
3 of Swift mode and used for collecting the data for analysis and result purpose [214].
The proposed algorithms initialize the variables L, M and X in step 1 and starts a two
timer threads T1 and T2 into sleep mode in step 2. These timer threads represents that
the user has logged into the system and input the value of login duration into the
proposed framework of power scheme. In step-3, the working mode M from the two
available modes Swift and Exhaustive is selected. In this case, the mode is Swift. The
selection of mode is part of user configurations and selected or changed when user
wants to switch the mode. Next step-4, is a major step and used for switching the
computer system into hibernate or shutdown mode once the time of login duration gets

expired.

Page | 61

Algorithm: Pseudo code for Swift mode

Symbols used in this algorithm:

1) L - The total login duration time
ii) M - The mode of operation
iii) X — The sleeping time
iv) n - Extra time regquired if any
V) T1 and T2 — Timers
Step — 1: Initialize variables

Step

Step

ITnitialize L, M and X

L € Take the input from the user during login to the

system.

M € Take the value from the configuration file set by

the user.
X €& The sleeping time of a thread.

- 2: Start of Timers
Starts two timer threads T; and T/
T;: expires after L x 60 x 1000 ms

Ty: expires after each 1 x 60 x 1000 ms and

for X time.

— 3: Mode Selection

Selection of Mode M) :
IF M == Swift then

X €L x 60 x 1000
ELSE

X € 1 x 60 x 1000

sleeps

Page | 62

Step — 4: Functioning in Swift mode
When T; expires

a) Cancel T,
b) Invoke user prompt to find user availability on the
system
c) n €& input extra time.
d) Starts a thread T;. T; will expires after 1 x 60 x
1000 ms.
e) After 1 x 60 x 1000 ms
IF n = = 0 THEN check any losable program is running
(check with repository)
IF yes
HIBERNATE the computer system
ELSE
SHUT DOWN the computer system
END
ELSE
GO TO STEP (1) with
L€ n

4.3 PROPOSED ENERGY SUSTAINABLE SNAPSHOT
TECHNIQUE

As discussed in the chapter 2 to minimize the energy consumption, there are various
approaches, which is used to minimize the energy consumption of computer systems. In
the proposed energy-sustainable snapshot algorithm (ESSA) [245], if there is any work
or processing being performed on a computer system, the CPU of the system must be in
use, in which case the percentage of total CPU usage should be greater than zero,
otherwise, it should be equal to zero. In [11], Gupta et al. also suggested that a

processor not performing any operation can be kept in sleep or hibernation mode to

Page | 63

reduce the energy consumption of the system. The proposed framework is shown in

Fig. 4.1 and is a part of the GP tool.
4.3.1 ESSA framework

This proposed energy-sustainable snapshot technique takes input from various sources.
First, in the form of a configuration file that is created just after the installation of the
GP tool, the user has to define the value of the snapshot time and its threshold limit.
These values are stored in a configuration file and overwritten in the file in case the user
makes any changes in the future. The threshold value represents the percentage of total
CPU usage, which should be kept at its minimum—that is, either less than 20 or less
than 10, this increases the accuracy of the technique, which occurs when very few
application processes in addition to system processes are running on the computer
system. Second, input is also taken from the user when logging in to the computer
system, the user must select the roughly estimated time he/she will be working on the

computer system. Thus, it follows:

Snapshot time (S) < Total login duration (L) 4.1)

Divide into »
Snapshots Divide

Fetch Store

NO
check I Check

|
NO

Figure 4.1 Framework of the energy-sustainable snapshot technique.

User

If any difference is found, then the proposed technique will consider the total login

duration (L) as the snapshot time (S). In the next step, the total login duration (L) will be

Page | 64

divided equally into small chunks of snapshot times S, 28, 3S..., nS. This value is

determined as follows:

Total number of chunks of snapshot times = |[Totallogin duration (L) /

Snapshot time (5)] (4.2)

For example, if a user inputs a total login duration L= 15 minute and the value of the
snapshot time defined in configuration file S = Sminute, according to Eq. (2) there will
be only 3 chunks of snapshot times, S = 5 minute, 2S = 10 minute and 3S = 15 minute.
This shows that after each interval of 5 minute the total CPU usage will be checked. In
the next step, to increase the accuracy of the system’s decision, we have included the
concept of energy-sustainable snapshots for the percentage of total CPU usage after
each interval of time (X), which is also known as the sleeping time within a given chunk

of snapshot time (S).
X=S8/n (4.3)

Here n represents the total number of CPU usage (%) snapshots in each chunk. In the
proposed technique, the value of X is 1 minute, which means that after each 1-minute
time interval the percentage of total CPU usage will be stored in an array. These stored
values are compared with the predefined value of the threshold. If it is found that the
percentage of total CPU usage consumed by all processes running on the system is
below the defined threshold value, as shown in Fig. 4.2(a), which indicates that the user
is not actively working on the system or very few processes are running on the system,
then the proposed technique will make its decision accordingly to minimize the energy
consumption. Furthermore, if it is found that the percentage of total CPU usage exceeds
the threshold value in any interval of time for a given chunk, as shown in Fig. 4.2(b),
which means that the CPU of the machine is being utilized and therefore, the user or
some application processes are continuously working, the next chunk will be traced out
and the percentage of total CPU usage will be stored to determine the idle period of the
CPU. The decision to “Hibemate™ or “Shutdown” before the system goes-oft will be
completely based on the configuration of the repository and the various applications

running on the operating system at that time.

Page | 65

100

-

80~

-

o0~

;0

40 -

CPU Usage(%a)

3o~

| gy

] i | 1

Snapshot 1 X Snapshot 2 2X Snapshot 3 3X Snapshot 4 §
Snapshots of running processes with total CPU Usage at time interval X (sec.)

(a)

100

90

80

50

CPU Usage(%)

40

60 -

Figure 4.

Snapshot 1 X Snapshot 2 2X Snapshot 3 3X Snapshot 4 s
Snapshots of running processes with total CPU Usage at time interval X {sec.)

(b)
2 Snapshots of total CPU usage (%): (a) below threshold value and (b) above threshold value.

4.3.2 ESSA algorithm

This section represents the ESSA algorithm [245] implemented for the previously

discussed framework and used for collecting the data for analysis and result purpose.

The functioning of this algorithm is divided into three easy steps. Starting with the

various used variables in the algorithm, step-1 is associated with the initialization of &

Page | 66

T, S, L and A. In step-2, timer T1 and T2 gets started according to the value provided by

the user. Whereas step-3 is major step in this algorithm, which computes the total CPU

usage (%), store this value into an array and compares the array value for taking the

decision when to shut down or hibernate the computer system.

Algerithm: Pseudo code for ESSA

Symbols used in this algorithm:

vi) & - For CPU usages

vii) 1 - The threshold for CFPU usage
viii) S - The snapshot duration.

1x) L - The total login duration time
x) X — The sleeping time

xi) A — An array of CPU Usage

xii) T1 and T2 - Timers
x1i11) C - Counter
Step — 1:

Step

Initialize &, 1, s, S, L and A

T €Take the wvalue from configuration file which is
stored by the user while settings of power saver
module.

5 € Take the value from configuration file which is
stored by the user for comparing the various
snapshots.

S €& Take the value from confiquration file which is
stored by the user while settings of the power saver
module.

L € Take the input from the user during login to the
system.

A: creates an array of size s. C €0

- 2:

Starts two timer threads T; and Ts;

T;: expires after L x 60 x 1000 ms

Page | 67

Ty:
X time.

Step — 3

expires after each 1 x 60 x 1000 ms and sileeps for

IF T, expires THEN

a) X € 1 x 60 x 1000

b) Calculate £ €CPU (P;) + CPU (P2) + ouuuune... + CPU(Py)
c) AlC] € ¢
d) IF C — — 5 THEN

IF V A[0],A[1], ...A[s—1] < T THEN

Invoke user prompt to find user availability on the

system

IF any loss-able program is running, (checks

with repository)

HIBERNATE the computer system
ELSE
SHUT DOWN the computer system

ELSE

END

e) Increment C € C + 1 and T, should sleep for X (ms)

END
END

4.4 EXPERIMENTAL METHODOLOGY

To characterize the behavior of the proposed energy-sustainable snapshot algorithm, we

first describe the experiment setup used to verify the proposed algorithm. Then, we

have described about the experiment procedure and compared the various states of

computer systems with respect to the percentage of total CPU used by the various

running processes. This section describes the experiment setup and the evaluation of the

algorithm under the executed workload.

Page | 68

4.4.1 Experiment Setup

We have used a cluster of 15 machines to execute proposed algorithms and thus record

various snapshots of the percentage of total CPU being used during different intervals

of time.
Table 4.1 Cluster Configuration
Component S;::i:f;g:; Cluster of 15 machines
Manufacturer IBM Think centre
Make
Type Desktop
Name Intel Core i3 2100
Code name Sandy Bridge
No. of Processor 1
g; i Intel® Core™ {3-2100 CPU @ 3.10 GHz.
Package Socket 1155 LGA (0x1)
Technology 32 nm
Core Speed 1597.8 MHz
Stock Frequency 3100 MHz
Core VID 0.986V
CPU Max TDP 65W
Multiplier x FSB 16.0x 99.9 MHz
Number of Cores 2
Number of Threads 4
Instruction Set MMX, SSE (1.2,3,354.1,4.2), EM64T, VT-x, AVX
2x32KBytes, 8-way set associative, 64-byte line size
L1 Data cache
2x256 KBytes, 8-way set associative, 64-byte line
size
L2 Cache
1.2 Cache 3 Mbytes, 12-way set associative, 64-byte line size
Memory Type DDR3
Size 2048 Mbytes
Memory | Number of banks 1
Voltage 1.5V
Frequency 665.5 MHz
Size 320 GB SATA
Disk Manufacturer Seagate
Speed 7200 rpm

The experimental platform as stated above, we have used cluster of IBM Thinkcentre

desktops. Table 4.1 summarizes the configurations of cluster machines that is used in

Page | 69

this experiment to evaluate the algorithms. The simulated processors is Intel Core i3
2100 with core speed of 1597.8 MHz and stock frequency 3100MHz. The L1 data cache
is 8-way set associative, with size 2x32 KBytes, whereas the L2 cache size is 2x256
KBytes and L3 cache is 12-way set associative with 3 MByte size, for all the cluster
machines. The processors operate at voltages of 0.986V. The memory type is DDR3
with 2GB size, single bank and 665.7 frequencies for all cluster machines. The HDDs
used to store the percentage of total CPU usage data and for the performance evaluation

of cluster machines are from Seagate, measuring 320GB SATA and running at 7200
rpm.

4.4.2 Evalunation

We have used the software StressMyPC [246] for a thorough evaluation for the
proposed algorithms. This software is freely available on the internet and checks the
CPU and HDD of the system by executing some algorithms. We have used this
software on all the cluster machines and executed it so that the CPU could remain busy
for a certain period of time to determine the accuracy of proposed algorithms. The
snapshot time of the percentage of total CPU usage is recorded for each second in
chunks lasting one minute each. We also recorded the snapshots of the total CPU usage
when there was no process runaing on the system or when there was a process running
completely within the computer system’s memory and there was no or very limited
interaction with the CPU. NetBeans IDE 7.1.2 [247] was used to implement the
proposed algorithms. Then, using the profiler available in NetBeans IDE, we have
evaluated the performance of the proposed algorithm by monitoring the memory and
CPU. The results obtained from this profiling have been discussed in the performance

evaluation chapter.

4.5 RESULTS

This section describes the various results obtained after executing the proposed ESSA
algorithm in a real environment. We have used various scenarios—usage scenario-1,
usage scenario-2 and an internal scenario—to evaluate the ESSA algorithm. Usage
scenarios-1 and 2 also describe an environment that includes the system and operating
parameters. These usage scenarios have been executed on all cluster machines.
Specifically, we executed commonly used software and obtained the results for the

tollowing scenarios.

Page | 70

4.5.1 Usage Scenario 1

This scenario represents the idle functioning of all the clusters computer systems,
during which no work is carried out on the machines. The user must simply login to the
system and executes certain software’s, as per Table 4.2, and leave the system inactive
due to some unknown reason, which is the most common user practice. The running
computer systems not only consume power but also completely depend on the operating
system’s power scheme settings to switch the computer system into any power saving
mode as defined by power scheme. Thus, when the proposed ESSA algorithm can be
initialized, and the system could be powered off long before the determined power

scheme is implemented.

The results obtained tor the scenario described above are presented in Fig. 4.3 for all
the cluster machines. For L. = 20, S = 1 and r = 20, Fig. 4.3 is equally divided and
represent a total of 20 chunks of snapshots with lasting 60 sec. each for all cluster
machines. We recorded the various snapshots for the percentage of total CPU usage in a
file for each second. To gain greater clarity and to continue with experiment up to the
last moment of total login duration, we canceled the T2 timer whenever it was invoked
at the end of each snapshot. Thus, at the end of each minute, the final snapshot value of
the total CPU usage percentage was recorded, which is slightly higher than the previous
one because the execution of the timer event also increases the percentage of total CPU
usage. However, the peaks in the middle of each snapshot are only due to the various
processes running on the system. Therefore, if there the percentage of total CPU usage
is higher than the threshold value, then ESSA algorithm will check the next snapshot

and record the percentage of total CPU usage for each second in that snapshot.

Table 4.2 Usage Scenario 1

System Parameters Cluster of 15 Machines
Operating system 32-bit, Windows 7 Professional
Software executed by the user NIL

Total number of running processes 45

Status Idle

Operating Parameters for

Algorithm

Total login duration (L) 20 min.

Snapshot time (S) 1 min.

Threshold value (7) 20%

Page | 71

RIEN

B Threshold

Total CPU Usage (%)

R]
Time (Sec.) 200

Machines in Cluster

Figure 4.3 Total CPU usage (%) for idle computer systems in the cluster.

4.5.2 Usage Scenario 2

n 8
0

This scenario represents the active functioning of the cluster machines, which means

that there is a continuous pumping of data from the CPU side or instructions are being

continuously fed from the user side to the system, which keeps the CPU busy, this is

unlike the previous scenario, where user instructions were limited to the cancelation of

the T2 timer. To keep the CPU busy, we used the StressMyPC program with other

programs such as Microsoft Office and Internet Explorer. Table 4.3 presents the various

system and operating parameters under which the user logs in to the system.

Table 4.3 Usage scenario 2

System Parameters

Cluster of 15 Machines

Operating System

Windows7

Software executed by the user

StressMyPC (Nenad Hrg)

Total number of running processes

45 + 1 (StressMyPC)

Status

Active state

Operating Parameters for Algorithm

Total login duration (L) 20 min.
Snapshot time (S) 1 min.
Threshold value () 20%

Page | 72

However, change in the operating parameters observed, and the proposed algorithm is
executed under the same environment as it was in the previous scenario. Fig. 4.4
illustrates the results obtained for all cluster machines. The processing represented by
Fig. 4.4 is similar to that of Fig. 4.3, because we kept the operating parameters remain
same. The only difference from the previous scenario is that the CPU of all cluster
machines is actively involved in processing and we can easily notice that the percentage
of the total CPU reaches up to 80% in active state. Fig. 4.4 clearly shows that in the
active state for all the cluster machines average percentage of the total CPU usage
always remains above 50% during the execution of the program StressMyPC as this

program keeps the CPU busy all the time.

Total CPU Usage(%)

10+

5
o i

Time(Sec.) 100 &8)= Machines in Cluster

Figure 4.4: Total CPU usage (%) for active computer systems in the cluster.
4.5.3 Internal Scenario

This scenario represents the various results, obtained and used by the proposed
algorithm make the decision whether to keep the computer system running or not. As
we have seen in the previously discussed usage scenario-1 and 2, the percentage of total
CPU usage was recorded for each second in chunks lasting one minute each. In these
various recorded percentage of total CPU usages for each chunk, we focus ourselves on
the maximum recorded value of total CPU usage for the each cluster machines, so that

it could be find whether there is any peak of running processes in each snapshot chunk

Page |73

that breaches the defined threshold limit or not. Fig. 4.5 represents the maximum-
recorded value of CPU usage for each cluster machines, in each chunk of snapshot
respectively and compared with each other and totally based upon the value of snapshot

time S.

For the previously discussed usage scenario-1 and 2, we have considered the value of
snapshot time S = 1 minute, which means each chunk of snapshot is treated separately
and there will be no comparison. Furthermore, based on recorded maximum values for
CPU usage, the proposed algorithm decides when to activate or cancel the T2 timer.
The following Table 4.4 represents the recorded value of maximum CPU usage (%) for
all cluster machines (M1-M135) in both the modes active (A) and idle (I) at a given time

interval of up to 20 minute.

Page | 74

Table 4.4: Maximum CPU usage (%) by each cluster machines (M1 — M15) in active {A) and in idle (I} mode up to 20 minutes.

Snapshot time M1 M2 M3 M4 M5 M6 M7 M9 M10 MIl MI2 | MI3 [M14 | MI5

intervalinmin | A | p|la | fajujafrjalrfajrjajofalrjajrfajofalrjajrfajr|jalrjali
1 55| 7 |60 f1o| 7128801266 12|57 5 [74|9 |so|we|es|13]| 76|17 [e3]|18|ss[17[70] 7 |67]15]80](28
2 58| 2 |s&| 6 |ssf1of60] 3 |73 12]66[13]55]| 6 [59)14]61]15] 57 57010574 |60 |5 [59]15]|59]15
3 56| 5 |57|13|61[17]56]|5 |55|11|55]9|s56[13]75]8 |55[10]70[15]|80]14]356[15]{57]09 [56]11]56]13
4 59| 13|58 | 7 |s6| 4 |s6] 8 |s0|n|s6[13]77]19|s6]16]|66|6 |56 6 [62]7 563 [s50]s5]|s6[1|s6]3
5 sT|u|se| 2|6t | 8|57 1 |56 35715575 [s5|13|s57|tefer 12572586 [56|0]|6s5[0]62]6
6 55| 7 |54 13|55 10)57]6 |61 3 [56[12/66[10[64] 8 |57[1a|36[12]73]10]57[9 61]4[56]10]56]13
7 59 1 |55| 9 [s6|10]s6]|11 5818|577 578 [58]8 551|350 f[1w]|s6|11]356[7|56|10[56]6]58[n
8 63| 11|58 2|57 |5 |63 3|56 7 |62|6|s56]2 5505 552 |s6|3 [55/2]s56|1[s56]2]|50[6]s56]5
9 563 |65| 7 |56)3[s0]1 656|576 |s56|13|s5]8 572|362 es]|3]|s7|6([57]2]56]0]s6
10 5503 |62| 9 |56)9|s6|1n|58|16|57 11589 555|507 [356[15]|63|12]61|11]56|12[58]3 |60f16
11 56 14|58 | 4 |59[15|59] & |56 956|353 64| 4 |65]2 555 |s56[7 [59]7|56|11|56]|10|55[09]60
12 55| 7562|552 57|11 |54| 1582|563 565 ([505|55[1 |60]2|s6|3]|59|0]|s6[13[55]6
13 6| 1|58t |57 11594 |56 2]|56]|12|s56f10]s55]10[56|4 |56[18|56] 1 [56|11]58)|6]([57[5[56]11
14 5715|577 |sa10|s6|11 |56 8|59 6[s6|8 |s8|3|s6f[12)55[10(s8|10]s56[6|56[12|56]2]58]17
15 56| 8 |55| 2552|563 564|563 582 (590001 |64|3 561 [58] 1551 [56|8]|56[5]|56[3
16 5505 (59| 8 |58 9 |55|8 |55/12]|56(4|s56|7 569|569 623|562 66|6|60|2]|56[s8][50]4
17 56| 1 |60 11|57 |8 (5715|569 [56[13|57|8 [57] 5559 |[s59[7 |es{iw]s6|[1i]{62]12[56]10]62]10
18 57| 8 |55| 1 [56)6|s50)12|58|14[55]3 |56 [18]57] 5 |56|7 |55 |1 |54]7|3s8[3|s58|7[57]7[56]18
19 59|10 |55|14|56|6 | 57| 2|56 1 |56|2|safl4 5715575 |56 7 |57]2[57|6]|56|8]|s56[15[56]35
20 56| 6 |66 8 [57]7]36 s | 3|s6|s5|ss|a (5755704565 |63|3[s8]1]|61]a]sa]3][60]3

Page | 75

From Table 4.4, we can derive the various graphs for both the states of each cluster

machines. As shown in Fig. 4.5(a) when the machine is in idle state then the snapshots

of total percentage of maximum CPU usage by cluster machine M1 always remains

below the defined threshold value, whereas in active state percentage of maximum CPU

usage for each interval of time remains above the defined threshold and represents that

the continuous processing is being done on the cluster machine M1.

100

0

80

Max CPU usage by ML (%)

[7iax CPU usage by M1 when Active
I Max CPU usage by M1 when Idle

0
01 23 45 67 8910111213 14151617181 20
Time (Min.)

(a)

In Fig. 4.5(b), the snapshots taken for total percentage of CPU usage for cluster

machine M2 at each interval of time are very much similar to the snapshots presented in

Fig. 4.5(a) and remains always below the defined threshold in its idle state and above

the threshold in its active state during the supplied login duration time.

W———— T T T T

[Max: CPU usage by M2 when Active
- I o CPU usage by M2 when idle

Max CPU usageby M2 (%o)

0
012345678 9W011213141516§171819 20
Time (Min.)

(b)

Max CPU usageby M3 (%)

[Max CPU usage by M3 when Active
0 I o CPU usage by M3 when idle

ol
001 2345678 910111215141516171819 20
Time (Min.)

(©

Page | 76

In, Fig. 4.5(c) for cluster machine M3, there is one snapshot of time interval at the start
tor idle state that breaches the defined threshold value and no user prompt will be
invoked by ESSA algorithm and the next interval will be checked whereas in active

state percentage of total CPU usage remains always above the defined threshold.

100 L e L A S B s s e s e —— ——

[Mox CPU usage by Md when Active [1o CPU usage by MS when Active
% I viox CPU usage b, i - I 1i2x CPU usage by MS when ldle
age by M4 when idle usage by MS when

2
2

Max CPU usage by M5 (%)

Max CPU usage by M4 (%)
»
]

0]

01 2 % 45 6 7 8 91011 121314151617 1819 20 01 23 4567 80 1W011121314151617181° 20
Time (Min.) Time (Min))
() ®)

[Mis: CPU usage by M6 when Active
I i CPU usage by M6 when Idle

I Miax CPU usage when M7 is Active
90 I i P11 nsage when M is Tl

2
2

Max CPU usageby M6 (%)
Max CPU Usage by M7 (%)
8

a 0
01 23 4 5 6 7 8 9 1011 1213 14 1516 17 18 19 20 01 2 3 45 6 7 8 910111213 14 15 16 17 18 19 20
Time (Min) Time (Min
@ (g)

Further, the snapshots of percentage of total CPU usage for cluster machines M4, M5,
M6, and M7 in Fig. 4.5(d), Fig. 4.5(e), Fig. 4.5(f), and Fig. 4.5(g) as shown above,
always remains below the defined threshold in their idle state and above the defined
threshold in their active state. Here, in the idle states, user prompt is invoked after each

interval of time to check whether user is available or not on the machine.

Page | 77

W————— T T T T T 7T

I iz CPU usage by MS when Active
0 I Mo CPU usage by M3 when Tdle

Max CPU usage by MS (%)

0
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20
Time (Min)

th)
In Fig. 4.5(h), for cluster machine M8, utilization of CPU is very much similar to the
machine M3 as there is one snapshot of percentage of total CPU usage in its idle state
which breaches the defined threshold value and the next time interval is checked by the

algorithm whereas in active state percentage of total CPU usage always remains above

the threshold.

In Fig. 4.5(i), Fig. 4.5(3), Fig. 4.5(k), Fig. 4.5(1), Fig. 4.5(m), Fig. 4.5(n), and Fig. 4.5(0)
as shown below for cluster machines M9, M10, M11, M12, M13, M14, and M15
represents the percentage of total CPU usage that remains always below the defined
threshold in the idle state and above the threshold in active state for all the cluster

machines.

W———T T T T T I T T T T T T T e e e e e S S B S S s B e s s

[Max CPU usage by MO when Active [Max CPU usage by M0 when Active
o I o CPU usage by M9 when Idle oor I Max CPU wsage by M1 when [dle

Max CPU usageby M9 (%)
Max CPU usage by M10 (%)

0 0
01 23 4506738 ¢10111213141516171819 20 001 23 4567 89 10111213141516171819 20
Time (Min.) Time (Min.)

(i @

Page | 78

W———T T T T T T T LI T T T T T 1T T 00— S S B S S — —
Max CPU usage hy MIL when Active Max CPU usage by M12 when Ae
0 Max CPU usage by M11 when Idle * %0 Max CPU usage by M12 when idle
sor 4 80]
g § 0 b
o &
=)
H H
% N
2 5]
5 5
8 3
3 s
bl
10
0
123 456 7§09 10111213 14151617 1819 20 001 23 456 7§ 0 10111213141516171810 20
Time (Min,) Time (Min)
(k) o)
00— e B e
Max CPU usage by ML3 when Ac W———T T L S B S S B B
o Max CPU usage by ML3 when Idle Max CPU usage by ML4 when Act
0 Max CPU usage by ML4 when idle
s b
30+ B

2

&
]

Max CPU usage by ML3 (%)
n
B
=
&

Max CPU usage by M14 (%)
w o
] 2

0
01 23 45 6 7 § 9 101112151415 1617 1819 20

1 2 3 4 & 6 7 8 9 1011 1213 14 15 16 17 18 10 20

Time (Min.) Time (Min)
(m) (n)
Max CPU usage by MLS when Active
%0 Max CPU usage by M5 when Idle
80 1
g
o
=
'
%
=
=
o
]
=

0
0L 2 3 4 5 6 7 % 0 1011 1213 14 15 16 17 1319 20
Time (Min.)

(0)

Figure 4.5: Maximum CPU usage (%) by cluster machines for each snapshot when active and idle (a)
M1 (b) M2 (c) M3 (d) M4 (e) M5 (f) M6 (g) M7 (h) M8 (i) M9 (j) M10 (k) M11 (1) M12 (m) M13 (n)
M14 (o) M15.

Page | 79

From the above figures, we can easily find out that when there is no processing on the
machines or machines are in idle state than the total CPU usage always remains below
the defined threshold and the same condition is detected. The proposed ESSA algorithm
which tries to find the users availability by invoking the prompt after each defined
interval of time period whenever it is found that the percentage of total CPU usage is

below the threshold.

4.6 CONCLUSION

As we know, the research on effective power management methods has been intensified
and the energy consumption is now becoming an emerging area as a dominant
performance measure in the computer systems in place of considering the speed of the
system. For designing an energy efficient computer system, ultimately require the
development of fundamental frameworks, algorithmic techniques, and principles that
can be used to guide practical solutions. The main objective of the proposed techniques
is to structure concepts, strategies, and activities to design an energy-sustainable power
scheme. In this chapter, we have proposed the algorithmic framework for the discussed
energy sustainable framework in chapter 3. We have proposed two algorithms known as
swift mode algorithm and ESSA algorithm, both the algorithms are based on user
interactions with the computer system. Swift mode algorithm tries to know the user
consensus before starting work on the computer system, by prompting the user to enter
time for login duration and coatinue its working till the login duration time comes at
end. Once the given login duration time expires, algorithm again tries to know the user
consensus. In case, if the user is available, a new login time value may be supplied
otherwise algorithm will switch the computer system to hibernate or shutdown mode to
minimize energy consumption. Whereas, the proposed ESSA algorithm is very much
different in its functioning with the swift mode and claims for more energy saving. This
algorithm constantly tracks the total CPU usage of all running processes on a computer
system, and whenever it is found that the computer system is in idle mode or the user of
the system has left the computer inactive, the proposed algorithm switches the state of
the system from idle or inactive to hibernate or shutdown power saving mode. The
working principal of the proposed algorithm is based on determining whether the
system is idle or in an inactive state because theoretically at that time the percentage of

total CPU usage should be zero otherwise, as indicated by the various results for cluster

Page | 80

machines, it should be below the threshold limit defined by the user to enable the

system make the decision to hibernate or shutdown.

From the results, we can also see that in case if there is no working on the machine or
machine is in idle state then maximum CPU utilization is always below the defined
threshold value. In the results obtained by proposed algorithms, this value is set to 20%

and also could be used as an idle value for future cases.

Page | 81

PERFORMANCE EVALUATION OF FRAMEWORK

5.1 INTRODUCTION

Due to proliferation in the software and system’s market, it has become necessary to
evaluate the things for various measures like performance, reliability, security etc.
There are several more problems associated with the software’s which include the
underutilization of client resources, installation of additional hardware equipments and
the congestion of computer systems either because of complete memory or CPU
utilization. Therefore, the use of software and systems with enhanced performance are
in high demand. There are various analytical tools available in the software engineering
tor examining the behaviour of applications like function-calls, time, CPU usage and
memory usage etc. These tools have dramatically changed the way of analysis and
become essential for optimizing an application’s performance and profilers are one of
them [248, 249]. Profilers can be used to find the overall appropriate level and
bottlenecks in the application. These bottlenecks are the troublesome spots, which can
be hidden and occur during the execution of the application. So, with the help of
profilers one can reduce the time for detecting these bottlenecks in the applications.
Most modern profilers support the graphical representation of the results obtained to
facilitate quick analysis of the developed application. The role of profilers becomes
important when the application is a real-time system where they check for whether the
real-time task meet their deadlines and matches the estimated time derived by static
analysis. In this chapter, we have evaluated the performance of our proposed energy
sustainable framework of the power scheme under Swift and Exhaustive modes. This
study investigates on more convenient and effective methods, which can minimize
computer system’s load and enhance the overall performance at the same time. The
proposed framework requires only configuration and no installation is required, which
in turn not only maximizes the conveniences for users but also keeps the system

resources free for other works.

Page | 82

The performance measures for the proposed energy sustainable framework of the power
scheme include the various system components like thread monitoring, analyzing
memory, and CPU performance under specific workload. We used the profiler available
in NetBeans-IDE [247] for evaluating the performance of proposed energy sustainable
tramework discussed in chapter 3, under ditferent proposed modes with the help of the
proposed algorithms. By using profiler, one can easily determine the performance of
system’s memory and CPU under various performance measures like memory leakage
[250], memory heap, and memory garbage collection [251], thread monitoring, CPU

timestamps for each invoked methods etc.

5.2 THREAD MONITORING

During the thread monitoring session, the profiler monitors system and application
threads activity and displays the information in the threads tab. This tab is responsible
for displaying the timeline for each running threads with their states like running,
sleeping, wait and monitor. We can also get the detail of time spent in each state. For
the proposed energy sustainable framework, we have monitored various active threads
in both the modes: swift and exhaustive. On the basis of their execution, these are
typically divided into two categories known as system thread and user thread. Table 5.1

provides the overview for both types of threads with their uses class and descriptions.

Page |83

Table 5.1: Thread details

S. | Thread Name | Uses Class Type of | Description
No Thread
1 Reference javalang.ref.Reference$Refere | System High prior thread that
Handler nceHandler enqueue pending
references.
2 | Finalizer javalangref Finalizer$Finalize | System Performs finalization of
rThread objects before their
garbage collection.
3 | Attach javalang. Thread User User Thread
Listener
4 | Java2D javalang.Thread System Handles disposal of
Disposer native data associated
with java objects in Java
2D.
5 | AWT- javalang.Thread System AWT system thread,
Shutdown handles shutdown of
AWT (Event (Queues)
when no GUI is
6 | AWT- java.awt.EventDispatchThread | System AWT thread, which is
EventQueue-(the main thread
executing a GUI java
7 DestroyJavaV | javalang.Thread User User Thread
M
8 Timer Queue | javalang Thread System Used to manage all
javax.swing.Timer
instances in one thread.
9 | Thread-7 javalang.Thread User User Thread
10 | Thread-8 javalang.Thread User User Thread
11 | Thread-10 javalang.Thread User User Thread

Page | 84

5.2.1 Thread Monitoring in Swift Mode
Here, we have executed the proposed energy sustainable framework under swift mode

and performed thread monitoring. We have executed the framework for the discussed
usage scenario in chapter 4 up to 20 minutes. The results obtained after thread
monitoring are shown in the Figure 5.1.

Threads {omin Stin omn mn i)
DFinalizer
[DReference Hander
[IAWT-Nindons

[0 JavaD Dispaser
CIAWT EventQueue)
[AWT-Shutdown

[Destroylavall

O TmerQueue

[Threads
DOThead7

[Thvead-10
[OThvead-5

IRuring [Sleeping 7 Viat 0 Monitor
Figure 5.1: Various active threads during the framework monitoring in swift mode.
From Fig. 5.1, one can easily observe that the user threads 7 and 8 gets started into
sleep mode by providing the login-duration time to the framework and after a certain
period of time inner-timer which corresponds to the thread 7 gets expired and the thread
8 continues till the end of the login-duration. Once the login-duration ends then the
AWT-EventQueue-0 system thread, which is in wait state, gets activated and pop-up the
message window to the user that “vour time is finished” do you want to continue your
working, if user reply for yes, then another message window gets pop-up to enter the
extended time duration and the user thread 10 gets started into the sleep mode for the

new login-duration.
5.2.2 Thread Monitoring in Exhaustive Mode

Here, we have executed proposed energy sustainable framework under the exhaustive

mode and performed thread monitoring. We have executed the framework for discussed

Page | 85

usage scenario in chapter 4 up to 20 minutes and obtained results after thread

monitoring are shown in the Fig. 5.2.

Threads fomin | | " smin | | | T tomin | | | " 15 min
O Reference Handler
[Attach Listener
Ol Finalizer

[signal Dispatcher
O main

[Java2D Disposer
O AWT-Windows
O AWT-Shutdown
[AWT-EventQueue-0
[DestroyJavavM
O TimerQueue

[Image Fetcher 0
O Thread-7

M Thread-8

[Image Fetcher 0
0O Thread-3

O Thread-10

O Thread-11

O Thread-12

O Thread-13

O Thread-14

O Thread-15

[Thread-16

O Thread-17

O Thread-18

0O Thread-19

0O Thread-20

O Thread-21

O Thread-22

O Thread-23

O Thread-24

O Thread-25

O Thread-26

O Thread-27

O Thread-28

[Image Fetcher 0
[Thread-30

O Thread-5

Figure 5.2: Various active threads during the framework monitoring in exhaustive mode.

From Fig. 5.2, we can notice that all the system threads remain similar to the thread
monitoring in swift mode. Whereas, various number of user threads could be observed
in this exhaustive mode because proposed ESSA algorithm continuous checks the user
activity on the machine and here we are observing the snapshots each with 1 minute
duration and total login duration time is 20 minutes. Due to this reason, the user threads
are created for each minute of login duration. In the Fig. 5.2, these threads are shown
from thread-7, thread-10, and thread-11 to thread-28 each with one minute duration. As
the supplied login duration time of 20 minutes gets expire proposed framework prompt
a window to user for supplying new login duration time with one minute expiry and

represented with user thread-30.

Page | 86

20 min[rr]

5.3ANALYZE MEMORY PERFORMANCE

The analysis of memory performance of the proposed framework under different
overheads includes the various results like memory heap, garbage collection and threads
and loaded classes. Using VM telemetry, we analyzed these memory measures and
obtained the various results as shown in further figures. Here, we have profiled the
proposed framework for both the proposed modes: Swift mode and Exhaustive mode. In
all our real time results of memory performance, we have profiled the proposed

tramework up to 20 minutes.
5.3.1 Heap Analysis

In Fig. 5.3(a) and Fig. 5.3(b) the memory heap size over the period of time for both the
modes: Swift and Exhaustive have been analyzed, respectively. Here, we can easily find
out the details of maximum available heap size versus used-heap of profiled framework
tor both the modes. For both scenarios, maximum available heap size is the same with
variations in the maximum used-heap which is 9.5 MB to 13 MB, respectively for both
the modes and the minimum used heap after garbage collection is 5.0 MB to 9.0 MB,
respectively for both the modes. This is very clear as in exhaustive mode there is a
continuous monitoring of the user activity for each minute is done by the framework.
Here, Garbage collection is performed after a certain interval of time automatically,
which minimizes the maximum used-heap sizes. These intervals are easily noticeable in
Fig. 5.3(a) and Fig. 5.3(b). Throughout the login-duration framework continues its
functioning smoothly, which can be noticed with the sharp edges of Fig. 5.3(a) and Fig.
5.3(b), but when the login-duration time comes to at end, there is always some
deviations in the edge that refers to the activation and creation of new threads in the
memory. To know more about these threads, one can refer the thread monitoring
section as discussed above. We can also observe that for both of the scenarios
maximum used heap never reaches up to maximum heap size and framework continues

its functioning without any decrease in the performance.

Page | 87

11:24:42.004 AM, Aug 27, 2012

Heap Sze 16,318,464 B
Used Heap 5,027,504 B

MatHep ez 16,318,464 B
MaxUssdHesp 9,543,240 &

10:36:48.726 AM, Aug 27, 2012
Heap Sze 16,318,464 B
Used Heap 9,097,688 B

MaxHespSz: 16,218,464 8
MaxUssdHesp 13,566,576 &

(b)

Figure 5.3: Analyze memory performances for allocated heap size vs. used-heap. For each graph, x-axis
denotes the time in (HH:MM) and y-axis shows the used-heap size in (MB) {a) Swift Mode and (b)
Exhaustive Mode.

5.3.2 Memory Leakage
The problem of memory leakage for the proposed tramework have analyzed by finding

various surviving generations and relative time spent in the garbage collections. From
Fig. 5.4(a) and Fig. 5.4(b), one can find that once the framework gets initialized total

number of surviving generations becomes constant and remains at 6 for both the modes,

Page | 88

till the login-duration ends, which represent the framework behaves similarly for both
of our proposed modes. So, there is no problem of memory leakage in proposed
framework. Here, maximum relative time spent in garbage collection is 0.6% and 1.2%

respectively for both of the modes as shown in Fig. 5.4(a) and Fig. 5.4(b).

1 © | 00z
F80%
3 AM, Aug 27, 2012
Relative Time Spent in GC 0.0 %
- (-80%
- 40%
F20%
T 1 T 1
11:15AM 11:20 AM 11:25AM 11:30 AM
(@)
1 Oy
F80%
s 7 AM, Aug 27, 2012
Relative Time Spent in GC 0.0 % [60%
1.2 %
- 40%
F20%
T T T T T 0%
10:25 AM 10:30 AM 10:35 AM 10:40 AM 10:45 AM
(b)

Figure 5.4: Analysis of memory performance for Surviving generations vs. Relative time spent in GC.
For each graph, x-axis denotes the time in (HH:MM) and yl-axis shows the surviving generations and y2-
axis shows the relative time spent in GC (%) (a) Swift Mode and, (b) Exhaustive Mode.

Page | 89

5.3.3 Thread Analysis
In this subsection, we have analyzed the detailed view of the memory performance for

various running threads versus loaded classes. It is very much similar to the scenario
discussed in thread monitoring section. From Fig. 5.5(a), Fig. 5.5(b1) and Fig. 5.5(b2),
one can find that the maximum number of threads remains at 10 and 11, respectively for
both the modes, with a little variation in maximum loaded classes in exhaustive mode.
In Fig. 5.5(a), this can be observed that during the supplied login duration of 20 minutes
no new thread is created and total number of threads remains constant, which reveals
that proposed framework is executed under swift mode and no popup window is
activated during the supplied log-duration. The main reason behind this is in the swift
mode, we are very much concern about the user and not about their activity for each
minute on the computer system. Due to this, we are not concern about the percentage of
total CPU usage in each snapshot, though we have recorded this CPU usage percentage
in this mode too for future purpose. At the end of login-duration, some threads get
activated from sleep mode and some are created newly, details of which can be found in
the thread monitoring section. It is also because at this time popup window gets
activated as the supplied login-duration time gets over to know the user status on the

machine and threads are created.

11:21:34621 AM, Aug 27, 2012

Loaded Clsses 3,606

2,000

k1,000

T T T T
11:15AM 120 AM 11:25AM 11:30 AM

(@)

Page | 90

1 10:25:32.714 AM, Aug 27, 2012

Loaded Classes 3,697

k3,000

L 2,000

1,000

T T T T T Y
10:26 AM 10:28 AM 10:30 AM 10:32 AM 10:34 AM 10:35 AM

(D

3 AM, Aug 27, 2012

Loaded Chsses 3,697

3,000

2,000

I-1,000

T T T
10:36 AM 10:33 AM 10:40 AM 10:42 AM 10:44 AM

(b2)

Figure 5.5: Analysis of memory performance using ESSA algorithm for threads versus loaded classes.
For each graph, x-axis denotes the time in (HH:MM) and y1-axis shows the running threads and y2-axis
shows the loaded classes. (a) Swift mode, (bl) and (b2) Exhaustive mode. (b2 is an extension of bl).

In the exhaustive mode, as shown in Fig. 5.5(b1) and Fig. 5.5(b2) various peaks are
shown after each minute of time interval, which represents that the ESSA algorithm is
performing a check throughout the interval to find the percentage of total CPU usage
and this utilization is found always below the threshold for each snapshots then an inner

timer in the form of popup window to find the user’s activity on the machine gets

Page |91

started otherwise this inner timer thread gets cancelled. The purpose of popup window
is to know the user consensus on the machine. Here, to perform the performance
evaluation till the end of login-duration we have pressed “YES” whenever the popup

window was activated.

5.4ANALYZE CPU PERFORMANCE

By using CPU performance measurement, the proposed framework have been analyzed
and obtained data related to its performance including the time required to execute a
code fragment within a method and the number of times that particular method was
invoked. We have analyzed the CPU performance separately in both the modes: Swift
mode and Exhaustive mode. For both the modes, we have profiled the CPU only for

project related classes that includes the core java classes only.

54.1 CPU performance in Swift Mode
In this mode, the CPU performance analysis is performed for entire supplied login

duration time up to 20 minutes. This analysis is shown in the following Fig. 5.6 (al)
and Fig. 5.6 (a2) that shows the call tree method for login-duration, CPUlnfo and
various threads created to monitor the proposed framework. Fig. 5.6 (al) shows the call
tree methods AWT-EventQueue-0, Thread-8 and main. The significant description
about these methods is given in Table 5.1. We can observe that methods are invoked

whenever they are required. Here, Thread-8 works till the end of login-duration.

Call Tree -Method Time [%] v Time Invocations
1 O AWT-EventQueue-0

- 9 org.juitw.timer,Durations 1 actionPerformed
-3 org.juitw.visual LoginDuration$ 1. actionPerfort G
-8 org.juitw.visual. PowerSaverMainwindows1. stateChanged (s Event)
£-£0 Thread-8

=% org.juitw.visual LeginDuration$2, run ()

i (@ self time

) arg.juitw.process. collectar, CRUInfo, <init> ()

-9 arg.juitw.process. collectar, CPUINfo, output (5ing 1)

=-£3 main

11716 ms (100%
11553 ms
157 ms (1,
6.36ms
4923 me (100%
4823 ms (1
3699 ms
830 ms
341ms
192 ms
192ms (1
152 ms
118 ms
111 ms (58,
0.010 ms
33.2ms (1%,
33.8ms (2
121ms (1
15.0ms (1
5.8ms {100%

=1 % powersaver.RowerSaver. main (5
&8 org.juitw.visual.LoginDuration. D
| B+ ¥ orgijuitw.visual LoginBuration. initCemponents

org.juitw.visual.LoginDuration$ 1. <init> (org. juibw. visua

(@ self tine
-2 Thread-7
L Thread-100
£ Thread-8

(al)

Page |92

[Ty =

1192
1192

U

Call Tree -Method Time [%] v Time: Invocations
[AWT-EventQueue-0 I s
[Thread 8] 4923 ms
2 main] 192ms

L Thread-7] 121ms
=+ % org juitw.process collector, Calulat=CPUUSagesS3, bun)] 121ms

-8 org.juitw process. collector, CalculateCPUUsages. getCurrentCPULoad () _ 121ms [
(1) Self time 0.211ms
% org.juitw process. collector, CaloulateCPUUsages. access$ 900 (or te 0.018 ms
£ £ Thread-10] 15.0ms
(= org juitw.process. collector . CaloulsteCPLUsages§3. run)] 15.0 ms
3 arg.juitw.process. collector. CaloulateCPUUsages. getCurrentCPULoad ()] 15.0 ms |
+(5) org.juitw,process.collector. CPUInfo. <init> () [] 10.8 ms
% org.juitw. process collector, CPUInfo.output 5 - 4.0ms |
v () Self time | 0.175ms
(1) elf time 0.026ms

(£ Thread-9] 5.8ms

(=4 org.juitw, timer,Duration$ 1§1. run ()] 5.8 ms
- (B self tine] 5.5ms [
= Q) org,juitw. timer Duration§1§181, <init> \ 0,023 ms
(3 ara.juitw. fimer Duration, accesss002 (o Timer) 0,004 ms

(a2)

Figure 5.6: Analysis of CPU performance in Swift mode (al) call tree methods for AWT-EventQueue-0,
Thread-8 and main (a2) call tree methods for Thread-7, Thread-10 and Thread-9.

In Fig. 5.6 (a2) call tree methods for user Thread-7, Thread-10 and Thread-9 are shown.
Here, user Thread-7 gets stopped as soon as the framework start its functioning,
whereas Thread-9 and Thread-10 created when the login-duration time gets over and

the new login-duration time is asked to input for continue its functioning.

54.2 CPU performance in Exhaustive Mode
In this mode, we have analyzed the CPU performance by using ESSA algorithm that

checks the user activity for each minute and record the snapshots of total CPU uses for
each second in a file. The results obtained from this analysis are shown in Fig. 5.7 (al),

Fig. 5.7 (a2), Fig. 5.7 (a3) etc.

Page |93

Cal Tree - Method
(= 0 AWT-EventQueue-0
% org.juitw.tmer Durationg1. actionPerformed (22 2wt event ActionEvent)
% org.juitw.process. collector, CalculateCPUUsages$1. actionPerformed (jzva.zwt.event ActionEvent)
% org.juitw.visual LoginDuration$ 1. actionPerformed (java awt event AcionEvent)
% org.juitw.visual. PowerSaverMairWindows1. stateChanged (java. swing, event. ChangeEvent)
0 Thread-8
- %9 org.juitwvisual.LoginDuration$2, run ()
D) Self time
--(5) org.juitw. pracess. collector CPUInfo, <init= ()
-%9 org.juitw. process. collector . CPUINfo. owrtput (Strinall)
[€51 main
= % powersaver. PomerSaver. main (String[l)
(=~ 84 org.juitw.vieual.LoginDuration. <init> ()

128 org.juitw.visual.LoginDuration, initComponents ()
i) Self time

Lo (D) org.juitw.visual.LoginDuration$1, <initz (org.juitv.visual,LoginDuration)

L kD) self time
D Self time
[=-£3 Thread-7
(=% org.juitw.process. colector, CalaulateCPUUsages$3. run ()

- org.juitw.process. collector. CalculateCPUUsages. getCurrentCPULoad)
D) Gelf time

-39 org.juitw. process. collector . CalculateCPUUsages. access$900 (org.juitw. process.collector. Caloulate
] 1.] *

(al)

Cal Tree - Method

- Thread-7

{0 Thread- 10
{0 Thread-12
0 Thread- 18
-0 Thread- 14
-0 Thread- 20
-0 Thread- 16
-Ed Thread-24
-&d Thread-30
-0 Thread-22
& Thread- 26
{0 Thread-28
I Thread-32
0 Thread-9

0 Thread-11
0 Thread-31
-f0 Thread-17
-E0 Thread-19
-Ed Thread-27
-£0 Thread-15
- Thread-13
& Thread-25
- Thread-29
0 Thread-23

TEg IR ey T O W W eI e =T e W e W e B e W s W oW e O e e W W e W e W e W e W]

(a2)

Time [%] v

Time [%] v

Time

Time

143 ms

9l1ims |
67.1ms |

B6.8ms

86.5ms |

65.9ms

659ms |

64 7ms

Invocations

Invocations

00%)

643ms (100%)

B63.5ms |

62.3ms
61.0ms

60.9ms |
30.2ms
27.3ms |
9.88ms |

8.56 ms

8.29ms |
8.20ms |
8.1ams |

7.96 ms
7.89ms

7.87ms |

7.27ms (1

Page | 94

-

e e e

118
118

g &

[T =SSN

-

L R e L T T T T T T S o T e e e S S Y

Call Tree -Method Time [%] » Time Invocations
| T Thread-10

] 91.1ms (:
=+ ¥ org.juitw.process.collector. CalculateCPUUSages$3. run ()] 91.1ms
8 org.juitw process.colector, Calculate CPUUsages. getCurrentCPULoad |] 90.9ms |
(5 Self time 0.175ms
% org.juitw process, colector, CalculateCPUUsages, access$900 0,006 ms
560 Thread-12] 67.1ms
=} 8 org.juitw.process.collector, CalculateCPUUsages 3, run)] 67.1ms
% org.juitw.process. collector. Calculate CPUUsages. getCurrentCPULoad ()] 66.8ms |
(@ 8eff ine 0.211ms
W org.juitw process, colector, Calculate CPUUsages, access$900 0.017 ms
£-£ Thread-18] 66.3ms
=} 8 org.juitw.process.collector, CalculateCPUUsages 3, run ()] 66.8 ms
3§ org.juitw.process. colector. Calcul ate CPUUsages. getCurrentCPULoad (] 66.7/ms |
(@ sefftime 0.102ms (0
-9 arg.juitw process, collector, Calculate CPUUsages, access$900 (or 0,004 ms
£ Thread-14] 86.5ms
=+ ¥ org.juitw.process.collector. CalculateCPUUsages$3. run ()] 66.5ms
il 3 org.juitw.process. colector. Calcuiate CPUUsages. getCurrentCPULoad |] 66.4ms [
(D) self time 0.089ms
- %4 org.juitw.process. colector, Caloulate CPUUsages, access$900 (or 0.003ms
£ Thread-20] 65.9ms
3 Thread-16] 65.9ms %)
= Thread-24 | 64.7ms [100%)
“ I, 3

(a3)

Figure 5.7: Analysis of CPU performance in exhaustive mode (al) call tree methods for AWT-
EventQueue-0, Thread-8, main, and Thread-7 (a2) various user threads to monitor user activity (a3) few
expanded user threads with methods.

In the obtained results, we have analyzed the CPU performance up to 20 minutes using
only all project related classes. In these results, we can find the number of variations
trom the previously discussed scenario. In Fig. 5.7 (al) shown various call tree methods
are similar to methods shown in Fig. 5.6 (al). Here User Thread-8 continues till the end
of login-duration and User Thread-7 stops its working as the framework settle down. In
Fig. 5.7 (a2) various user threads are shown and this scenario is very much similar to
discussed scenario for Fig. 5.2 in the thread monitoring section. In Fig. 5.7 (a2), the
user threads are created for monitoring the user activity on the computer system for
each minute and whenever the percentage of total CPU usage is found below the
threshold a popup window get activated to know the user status on the machine. This
pop-up window also created some user thread for a smaller duration of time as in this
performance evaluation we have always given our consent in “YES” whenever the pop-
up window was invoked and executed the process till the end of login-duration. In Fig.
5.7 (a3) some user threads are expanded to show their detailed functioning. In this
figure, we have expanded the user Thread-10, 12, 18 and 14, all these threads are
invoked 60 times and recorded the percentage of total CPU Usage for each minute in a

file.

Page |95

For all the created user threads in each minute, we found no thread which over utilizes
the CPU. Here, all the methods are executed for their assigned time limit and proposed
ESSA algorithm invoking the popup window whenever the percentage of total CPU
usage found below the threshold for that interval because we have considered the

snapshots timing for a minute.

5.5 CONCLUSION

This chapter presents different alternatives to the use of Java Technology for real time
implementation and evaluation of the proposed energy sustainable framework. To
evaluate the performance of Java code is really a difficult task. Performance-wise Java
virtual machine (JVM) is a black box for any system analyst, which hides a lot of detail
in comparison to the native systems. JVM hides the various performance measures like
memory allocation, performance monitoring counters on the CPU, and thread
monitoring by abstracting the underlying hardware and employing custom byte code
execution mechanism. These JVMs also employ different just-in-time compilers and
different garbage collection algorithms. Therefore, it is ditficult to understand the flow
of program execution. Moreover, the behaviour of the Java execution environment is
not predictable and a number of events can lead to non-deterministic behaviour and
consequently to various difficulties in performance evaluation. A variety of tools for
JVM monitoring and application profiling are available in the market like Netbeans
profiler, JProfiler and Websphere console which can provide a good overview of
application behaviour. We have used the Profiler available in NetBeans for the
evaluation of proposed framework and monitored various threads, memory allocation,
memory leakage, garbage collection and CPU performance. In the various proposed
performance evaluation results, we have observed the constant behaviour of the
application under swift mode and exhaustive mode. We have obtained no problem
regarding memory leakage and garbage collection is performed regularly after a certain
period of time. In the thread monitoring analysis, threads are created accordingly as the
events taken place in both the modes. During the execution of the proposed framework
no unnecessary user threads are created and the CPU performance analysis methods are
executed equal to supplied login duration time and no method or process is noticed for
CPU over utilization, which in turn is responsible for overall system slowdown.

Therefore, these performance evaluation results revealed that the proposed algorithm

Page | 96

achieved the proposed goals both theoretically and practically for designing a complete
energy-sustainable framework and algorithms and suggested that changes can be

incorporated into the power schemes of the operating systems.

Page | 97

CONCLUSIONS AND FUTURE SCOPE

6.1 CONCLUSIONS

The rate at which information and commuunication technology devices are being
produced is proportional to the increase in the energy consumed and heat dissipated by
these devices that poses the problem of an energy crisis and exacerbation of the
greenhouse gas problem and global warming. We cannot escape the fact that the world
is becoming more and more dependent upon the use of ICT, and that personal
computers are one of the means. It is predicted that the sales of computers are
increasing explosively, therefore reducing the energy consumption of electronic
systems as well as personal computers are the biggest challenge for researchers and
scientists. This emerging issue of the power dissipation has imposed a very significant
question on the system and software design and it is believed that in the future there

will be a great demand for energy-sustainable software.

Energy consumption is now becoming an emerging area as a dominant performance
measure of the computer systems in place of considering the speed of the system. In the
computer systems, the energy management can achieve it variety of ways and these
methods varies from hardware to software. We have focused on the various techniques
required to minimize the energy consumption by the computer systems. These
techniques are getting from hardware centric to operating system centric as the software
based techniques are easy to implement as well as they are flexible too. We have also
discussed the case scenario of Microsoft Windows power schemes and showed the
various discrepancies of these power schemes. We found that most of the time these
power schemes are not configured properly and all the power saving modes defined by
these schemes consume the 3W — 15W of energy in these modes, which is critical from
energy saving point of view. We have also presented the general view of DVFS
scheduling algorithms, which are more common in modern computer systems for the

energy-aware computing and focus mainly on the abstraction of CPU utilization, the

Page | 98

prediction of the trend in CPU utilization, and the association of the voltage and
trequency values with CPU utilization. From the various discussed approaches the
hardware and software based approaches are getting more attention in this direction. In
tuture, the operating system should supply a module to do power profiling as well as

supply configurable accuracy.

For designing an energy efficient computer system, ultimately require the
development of fundamental frameworks, algorithmic techniques, and principles that
can be used to guide practical solutions. For the proposed energy sustainable
framework, we have considered the principle of user centric management as personal
computers, televisions, personal media gadgets etc. All these systems are user centric as
they receive inputs from the user and deliver services to them so their energy
management must be user centric. The main objective of the proposed techniques is to
structure concepts, strategies, and activities to design an energy-sustainable power
scheme. We have implemented the proposed energy sustainable user centric framework
tor personal computers, which monitors system workload as well as the user behavior
and represents a good alternative for the existing power schemes of Windows operating
system. This framework is very much user centric as during login to the system it tries
to know the user consensus by knowing the approximate user’s work fime on the
machine and implements the two different modes of working for this framework. The
main objective of this framework is to structure concepts, strategies, and activities to
design an energy-sustainable power scheme. This framework is useful for both the
desktops and laptops. The unique characteristic of this framework is that it required
minimal input and calculations for saving energy. We have also compared the
functioning of existing power scheme in Windows operating systems for the proposed
user centric energy sustainable framework and it is find that the proposed modes, Swift
mode and Exhaustive mode detects the human activity on the computer system in an
effective manner and based on the time value supplied by the user during login to the
system. In our comparison results, we have found that Swift mode provides more than
66% of energy savings and exhaustive mode provides more than 93% of energy savings
over existing power scheme in Windows operating system. For the designed energy
sustainable framework, we have proposed two algorithms known as Swift mode
algorithm and ESSA algorithm. These algorithms are based on user interactions with

the computer system. Swift mode algorithm tries to know the user consensus before

Page | 99

starting work on the computer system by prompting the user to enter time for login
duration and continue its working till the login duration time comes at end. Once the
given login duration time expires, the algorithm again tries to know the user consensus.
In case, user is available, a new login time value may be supplied otherwise algorithm
will switch the computer system to hibernate or shutdown mode to minimize energy
consumption. However, the proposed ESSA algorithm is very much different in its
functioning with the swift mode and claims for more energy saving. This algorithm
constantly tracks the total CPU usage of all running processes on a computer system
and whenever it is found that the computer system is in idle mode or the user of the
system has left the computer inactive, the algorithm switches the state of the system
from idle or inactive to hibernate or shutdown. The working principle of the proposed
algorithm is based on determining whether the system is idle or in an inactive state
because theoretically at that time the percentage of total CPU usage should be zero,
otherwise, as indicated by our various results for cluster machines, it should be below
the threshold limit defined by the user to enable the system make the decision to

hibernate or shutdown.

In the several performance evaluation results for the proposed framework, we have
observed the constant behaviour of the application under swift mode and exhaustive
mode. We have observed that there is no any problem regarding memory leakage and
garbage collection is performed regularly after a certain period of time. In thread
monitoring analysis, threads are created accordingly as the events occurred in both the
modes and any unnecessary user threads are not created during the execution of
proposed framework. During CPU performance, the analysis methods are executed
equal to supplied login duration time and no method or process is noticed for CPU over
utilization which in turn is responsible for overall system slowdown. Therefore, these
performance evaluation results revealed that the proposed algorithm achieved the
proposed goals both theoretically and practically for designing a complete energy-
sustainable framework and algorithms. However, the suggested changes can be
incorporated into the power schemes of operating systems. We also hope that our
tramework and algorithms will be useful to the researchers and scientists for the

development of a comprehensive solution for the energy-sustainable computing.

Page | 100

6.2 FUTURE SCOPE

Beyond the discussed framework and algorithms in this work, the proposed energy
sustainable framework has potential challenges such as the implementation of this kind
of framework in to Windows operating systems is a tricky process. In the presented
work, we apparently restrict ourselves to the percentage of total CPU usage for
performing user centric energy management. However, during the analysis and finding
of our results using CPU utilization, we have not considered the usage of primary
memory and other peripherals which is not covered in this work but it can play decisive
role in making decision by the proposed framework and can be considered into account
in the future works. In another decisive factor for the proposed energy sustainable
framework that is we have obtained the various results on a Virus and Trojans free
computer systems whereas the presence of Virus and Trojans can increase the total
CPU utilization so this can be a situation where user is not present on the machine and
proposed algorithm fails to make decision. So, this can also be taken into account in the

future works.

In another approach about the scalability of the proposed framework, as at present it is
very much restricted to personal computers only and in future works, we can use it for
servers, mobile devices and other more user centric devices like TV etc. by proposing
or enhancing the current algorithms and framework. We can extend this work to make it
more users centric by introducing the concept of image processing. As we know that
modern mobile devices and computers are equipped with webcam facility in them,
which can use it to know the presence of the user on the machine. We hope that, this
concept will not only strengthen our ESSA algorithm but also will be able to make

more appropriate decision to minimize energy consumption.

Page | 101

REFERENCES

[1]
(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

http://www.thehindu.com/news/national/article8498.ece

Ishfaqg Ahmad and Sanjay Ranka, “Handbook of Energy-Aware and Green
Computing,” Chapman & Hall/CRC Computer and Information Science series,
CRC Press, USA, 2012.

T. Mudge, “Power: a first-class architectural design constraint,” Computer, vol.
34, no. 4, pp. 52-58, 2001.

Ruediger Kuehr and Fric Williams, “Computers and the Environment:
Understanding and Managing their Impacts,” Kluwer Academic Publishers: The
Netherlands, 2010.

http://www etforecasts.com/products/ES_pcww1203.htm

J. Romm, A. Rosenfeld, and S. Herrmann, “The internet economy and global
warming,” Center for Energy and Climate Solutions, December 1999.

K. Kawamoto, J. G. Koomey, B. Nordman, R. E. Brown, M. A. Piette, M. Ting,
and A. K. Meier, “Electricity used by office equipment and network equipment in
the US,” Energy, vol. 27, no. 3, pp. 255-269, 2002.

M. Bilec, R. Ries, and H. Scott Matthews, “Sustainable development and green
design — who is leading the green initiative?”” Journal of Professional Issues in
Engineering Education and Practice, vol. 133, no. 4, pp. 265-269, 2007.

A. Horvath and H. Scott Matthews, “Advancing sustainable development of
mfrastructure systems,” Journal of Infrastructure Systems, vol. 10, no. 3, pp.77-
78, 2004.

Sukhdeep Singh Sandhu, Arushi Rawal, Prabhjot Kaur, Niyati Gupta, ‘“Major
components associated with green networking in information communication
technology systems,” Proceedings of International Conference on Computing,
Communication and Applications (ICCCA), India, 2012, pp. 1-6.

S. K. S. Gupta, T. Mukherjee, G. Varsamopoulos and A. Banerjee, “Research
directions in energy-sustainable cyber—physical systems,” Sustainable
Computing: Informatics and Systems, vol. 1, no. 1, pp. 57 — 74, 2011.

Marty Poniatowski, “Foundations of Green IT: consolidation, virtualization,

efficiency, and ROI in the data center,” Prentice Hall, pp. 1 — 321, 2010.

Page | 102

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

J. G. Koomey, T. Oey, and Eric Bergman, “The economics of cyeling personal
computers,” Energy Policy, vol. 21, no. 9, pp. 937-943, 1993.

J. G. Koomey, M. D. Levine, I. E. McMahon, A. H. Sanstad. and Eric Hirst,
“Energy efficiency policy and market failures,” Annual Review of Energy and the
Environment, vol. 20, no. 1, pp. 535-555, 1995.

J. G. Koomey, C. A. Webber, and R. E. Brown, “Savings estimates for the
Energy Star< sup>®</sup> voluntary labeling program,” Energy Policy, vol. 28,
no. 15, pp. 1137-1149, 2000.

M. C. Sanchez, R. E. Brown, C. Webber, and G. K. Homan, “Savings estimates
tor the United States Environmental Protection Agency's ENERGY STAR
voluntary product labeling program,” Energy Policy vol. 36, no. 6, pp. 2098-
2108, 2008.

L. K. Norford, and C. B. Dandridge, “Near-term technology review of electronic
office equipment,” Industry Applications Society Annual Meeting, IEEE
Conference Record of the 1993, Toronto, Ont., 1993, pp. 1355-1362.

C. B. Dandridge, J. Roturier, and L. K. Norford, “Energy policies for energy
efficiency in office equipment case studies from FEurope, Japan and the
USA,” Energy Policy, vol. 22, no. 9, pp. 735-747, 1994.

J. A. Roberson, G. K. Homan, A. Mahajan, B. Nordman, C. A. Webber, R. E.
Brown, M. McWhinney, and J. G. Koomey. “Energy use and power levels in new
monitors and personal computers,” Energy Analysis Department, Environmental
Energy Technologies Division, Ernest Orlando Lawrence Berkeley National
Laboratory: University of California, Berkeley, CA, 2002, pp. 1-32.

C. A. Webber, J. A. Roberson, M. C. McWhinney, R. E. Brown, M. J. Pinckard,
and J. F. Busch, “After-hours power status of office equipment in the
USA,” Energy, vol. 31, no. 14, pp. 2823-2838, 2006.

B. Howarth, B. M. Haddad, and B. Paton, “The economics of energy efficiency:
insights from voluntary participation programs,” Energy Policy. vol. 28, no. 6, pp.
477-486, 2000.

B. Howarth and Bo Andersson, “Market barriers to energy efficiency,” Energy
Economics, vol. 15, no. 4, pp. 262-272, 1993.

B. Nordman, M. A. Piette, and K. Kinney, “Measured energy savings and

performance of power-managed personal computers and monitors,” Lawrence

Page | 103

[24]

[25]

[26]

[27]

(28]

[29]

(30]
(31]
(32]
[33]

[34]
[35]

[36]
[37]

[38]

[39]

Berkeley National Laboratory: University of California, Berkeley, CA, 1996, pp.
267-278.

Chamara Gunaratne, Ken Christensen, and Bruce Nordman, “Managing energy
consumption costs in desktop PCs and LAN switches with proxying, split TCP
connections, and scaling of link speed,” International Journal of Network
Management, vol. 15, no. 5, pp. 297-310, 2005.

R. Brown, C. Webber, and J. G. Koomey, “Status and future directions of the
ENERGY STAR program,” Energy, vol. 27, no. 5, pp. 505-520, 2002.

M. Sanchez, C. A. Webber, R. E. Brown, and G. K. Homan, "2007 Status Report:
Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program,”
2007.

http://publications.gec.ca/collections/collection_2007/nrcan-rncan/M 144-145-1-
2007E.pdf.

A. Walldius, Y. Sundblad, L. Bengtsson, B. Sandblad, and J. Gulliksen. "User
certification of workplace software: assessing both artefact and usage.” Behaviour
& Information Technology vol. 28, no. 2, pp.101-120, 2009.
http://center.sustainability.duke.edu/sites/detault/files/documents/ecolabelsreport.
pdf

http:/fwww jeita.or.jp/english/
http://www.ecolabelindex.com/ecolabel/nordic-ecolabel-or-swan
http://www.cpcb.nic.infecomark_logo.php
http://beeindia.in/miscellaneous/documents/rti_act/organization_tunction_duties.
pdf

http://www blauer-engel.defen/blauer_engel/index.php
http:/fec.europa.ew/environment/ecolabel

http://www.ecomark.jp/english/

7. Bako-Biro, P. Wargocki, C. J. Weschler, and P. O. Fanger, “Effects of
pollution from personal computers on perceived air quality, SBS symptoms and
productivity in offices,” Indoor Air, vol. 14, no. 3, pp. 178187, 2004..

P. Wargocki, D. P. Wyon, J. Sundell, G. Clausen, and P. Fanger, “The effects of
outdoor supply rate in an office on perceived air quality, sick building syndrome
(SBS) symptoms, and productivity,” Indoor Air, vol. 10, no.4, pp. 222-236, 2000.
M. McWhinney, A. Fanara, R. Clark, C. Hershberg, R. Schmeltz, and J.
Roberson, “ENERGY STAR product specification development framework:

Page | 104

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

using data and analysis to make program decisions,” Energy Policy, vol. 33, no.
12, pp.1613-1625, 2005.

S. Murugesan, “Harnessing green if: principles and practices,” I[EEE IT
Professional, vol. 10, no. 1, pp. 24-33, 2008.

Kivel, Seppo. and Kari Vigelius, “Method for display power management and
monitor equipped with a power management function,” U.S. Patent 6,404,423,
June 11, 2002.

P. M. Greenawalt, “Modeling power management for hard disks,” Proceedings of
the 2™ IEEE International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS'94), Durham, NC, 1994,
pp- 62-66.

J. Steele, “ACPI thermal sensing and control in the PC,” Conference Proceedings
of IEEE Wescon, Anaheim, CA, Sept. 15-17, 1998, pp. 169-182.

T. Lewis, “Method to reflect BIOS set up changes into ACPI machine language,”
U.S. Patent 6,167,511, December 26, 2000.

J. H. Ewertz, “Method of dynamically changing the lowest sleeping state in
ACPL” U.S. Patent 6,499,102, issued December 24, 2002.

B. Nordman, M. A. Piette, K. Kinney, and C. Webber, “User guide to power
management for PCs and monitors,” Environmental Energy Technologies
Division, Lawrence Berkeley National Laboratory: University of California,
Berkeley, CA, 1997, pp. 1-64.

B. Nordman, A. Meier, and M. A. Piette, “PC and monitor night status: Power
management enabling and manual turn-off.” Lawrence Berkeley National
Laboratory: University of California, Berkeley, CA, 1998, pp. 1-12.

J. G. Koomey, M. A. Piette, M. Cramer, and J. H. Eto, “Efficiency improvements
in US office equipment: expected policy impacts and uncertainties,” Energy
Policy, vol. 24, no. 12, pp. 1101-1110, 1996.

C. A. Webber, J. A. Roberson, R. Brown, C. Payne, B. Nordman, and J. Koomey,
“Field surveys of office equipment operating patterns,” Draft Report, Lawrence
Berkeley National Laboratory: University of California, Berkeley, CA, 2001, pp.
1-30.

C. Webber, D. Korn, and M. Sanchez, “Savings potential of ENERGY STAR
external power adapters and battery chargers,” Lawrence Berkeley National

Laboratory: University of California, Berkeley, CA, 2007, pp. 1-15.

Page | 105

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

R. E. Picklum, B. Nordman, and B. Kresch, “Guide to reducing energy use in
office equipment,” Bureau of Energy Conservation, City and County of San
Francisco and Energy Analysis Department, Lawrence Berkeley National
Laboratory: University of California, Berkeley, CA, 1999, pp. 1-24.

C. A. Balaras, K. Droutsa, A. A. Argiriou, and K. Wittchen, “Assessment of
energy and natural resources conservation in office buildings using TOBUS,”
Energy and Buildings, vol. 34, no. 2, pp. 135-153, 2002.

Hui Chen, Youhuizi Li and Weisong Shi, “Fine-grained power management using
process-level profiling”, Sustainable Computing: Informatics and Systems, vol. 2,
no. 1, pp. 33 — 42, Mar 2012.

P. K. Gupta and G Singh, “Minimizing power consumption by personal
computers: a technical survey,” International Journal of Information Technology
and Computer Science, vol. 4, no. 10, pp. 57- 66, 2012.
http://www.zdnet.com/blog/microsoft/ide-windows-server-still-rules-the-server-
roost/6424
http://blogs.msdn.com/b/b8/archive/2012/02/07/improving-power-efficiency-for-
applications.aspx.
http://www.verismic.com/pdt/Verismic_VPM_vs_Windows.pdf

D. Brooks, V. Tiwari, and M. Margaret, "Wattch: a framework for architectural -
level power analysis and optimizations,” ACM SIGARCH Computer Architecture
News, vol. 28, no. 2, pp. 83-94, 2000.

D. Brooks, M. David, P. Bose, S. E. Schuster, J. Hans, N. K. Prabhakar, B. Alper,
J. Wellman, Z. Victor, M. Gupta, and P. W. Cook, "Power-aware
microarchitecture: design and modeling challenges for mnext-generation
microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26-44, 2000.

A. Vahdat, A. Lebeck, and S. E. Carla, "Every joule is precious: The case for
revisiting operating system design for energy efticiency,” Proceedings of the 9t
ACM SIGOPS European Workshop “Beyond the PC: new challenges for the
operating system”, Denmark, 2000, pp. 31-36.

H. Zeng, S. E. Carla, A. Lebeck, and A. Vahdat, "ECOSystem: managing energy
as a first class operating system resource,” ACM SIGPLAN Notices, vol. 37, no.
10, pp. 123-132, 2002.

Page | 106

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

A. Merkel and F. Bellosa, "Balancing power consumption in multiprocessor
systems,” ACM SIGOPS Operating Systems Review, vol. 40, no. 4, pp. 403-414,
2006.

D. Liu and C. Svensson, "Power comsumption estimation in CMOS VLSI
chips,” IEEE Journal of Solid-State Circuits, vol. 29, no. 6, pp. 663-670, 1994.

H. §. Wang, Z. Xinping, Li-Shivan Peh and Sharad Malik, "Orion: a power-
performance simulator for interconnection networks,” Proceedings of 35" Annual
IEEE/ACM International Symposium on Microarchitecture, 2002, pp. 294-305.
W. Ye, V. Narayanan, M. Kandemir and J. 1. Mary, "The design and use of
simple power: a cycle-accurate energy estimation tool,” ACM Proceedings of the
37" Annual Design Automation Conference, 2000, pp. 340-345.

R. Joseph, D. Brooks and M. Margaret, "Live, runtime power measurements as a
foundation for evaluating power/performance tradeofts,” Workshop on
Complexity Effective Design (WCED), vol. 28, 2001, pp. 1-9.

S. Kamil, S. John, and S. Erich, "Power efficiency in high performance
computing,” Proc. IEEE International Symposium on Parallel and Distributed
Processing, Miami, FL, 2008, pp. 1-8.

J. R. Lorch, and A. J. Smith, "Apple Macintosh's energy consumption,” IEEE
Journal of Microelectronics, vol. 18, no. 6, pp. 54-63, 1998.

W. L. Bircher and L. K. John, "Complete system power estimation using
processor performance events,” IEEE Trans. on Computers, vol. 61, no. 4, pp.
563-577,2012.

R. Bertran, M. Gonzalez, M. Xavier, N. Navarro, and E. Ayguade,
"Decomposable and responsive power models for multicore processors using
performance counters,” Proceedings of the 24™ ACM International Conference on
Supercomputing, Oregon, USA, 2010, pp. 147-158.

C. Isci, and M. Martonosi, "Runtime power monitoring in high-end processors:
methodology and empirical data,” Proceedings of the 36" Annual IEEE/ACM
International Symposium on Microrchitecture, San Diego, CA, 2003, pp. 93.

T. Do, S. Rawshdeh, and W. Shi, “ptop: A process-level power profiling tool,"
Proceedings of the 2nd Workshop on Power Aware Computing and Systems
(HotPower’09), Big Sky, MT, 2009, pp. 1-5.

Page | 107

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

[82]

A. Kansal, Z. Feng, J. Liu, N. Kothari, and A. A. Bhattacharya, "Virtual machine
power metering and provisioning,” Proceedings of the 1* ACM symposium on
Cloud computing (SoCC '10), Indianapolis, IN, 2010, pp. 39-50.

Y. H. Lu, L. Benini, and G. D. Micheli, "Power-aware operating systems for
interactive systems,” IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 10, no. 2, pp. 119-134, 2002.

T. Li, and L. K. John, “Run-time modelling and estimation of operating system
power consumption,” Proceedings of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer ystems, USA, 2003, pp.
160-171

G. Dhiman, M. Kresimir, and R. Tajana, "A system for online power prediction in
virtualized environments using Gaussian mixture models,” Proceedings of the
47" ACM/IEEE Design Automation Conference (DAC), Anaheim, CA, 2010, pp.
807-812.

F. Bellosa, "The benefits of event: driven energy accounting in power-sensitive
systems," Proceedings of the 9t Workshop on ACM SIGOPS European
Workshop: Beyond the PC: New Challenges for the Operating System, Denmark,
2000, pp. 37-42.

R. Joseph, and M. Martonosi, "Run-time power estimation in high performance
microprocessors,” Proceedings of International Symposium on Low Power
Electronics and Design, 2001, California, USA, pp. 135-140.

G. Contreras, and M. Margaret, "Power prediction for intel XScale® processors
using performance monitoring unit events,” Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED'03), San Diego, CA,
2005, pp. 221-226.

W. L. Bircher, M. Valluri, J. Law, and L. K. John, "Runtime identification of
microprocessor energy saving opportunities,” Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED'05), San Diego, CA,
2003, pp. 275-280.

Dam Sunwoo, Hassan Al-Sukhni, Jim Holt, and Derek Chiou, “Early models for
system-level power estimation,” Proceedings of IEEE International Workshop on
Microprocessor Test and Verification, Austin, TX, 2008, pp. 8 — 14.

Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane, Irwin N.,

Vijaykrishnan, and Mahmut Kandemir, “Using complete machine simulation for

Page | 108

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

software power estimation: the softwatt approach,” Proceedings of International
Symposium on High-Performance Computer Architecture (HPCA.02), Austin,
TX, 2002, pp. 1 — 10.

Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta,
“Complete computer system simulation: the simOS approach,” IEEE Parallel and
Distributed Technology: Systems and Applications, vol. 3, no. 4, pp. 34- 43, 1995.
J. Chen, M. Dubois and, P. Stenstrom, “Simwattch: integrating complete-system
and user-level performance and power simulators,” IEEE Micro, vol. 27, no. 4,
pp- 34— 48, 2007.

P. Bohrer, E. N. Elnozahy, K. Tom, K. Michael, L. Charles, M. Chandler, and R.
Rajamony, “The case for power management in web servers,” Power Aware
Computing, Kluwer Academic Publisher, Norwell, MA, USA, 2002.

Song Shuaiwen, Rong Ge, X. Feng, and Kirk W. Cameron, "Energy profiling and
analysis of the HPC challenge benchmarks,” International Journal of High
Performance Computing Applications , vol. 23, no. 3, pp. 265-276, 2009.

Rong Ge, X. Feng, Song Shuaiwen, Hung-Ching Chang, Dong Li, and Kirk W.
Cameron, "Powerpack: energy profiling and analysis of high-performance
systems and applications,” IEEE Trans. on Parallel and Distributed Systems. vol.
21, no. 5, pp. 658-67, 2010.

X. Feng, Rong Ge, and Kirk W. Cameron, "Power and energy profiling of
scientific applications on distributed systems,” Proceedings of IEEE
International Parallel and Distributed Processing Symposium, Denver, Colorado,
2005, pp. 34-34.

D. Foster, L. Shaun, B. Mark, and C. Paul, “Wattsup?: motivating reductions in
domestic energy consumption using social networks,” Proceedings of ACM
Nordic Conference on Human-Computer Interaction: Extending Boundaries,
Reykjavik, Iceland, 2010, pp. 178-187.

A. M. Viredaz and A. W. Deborah, “Power evaluation of Itsy version
2.3,” Technical Note TN-57, WRL, Compagq, Palo Alto, USA, 2000.

D. C. Snowdon, R. Sergio, and G. Heiser, “Power management and dynamic
voltage scaling: Myths and facts,” Proceedings of the Workshop on Power Aware

Real-time Computing, New Jersey, USA, 2005, pp. 1-7.

Page | 109

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

C. Xian, L. Cai, and Y. H. Lu, “Power measurement of software programs on
computers with multiple /O components,” IEEE Trans. on Instrumentation and
Measurement, vol. 56, no. 5, pp. 2079 — 2086, October 2007.
Y. H. Lu and G. D. Micheli, “Comparing system-level power management
policies,” Proceedings of IEEE Design and Test, Munich, 2001, pp. 10 — 19.
Gary Cameron, “Baseline measurement of software driven power consumption,”
Proceedings of Instrumentation and Measurement Technology Conference
(IMTC), Ottawa, Canada, 2005, pp. 2088 — 2090.
V. Tiwari, S. Malik, A. Wolfe, and M. T.C. Lee, “Power analysis of embedded
software: a first step towards software power minimization,” IEEE Trans. Very
Large Scale Integr. (VLSI) System, vol. 2, no. 4, pp. 437— 445, Dec. 1994.
T. Laopoulos, P. Neofotistos, C. A. Kosmatopoulos, and S. Nikolaidis,
“Measurement of current variations for the estimation of software-related power
consumption,” IEEE Trans. on Instrumentation and Measurement, vol. 52, no. 4,
pp- 1206 — 1212, August 2003.
M. Arunadevi, and R. S. D. Wahidabanubb, “Design of Power Efficient Schema
tor Energy Optimization in Data Center With Massive Task Execution Using
DVEFS,” International Journal of Computer Science Issues, vol. 9, no. 1, pp. 407-
414, 2012.
J. M. Baron, “Electronic tour guide and photo location finder,” U.S. Patent
6,459,388, October 1, 2002.
P. M. Cohen, A. M. Christopher, and J. C. Ronald, “Power supply with interface
to defermine power requirements of devices coupled thereto,” U.S. Patent
6,512,682, January 28, 2003.
Loper, Joe, and Sara Parr, “Energy efficiency in data centers: a new policy
frontier,” Environmental Quality Management, vol. 16, no. 4, pp. 83-97, 2007.
T. Daim, J. Justice, M. Krampits, M. Letts, G. Subramanian, and M.
Thirumalai, “Data center metrics: an energy etficiency model for information
technology managers,” Management of Environmental Quality: An
International Journal, vol. 20, no. 6, pp. 712-731, 2009.
M. Poess, and R. O. Nambiar, “Tuning servers, storage and database for energy
efficient data warehouses,” Proc. IEEE International Conference on Data

Engineering (ICDE), California, USA, 2010, pp. 1006-1017.

Page | 110

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

W. Feng and K. Cameron, “The green300 list: encouraging sustainable
supercomputing,” Computer, vol. 40, no.12, pp. 50-55, 2007
http://www.spec.org/specpower/

M. Poess, R. O. Nambiar, K. Vaid, J. M. Stephens, K. Huppler, and E. Haines,
“Energy benchmarks: a detailed analysis,” Proceedings of the 1°" International
Conference on Energy-Efficient Computing and Networking, Passau, Germany,
2010, pp. 131-140.

R. G. Matthew, J. S. Ringenberg, Dan Ernst, T. M. Austin, Trevor Mudge, and
R. B. Brown, “MiBench: a free, commercially representative embedded
benchmark suite,” Proc. IEEE International Workshop on Workload
Characterization, 2001. pp. 3-14.

AMD-ACP, http://www.amd.com/us/documents/43761¢c_acp_wp_eepdf

1. Ahmad and J. Luo, “On using game theory to optimize the rate control in
video coding,” TEEE Trans. on Circuits and Systems for Video Technology, vol.
16, no. 2, pp. 209-219, 2006.

S.U. Khan and 1. Ahmad, “A cooperative game theoretical technique for joint
optimization of energy consumption and response time in computational
grids,” IEEE Trans. on Parallel and Distributed Systems, vol. 20, no. 3, pp.
346-360, 2009.

L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design techniques for
system-level dynamic power management,” TEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 8, no. 3, pp. 299 — 316, June 2000.

L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 813 — 834,
June 1999.

Keqin Li, “Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed,” IEEE Trans. on
Parallel and Distributed Systems, vol. 19, no. 11, pp. 1484 — 1497, November
2008.

S. Wang, J. Liu, J. J. Chen, and X. Liu, “Power Sleep: a smart power -saving
scheme with sleep for servers under response time constraint,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 3, pp. 289
— 298, September 2011.

Pagel 111

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

K. Huang, L. Santinelli, J. J. Chen, L. Thiele, and G. C. Buttazzo, “Adaptive
power management for real-time event streams,” Proceedings of IEEE Asia
and South Pacific Design Automation Conference, Taipei, Taiwan, 2010, pp. 7
—12.

A. Abbasian, S. Hatami, A. A. Kusha, M. Nourani, and C. Lucas, “Event-
driven dynamic power management based on wavelet forecasting theory”
Proceedings of International Symposium on Circuits and Systems (ISCAS),
2004, pp. 325 - 328.

A. H. Hwang, and Allen C.H. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” ACM Transactions on Design
Automation of Electronic Systems, vol. 5, no. 2, pp. 226241, April 2000.

M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architecture techniques for energy efficient
programmable computation,” TEEE Trans. on VLSI Systems, vol. 4, no. 1, pp.
42-55, March 1996.

Q. Jiang, H.S. Xi, and B.Q. Yin, “Adaptive optimisation of timeout policy for
dynamic power management based on semi-Markov control processes,” IET
Control Theory and Applications, vol. 4, no. 10, pp. 1945 — 1958, 2010.

R. Golding, P. Bosch, and J. Wilkes, “Idleness is not sloth,” Hewlett- Packard
Laboratories, Palo Alto, CA, 1996, pp. 96-140.

F. Douglis, P. Krishnan, and B. Bershad, “Adaptive disk spin-down policies for
mobile computers,” Proceedings of 2™ USENIX Symposium Mobile Location-
Independent Computing, MI, USA, Apr. 1995, pp. 121-137.

D. Helmbold, D. Long, and E. Sherrod, “Dynamic disk spin-down technique
for mobile computing,” Proceedings of IEEE Conference Mobile Computing,
NewYork, USA, 1996, pp. 130-142.

Y. Lu and G. D. Micheli, “Adaptive hard disk power management on personal
computers,” Proceedings of IEEE Great Lakes Symposium VLSI, MI, USA,
Mar. 1999, pp. 50-53.

E. Chung, L. Benini, and G. D. Micheli, “Dynamic power management using
adaptive learning trees,” in Proceedings of International Conference on

Computer-Aided Design, San Jose, California, Apr. 1999, pp. 221-227.

Page 1112

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

L. Benini, R. Hodgson, and P. Siegel, “System-level power estimation and
optimization,” Proceedings of International Symposium Low Power Electronics
Design, California, USA, Aug. 1998, pp. 173-178.

P. Krishnan, P. Long, and J. Vitter, “Adaptive disk spin-down via optimal rent-
to-buy in probabilistic environments,” International Conference on Machine
Learning, California, USA, July 1995, pp. 322-330.

T. Simunic, L. Benini, and G. D. Micheli, “Event-driven power management,”
Proceedings of International Symposium System Synthesis, Boca Raton,
Florida, USA, Apr. 1999, pp. 18-23.

T. Simunic, L. Benini, Peter Glynn, and Giovanni de Micheli, “Dynamic Power
management of laptop hard disk,” Proceedings of Design, Automation, Test
Eur., Paris, France, Mar. 2000, pp. 736.

T. Simunic, H. Vikalo, P. Glyan, and G. de Micheli, “Energy efficient design
of portable wireless devices,” Proceedings of International Symposium Low
Power Electronics Design, Rapallo, Italy, Aug. 2000, pp. 49-54.

T. Simunic, L. Benini, P. Glynn, and G. D. Micheli, “Dynamic power
management for portable systems,” Proceedings of International Conference
on Mobile Computing and Networking, Boston, USA, Oct. 2000, pp. 22-32

E. Chung, L. Benini, and G. D. Micheli, “Dynamic power management for
non-stationary service requests,” Proceedings of Design, Automation Test Eur.,
Munich, Germany, Mar. 1999, pp. 77-81.

Q. Qiu and M. Pedram, “Dynamic power management based on continuous-
time Markov decision processes,” Proceedings of Design Automation
Conference, New Orleans, LA, USA, June 1999, pp. 555-561.

Q. Qiu, Q. Wu and M. Pedram, “Dynamic power management of complex
systems using generalized stochastic petri-nets,” Proceedings of Design
Automation Conference, Los Angeles, California, USA, June 2000, pp. 352—
356.

Q. Qiu, Q. Wu, and M. Pedram, “Stochastic modelling of a power-managed
system—construction and optimisation,” IEEE Trans. on Computer Aided
Design of Integrated Circuits and Systems, vol. 20, no. 10, pp. 1200-1217,
2001.

Pagel 113

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

B. Kveton, P. Gandhi and G. Theocherous, “Adaptive timeout policies for fast
fine-grained power management”, Proceedings of National Conference on
Artificial Intelligence, Vancouver, July 2007, pp. 1795-1800

Y. H Lu, T. Hnwzic, and G. D. Micheli, “Software Controlled Power
Management,” Proceedings of the seventh international workshop on
Hardware/software codesign, 1999, Rome, Italy, pp. 157 — 161.

M. Sarkar, and R. L. Cruz, “An adaptive “Sleep,” algorithm for efficient power
management in WLANSs,” Proc. IEEE 61* Vehicular Technology Conference,
Stockholm, Sweden, vol. 3, June 2005, pp. 2101 — 2104.

R. Zheng, J. C. Hou, and L. Sha, “On timeout driven power management
policies in wireless networks,” Proceedings of IEEE Global
Telecommunications Conference, Dallas, 2004, vol. 6, pp. 4097-4103

P. Rong, and M. Pedram, “Determining the optimal timeout values for a power-
managed system based on the theory of Markovian processes: offline and
online algorithms,” Proceedings of Design Automation and Testing Europe
(DATE), Munich, March 2006, pp. 1128-1133.

Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba, ‘“Advanced
configuration and power interface specification,” ACPI Specification
Document, Revision 3, 2004.

Hewlett-Packard Corporation, Intel Corporation, Microsott Corporation,
Phoenix Technologies Ltd. and Toshiba Corporation, “Advanced Configuration
and Power Interface Specification,” Rev — 5, December 2011, pp. 1 — 958.

C. H. Hsu and W. C. Feng, “A feasibility analysis of power awareness in
commodity-based high-performance clusters,” IEEE International Cluster
Computing, Cardiff, UK, 2005, pp. 1-10.

V. W. Freeh, D. K. Lowenthal, P. Feng, N. Kappiah, R. Springer, L. B.
Rountree, and E. M. Femal, “Analyzing the energy-time trade-off in high-
performance computing applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 6, pp. 835-848, 2007.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced
CPU energy,” Proceedings of the 1% USENIX Conference on Operating
Systems Design and Implementation, Monterey, CA, 1994, pp. 449-471.

Page | 114

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” Proceedings of Annual Symposium on Foundations of Computer
Science, Milwaukee, W1, October 1995, pp. 374-382.

F. Krisztian, S. Reinhardt, and T. Mudge, “Automatic performance setting for
dynamic voltage scaling,” Wireless Networks, vol. 8, no. 5, pp. 507-520, 2002.
F. Jason, and M. Satyanarayanan, “Managing battery lifetime with energy-
aware adaptation,” ACM Trans. on Computer Systems, vol. 22, no. 2 pp. 137-
179, 2004

K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for dynamic
speed setting of a low-power CPU,” Proceedings of the first International
Conference on Mobile Computing and Networking, Berkeley, CA, November
1995, pp. 13-25.

D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld, “Policies for
dynamic clock scheduling,” Proceedings of the 4™ Conference on Symposium
on Operating System Design and Implementation, San Diego, CA, October
2000, vol. 4, pp. 6-6.

J. Lorch and A. Smith, “PACE: a new approach to dynamic voltage
scaling,” IEEE Trans. on Computers, vol. 53, no. 7, pp. 856-869, 2004.

B. C. Mochocki, S. H. Xiaobo, and G. Quan, “A unified approach to variable
voltage scheduling for nonideal DVS processors,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 9, pp. 1370-1377,
2004.

T. Pering, T. Burd and R. Brodersen, “The simulation and evaluation of
dynamic voltage scaling algorithms,” Proceedings of International Symposium
on Low-Power Electronics Design (ISLPED 98), Monterey, CA, August 1998,
pp- 76-81.

T. Pering, T. Burd, and R. Brodersen, “Voltage scheduling in the IpARM
microprocessor system,” Proceedings of IEEE International Symposium on
Low Power Electronics and Design (ISLPED'00), Monterey, CA, 2000, pp. 96-
101.

T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled
microprocessor system,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11,

pp. 1571-1580, 2000.

Pagel 115

[154]

[155]

[156]

[157]

N. Pettis, Le Cai, and Y. H. Lu, “Statistically optimal dynamic power
management for streaming data,” IEEE Trans. on Computers, vol. 55, no. 7, pp.
800-814, 2006.

V. W. Freeh, N. Kappiah, D. K. Lowenthal, and T. K. Bletsch, “Just-in-time
dynamic voltage scaling: exploiting inter-node slack to save energy in MPI
programs,” Journal of Parallel and Distributed Computing vol. 68, no. 9, pp.
1175-1185, 2008.

L. M. Yeol, V. W. Frech, and D. K. Lowenthal, “Adaptive, transparent CPU
scaling algorithms leveraging inter-node MPI communication
regions,” Parallel Computing, vol. 37, no. 10 pp. 667-683, 2011.

R. Barry, D. K. Lownenthal, B. R. Supinski, M. Schulz, V. W. Freeh, and T.
Bletsch, “Adagio: making dvs practical for complex hpc applications,”
Proceedings of ACM International Conference on Supercomputing, Portland,

Oregon, 2009, pp. 460-469.

[158]Y. H. Lu, L. Benini, and G. DD. Micheli, “Power aware operating systems for

[159]

[160]

[161]
[162]
[163]

[164]

interactive systems,” IEEE Trans. on Very Large Scale Integration (VLSI)
systems, vol. 10, no. 2, pp. 119-134, April 2002.

A. Varma, B. Ganesh, M. Sen, S. Choudhary, L. Srinivasan, and B. Jacob, “A
control theoretic approach to dynamic voltage scaling,” Proceedings of
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems (CASES *03), San Jose, CA, October 2003, pp. 255-266.
K.Y. Mun, D.W. Kim, D.H. Kim, and C. I. Park, “dDVS: An efficient dynamic
voltage scaling algorithm based on the differential of CPU utilization,”
Proceedings of 9™ Asia-Pacific Conference (ACSAC 2004), Beijing, China,
September 2004, pp. 160-169.

John Clemens, http:/www.deater.net/john/powernowd.html, 2003-2011.

Carl Thompson, http://www.carlthompson.net/software/cpuspeed, 2008.

V. Pallipadi and A. Starikovskiy, “The Ondemand Governor past, present, and
future,” Proceedings of the LINUX Symposium, Ottawa, Canada, July 2006,
vol. 2, pp. 223-238.

D. A. Bader, V. Agarwal, K. Madduri, and S. Kang, “High performance
combinatorial algorithm design on the Cell broadband Engine

processor,” Parallel Computing, vol. 33, no. 10, pp. 720-740, 2007.

Page | 116

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

B. Francesco, and R. Giacobazzi, “A fast implementation of the octagon
abstract domain on graphics hardware,” Static Analysis, LNCS, vol. 4634,
2007, pp. 315-332.

G. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi, and K. K. Szabé,
“Lattice QCD as a video game,” Computer Physics Communications, vol. 177,
no. 8, pp. 631-639, 2007.

1. Khaled and F. Bodin, “Implementing Wilson-Dirac operator on the cell
broadband engine.” Proceedings of ACM Annual International Conference on
Supercomputing, Austin, TX, 2008, pp. 4-14.

I. Khaled and F. Bodin, “Efficient simdization and data management of the
lattice qcd computation on the cell broadband engine,” Scientific
Programming, vol. 17, no. 1, pp. 153-172, 2009.

J. D. Oweans, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Letfohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80-113. 2007.

J. Spray, J. Hill, and A. Trew, “Performance of a lattice quantum chromo-
dynamics kernel on the cell processor,” Computer Physics
Communications, vol. 179, no. 9, pp. 642-646, 2008.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“Scientific computing kernels on the cell processor,” International Journal of
Parallel Programming, vol. 35, no. 3 pp. 263-298, 2007.

R. Allen, and K. Kennedy, “Automatic translation of Fortran programs to
vector form,” ACM Trans. on Programming Languages and Systems
(TOPLAS), vol. 9, no. 4 pp. 491-542, 1987.

M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A.
Rountev, and P. Sadayappan, “A compiler framework for optimization of affine
loop nests for GPGPUs,” Proceedings of ACM Annual International
Conference on Supercomputing, Austin, TX, 2008, pp. 225-234.

S. Lee, SJ. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM Sigplan
Notices, vol. 44, no. 4, pp. 101-110, 2008.

Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and Tao Zhang,
“Supporting OpenMP on cell,” International Journal of Parallel
Programming, vol. 36, no. 3 pp. 289-311, 2008.

Page | 117

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

S. Ryoo, C. 1. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Z. Ueng, J. A.
Stratton, and W. W. Hwu, “Program optimization space pruning for a
multithreaded gpu,” Proceedings of the 6" Annual IEEE/ACM International
Symposium on Code Generation and Optimization, Boston, MA, USA, 2008,
pp. 195-204.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix—vector multiplication on emerging multi-core
platforms,” Parallel Computing, vol. 35, no. 3, pp. 178-194, 2009.

Michael Wolfe, “Implementing the PGI accelerator model,” Proceedings of the
3t Workshop on General-Purpose Computation on Graphics Processing Units,
Pittsburgh, PA, USA, 2010, pp. 43-50.

Francois Bodin and Stephane Bihan, “Heterogeneous multicore parallel
programming for graphics processing units,” Scientific Programming, vol. 17,
no. 4 pp. 325-336, 2009.

P. Bellens, J. M. Perez, F. Cabarcas, A. Ramirez, R. M. Badia, and J. Labarta,
“CellSs: Scheduling techniques to better exploit memory hierarchy,” Scientific
Programming, vol. 17, no. 1 pp.77-95, 2009.

Clint Whaley, Antoine Petitet, and Jack J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing, vol.
27, no. 1 pp. 3-35, 2001.

M. Puschel, J. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
and J. Xiong, “SPIRAL: code generation for DSP transforms,” Proceedings of
the IEEE, vol. 93, no. 2 pp. 232-275, 2005.

M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the
FFT,” Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, Seattle, Washington, USA, 1998, vol. 3, pp. 1381-1384.

R. Vuduc, J. W. Demmel, and Katherine A. Yelick, “OSKI: a library of
automatically tuned sparse matrix kernels,” Journal of Physics: Conference
Series, vol. 16, no. 1, pp. 521, 2005.

L. Parolini, B. Sinopoli, and B. H. Krogh, “Reducing data center energy
consumption via coordinated cooling and load management,” Proceedings of
conference on Power aware computing and systems, (HotPower’08), San

Diego, CA, USA, 2008, vol. 8, pp. 14-14.

Page | 118

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 338-347, 2010.

R. A. Bradley, “Climate Change Mitigation and Copenhagen: An IEA
Perspective,” International Energy Agency, 2009, pp. 1-32.

R. Mooney, K. P. Schmidt, and R. S. Studham, “NWPerf: a system wide
performance monitoring tool for large Linux clusters,” Proc. IEEE
International Conference on Cluster Computing, Sept. 20-23, 2004, pp. 379-
389.

Shinan Wang, Hui Chen and Weisong Shi, “SPAN: A software power analyzer
for multicore computer systems”, Sustainable Computing: Informatics and
Systems, vol. 1, no. 1, pp. 23 — 34, Mar 2011.

Shuyi Chen, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting and
William H. Sanders, “Using CPU gradients for performance-aware energy
conservation in multitier systems ~, Sustainable Computing: Informatics and
Systems, vol. 1, no. 2, pp. 113 — 133, Jun 2011.

Stefan Naumann, Markus Dick, Eva Kem and Timo Johann, *“The
GREENSOFT Model: A reference model for green and sustainable software
and its engineering”, Sustainable Computing: Informatics and Systems, vol. 1,
no. 4, pp. 294 — 304, 2011.

Q. Tang, T. Mukherjee, S. K. S. Gupta, and P. Cayton, "Sensor-based fast
thermal evaluation model for energy efficient high-performance data centers,”
Proc. 4™ International Conference on Intelligent Sensing and Information
Processing, 2006 (ICISIP 2006), 20086, pp. 203-208.

T. Heath, A. P. Centeno, P. George, L.. Ramos, Y. Jaluria, and R. Bianchini,
"Mercury and Freon: temperature emulation and management for server
systems,” ACM SIGARCH Computer Architecture News, vol. 34, no. 5, pp.
106-116, 2006.

Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, "Energy-efficient thermal-
aware task scheduling for homogeneous high-performance computing data
centers: a cyber-physical approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 11, pp. 1458-1472, 2008.

A. P. Chandrakasan, M. Potkonjak, R.Mehra, J. Rabaey, and R. W. Brodersen,

“Optimizing power using transformations,” IEEE Trans. on Computer-Aided

Page | 119

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

Design of Integrated Circuits and Systems, vol. 14, no. 1, pp. 12-31, January
1995.

K. K. Parhi, “Algorithm transformation techniques for concurrent processors,”
Proceedings of IEEE, vol. 77, no. 12, pp. 1879-1895, December 1989.

M. Potkonjak and J. Rabaey, “Fast implementation of recursive programs using
transformations,” Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal processing (ICASSP), San Francisco, CA, March
1992, vol. 5, pp. 569-572.

C. Leiserson and J. Saxe, “Optimizing synchronous systems,” Proceedings of
the 22™ Annual Sympeosium on Foundations of Computer Science (SFCS'81),
Nashville, TN, USA, 1981, pp. 23-36.

H. Loomis, and B. Sinha, “High speed recursive digital filter realization,”
Circuits, Systems, and Signal Processing, vol. 3, no. 3, pp. 267-294, 1984.

K. K. Parhi and D.G. Messerschmitt, “Pipeline interleaving and parallelism in
recursive digital filters,” IEEE Trans. on Acoustics, Speech and Signal
Processing, vol. 37, no. 7, pp. 1099-1117, July 1989.

S. Malik and S. Devadas, “A survey of optimization techniques targeting low
power VLSI circuits,” Proceedings of the 32™ ACM/IEEE Design Automation
Conference (DAC’95), San Francisco, CA, 1995, pp. 242-247.

S. Iman and M. Pedram, “Logic Synthesis for Low power VLSI Designs,”
Kluwer Academic Publisher, MA, USA, pp. 236, 1998.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou, “Pre-
computation-based sequence logic optimization for low-power,” IEEE Trans.
on Very Large Scale Integration (VLSI) systems, vol. 2, no. 4, pp. 426-436,
December 1994.

M. C. Chang, C. S. Chang, C. P. Chao, K. I. Goto, M. Teong, L.. C. Lu, and C.
H. Diaz, “Transistor and circuit design optimization for low power CMOS,”
IEEE Trans. on Electron Devices, vol. 55, no. 1, pp. 84-95, January 2008.

K. Chen and C. Hu, “Device and technology optimizations for low power
design in deep sub-micron regime,” Proceedings of ACM/IEEE International
Symposium on Low-Power Electronic Design (ISLPED 97), Monterey, USA,
1997, pp. 312-316.

J. Rabaey, “Reconfigurable processing: the solution to low-power

programmable DSP,” Proceedings of the IEEE International Conference on

Page | 120

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

Acoustics, Speech and Signal Processing (ICASSP 97), Munich, Germany,
April 1997, vol. 1, pp. 275-278.

T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “Dynamic
voltage scaled microprocessor system,” TEEE Journal of Solid-State Circuits,
vol. 35, no. 11, pp. 1571-1580, November 2000.

M. Goel and N. R. Shanbhag, “Dynamic algorithm transformations (DAT) — a
systematic approach to low-power reconfigurable signal processing,” IEEE
Trans. on Very Large Scale Integration (VLSI) systems, vol. 7, no.4, pp. 463-
476, December 1999.

A Sinha, A. Wang and A. Chandrakasan, “Energy scalable system design,”
IEEE Trans. on Very Large Scale Integration (VLSI) systems, vol. 10, no. 2,
pp- 135-145, April 2002.

A. Chandrakasan, R. Amirtharajah, J. Goodman, and W. Rabiner, “Trends in
low power digital signal processing,” Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS 98), Monterey, USA, June 1998,
vol. 4, pp. 604-607.

S. Lee and T. Sakurai, “Run-power control scheme using software feedback
loop for low-power real-time applications,” Proceedings of the Asia-South
Pacific Design Automation Conference (ASPDAC), Yokohama, Japan, 2000,
pp- 381-386.

P. K. Gupta and G Singh, “A framework of creating intelligent power profiles
in operating systems to minimize power consumption and greenhouse effect
caused by computer systems,"” Journal of Green Engineering, vol. 1, no. 2, pp.
145 — 163, 2011.

P K Gupta and G Singh, “User centric framework of power schemes for
minimizing energy consumption by computer systems,” IEEE International
Conference on Radar, Communication and Computing, (ICRCC-12), India,
Dec. 2012.

P. K. Gupta and G. Singh, “Energy-sustainable framework and performance
analysis of power scheme for operating systems: a tool,” International Journal
of Intelligent Systems and Applications, vol. 5, no. 1, pp. 1 — 15, 2013.

M. Webb, “SMART 2020: Enabling the low carbon economy in the
information age,” The Climate Group, London, vol. 1, no. 1 pp.1-1, 2008.

Page | 121

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D.
Tarjan, “Temperature-aware microarchitecture: modeling and
implementation,” ACM Trans. on Architecture and Code Optimization, vol. 1,
no. 1, pp. 94-125, 2004.

N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage
energy and temperature,” Proceedings of 45™ Annual TEEE Symposium on
Foundations of Computer Science, Italy, Oct. 17-19, 2004, pp. 520-529.

H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak, and P. WH Wong,
“Energy efficient online deadline scheduling,” Proceedings of the 18™ Annual
ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 795-804.

W. C. Kwon and T. Kim, “Optimal voltage allocation techniques for
dynamically variable voltage processors,” ACM Trans. on Embedded
Computing Systems (TECS), vol. 4, no. 1, pp. 211-230, 2005.

M. Li, A. C. Yao, and F. F. Yao, “Discrete and continuous min-energy
schedules for wvariable voltage processors,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 103, no. 11, pp.
3983-3987, 2006.

M. Li and F. F. Yao, “An efficient algorithm for computing optimal discrete
voltage schedules,” STAM Journal on Computing, vol. 35, no. 3, pp. 658-671,
2005.

H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Power-aware scheduling
for periodic real-time tasks,” IEEE Trans. on Computers, vol. 53, no. 5, pp.
584-600, 2004.

1. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power
optimization of variable-voltage core-based systems,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 12,
pp. 1702-1714, 1999.

C. Im, S. Ha and H. Kim, “Dynamic voltage scheduling with buffers in low-
power multimedia applications,” ACM Trans. on Embedded Computing
Systems (TECS), vol. 3, no. 4, pp. 686-705, 2004.

C. M. Krishna, and Y. H. Lee, “Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systems,” IEEE Trans.

on Computers, pp. 1586-1593, 2003.

Page |1 122

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

R. N. Mahapatra and W. Zhao, “An energy-efficient slack distribution
technique for multimode distributed real-time embedded systems,” IEEE Trans.
on Parallel and Distributed Systems, vol. 16, no. 7, pp. 650-662, 2005.

G. Quan, and X. S. Hu, “Energy efficient DVS schedule for fixed-priority real-
time systems,” ACM Trans. on Embedded Computing Systems (TECS), vol. 6,
no. 4, pp. 29, 2007.

D. Shin and J. Kim, “Power-aware scheduling of conditional task graphs in
real-time multiprocessor systems,” Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPFED’03), Seoul, Aug. 25-27, 2003,
pp- 408-413.

P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R.
Lauwereins, “Energy-aware runtime scheduling for embedded-multiprocessor
SOCs,” IEEE Design and Test, vol. 18, no. 5, pp. 46-58, 2001.

X. Zhong and C. Z. Xu, “Energy-aware modeling and scheduling for dynamic
voltage scaling with statistical real-time guarantee,” IEEE Trans. on
Computers, vol. 56, no. 3, pp. 358-372, 2007.

D. Zhu, D. Mosse, and R. Melhem, “Power-aware scheduling for AND/OR
graphs in real-time systems,” IEEE Trans. on Parallel and Distributed
Systems, vol. 15, no. 9 pp. 849-864, 2004.

J. Zhuo, and C. Chakrabarti, “Energy-efficient dynamic task scheduling
algorithms for DVS systems,” ACM Trans. on Embedded Computing Systems
(TECS), vol. 7, no. 2, pp. 17, 2008.

J. A. Barnett, “Dynamic task-level voltage scheduling optimizations,” IEEE
Trans. on Computers, vol. 54, no. 5, pp. 508-520, 2005.

D. P. Bunde, “Power-aware scheduling for make span and flow,” Proceedings
of the 18" Annual ACM Symposium on Parallelism in Algorithms and
Architectures, NY, USA, 2006, pp. 190-196.

S. Cho, and R. G. Melhem, “On the interplay of parallelization, program
performance, and energy consumption,” IEEE Trans. on Parallel and
Distributed Systems, vol. 21, no. 3 pp. 342-353, 2010.

Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for distributed
computing systems under different operating conditions,” IEEE Trans. on

Parallel and Distributed Systems, vol. 22, no. 8 pp. 1374-1381, 2011.

Page | 123

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

Dibakar Das and Debabrata Das, “Back-off algorithm based power saving
mechanism in a multi-rate UE” Proceedings of IEEE 5™ Conference on Internet
Multimedia Systems Architecture and Application (IMSAA), Bangalore, India,
2011, pp. 1-6.

David Meisner, Brian T. Gold and Thomas F. Wenisch, “PowerNap:
eliminating server idle power”, Proceedings of the 14™ ACM international
Conference on Architectural Support for Programming Languages and
Operating Systems, Hamilton, Washington, DC, 2009, pp. 1 — 12.

Keng-Mao Cho, Chun-Hung Liang, Jun-Ying Huang, Chu-Shing Yang,
“Design and implementation of a general purpose power - saving scheduling
algorithm for embedded systems”, Proc. IEEE Conference on Signal
Processing, Communications and Computing (ICSPCC), Xi’an, 2011, pp. 1 —
6.

Jong-Phil Kim, Doo-Hwan Kim, Jang-Fui Hong, “Estimating power
consumption of mobile embedded software based on behavioral model”,
Proceedings of International Conference on Consumer Electronics (ICCE), Las
Vegas, NV, 2010, pp. 105 — 106.

Shan Li, Edmund M-K. Lai, Mohammed Javed Absar, “Minimizing embedded
software power consumption through reduction of data memory access”,
Proceedings of the 2003 Joint Conference of the 4™ International Conference
on Information, Communications and Signal Processing and 4™ Pacific Rim
Conference on Multimedia (ICICS-PCM 2003), Singapore, Dec. 15-18, 2003,
pp. 309 - 313.

Tiefei Zhang, Ying-Jheng Chen, Che-Wei Chang, Chuan-Yue Yang, Tei-Wei
Kuo and Tianzhou Chen, “Power management strategies in data transmission”,
Proceedings of 16™ IBEE Asia and South Pacific Design Automation
Conference, Yokohama, Jan. 2011, pp. 668 — 675.

Keqin Li, “Performance optimization with energy constraint in heterogeneous
multiple computer system”, Proc. IEEE International Parallel & Distributed
Processing Symposium, Shanghai, 2011, pp. 1930 — 1939.

Osman S. Unsal and Isracl Koren, “System-level power-aware design
techniques in real-time tystems”, Proceedings of the IEEE, vol. 91, no. 7, pp.
1053 — 1069, 2003.

Page | 124

[245]

[246]
[247]
[248]

[249]

[250]

[251]

P. K. Gupta and G Singh, “Energy-sustainable snapshot algorithm for operating
systems to minimize power consumption,” Elsevier journal of Sustainable
Computing: Informatics and Systems, 2012. (Under revision)
http:/fwww.softwareok.com/?seite=Microsoft/StressMyPC
http://metbeans.org/community/news/show/1556.html

J. Connery, J. M. Enery, D. Hickey, and M. Boubekeur, "Profiling real-time
Java applications,” Proc. IEEE International Conference on Computer
Engineering & Systems (ICCES'07), Egypt, Nov. 27-29, 2007, pp. 319-324.

S. Tallam and R. Gupta. "Profile-guided Java program partitioning for power
aware computing,” Proceedings of 18™ IEEE International Symposium on
Parallel and Distributed Processing, Santa Fe, New Mexico, 2004, pp. 156-
164.

Peng Hao-Lin, Liu Yi-Min, You Xiang-Bai, “Research on memory leakage in
Java application,” Proceedings of IEEE International Conference on Computer
Science and Information Technology, Wuhan, China, 2010, vol. 2, pp. 146-148.
G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Trwin and M.
Wolcezko, “Tuning garbage collection for reducing memory system energy in
an embedded Java environment,” ACM Trans. on Embedded Computing

Systems, vol. 1, no. 1, pp. 27-55, 2002.

Page | 125

