OPTIMIZATION OF SERVICE SELECTION AND
MESSAGE SECURITY IN ENTERPRISE WEBSERVICE
PLATFORM FOR INTEROPERABILITY

by
RAJNI MOHANA
a thesis submitted for fulfillment of the requirements

for the degree of

Doctor of Philosophy
in
Computer Science and Engineering
Under the Guidance of
Prof. DEEPAK DAHIYA

Department of Computer Science and Engineering

Jaypee University of Information Technology

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN-173234
INDIA

Roll No. 106201 JAN, 2013

CERTIFICATE

This is to certify that the thesis entitled, “OPTIMIZATION OF SERVICE SELECTION
AND MESSAGE SECURITY IN ENTERPRISE WEBSERVICE PLATFORM FOR

INTEROPERABILITY”’ which is being submitted by RAJNI MOHANA in fulfillment for

the award of degree of Doctor of Philosophy in computer Science Engineering by the Jaypee
University of Information Technology, is the record of candidate’s own work carried out by her
under my supervision. This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or diploma.

Dr. Deepak Dahiya
Professor

Computer Science and Engineering
Jaypee University of Information Technology

Waknaghat.

ACKNOWLEDGEMENT

“I bow in adoration unto the Great Spirit, the Principle of principles, the One who has no
beginning, no middle, no end, the unborn, the One who knows no growth and no decay, the
immortal.”

Now, I have come to the end of my journey of Ph.D. and finally take this opportunity to
express my gratitude to friends, colleagues, collaborators, relatives, etc. who have provided me
the moral and scientific support for completion of this thesis.

First of all I would like to thank my supervisor, Dr. Deepak Dahiya. His actions have
inspired me to dream more, learn more, do more and become more. His guidance, scientific
skills, talent and knowledge has enabled me to attain the level where I find myself today. I am
extremely grateful for his unfailing patience, readiness to help throughout by affectionate

behavior, constructive criticism, useful advice and astute guidance.

I would like to express my sincere thanks to Dr. Y Medury, COO of Jaypee Education System. I
am also thankful to our Vice Chancellor Prof. Ravi Prakash and Director, Brig. Balbir Singh
for their invaluable support. Also I would like to offer my deep gratitude to Prof. Satya
Prakash Ghrera, HOD (CSE) for approving my endeavor and imparting their beneficial
suggestions. I am also thankful to Prof. T.S. Lamba for his ever challenging guidance to explore

new ideas.

I am short of words in expressing my gratitude towards my husband Dr. Vimal Paul who
have been and will be guiding star in my life. It is his inspirations and prayers which have always
been a driving force behind all this. I am indebted to my father in law and mother in law for their
unfailing patience, great tolerance, inspiration and lots of love and care. I know they will be the
happiest persons to see my thesis in print. I am thankful to my Son Master Aryavir Paul and hope
he forgives me for spending my time in the research which he deserved. Special thanks to my
parents and brother for their guidance and support that I have been able to complete this arduous
journey.

A word of thanks to the library staff of our university.

TABLE OF CONTENTS

Page No.
Acknowledgement i
Abstract i
List of Figures viil
List of Tables X
List of Acronymns and Abbreviations X1
1. Introduction 1
1.1 Service Oriented Architecture (SOA) 3
1.2 Achieving SOA 4
1.2.1 Webservice Platform 5
1.2.2 Enterprise Service Bus 7
1.3 Applications of SOA 7
1.4 Research Domains in SOA 8
1.5 Advantages of SOA 9
1.6 Disadvantages of SOA 10
1.7 Organization of the Thesis 10
2. Related Study 13
2.1 Service Selection 13
2.1.1 Semantic Approach 14
2.1.2 Non-Semantic Approach 16
2.1.3 Analysis of the Service selection protocols 18
2.2 Rewriting attacks and secure conversation 18
2.3 Secure dissemination 21
2.4 Research Gaps 22
2.5 Motivation 22
2.6 Objective and Scope 22
2.7 Summary 23

3. Optimized Business Service For The ESB Platform
3.1 Background
3.1.1 Fuzzy Logic
3.1.2 Fuzzy C- means Clustering
3.1.3 Particle Swarm Optimization
3.2 Proposed Business Service Directory for the ESB Platform
3.3 Information Flow for the Proposed Business Service Directory
3.4 Detailed Design for the Business Service Directory
3.4.1 Automatic generation of rules from dataset
3.4.2 Designing the Inference Engine
3.5 Implementation of the Optimized Business Service Directory
3.5.1 Automatic Generation of Rules
3.5.2 Implementation of Inference Engine
3.5.3 Working of the Proposed Business Service Directory
3.6 Results and Observations

3.7 Summary

4. A SOAP Model against Rewriting Attacks and Insecure Conversation
4.1 Background
4.2 Proposed Model

4.2.1 Working of the Model

4.2.2 Model Implementation: Detection of XML Rewriting Attacks
4.3 Results and Observations: Performance Issues in Model Evaluation

43.1 Comparison of the proposed model with the earlier models

4.4 Summary

5. Secure Content Based Dissemination of XML Content

5.1 Background
5.1.1 XML
5.1.2 DNA

5.1.3 Restriction enzymes

vi

25
25
25
26
27
28
29
31
31
38
39
40
41
42
45
47

49
49
50

51
54
59
62
63

65
65
66
68
68

5.2 Proposed secure dissemination technique 69

5.3 Working of the proposed secure dissemination technique 72
5.3.1 XML File Encryption in a DNA strand 13
5.3.2 Assigning a Starting and Restriction enzyme to each consumer 74
5.3.3 Scattering of data in the garbage file 75

5.4 Proposed algorithm of the secure dissemination s

5.4.1 The algorithm followed at server end
5.4.2 The algorithm followed at consumer end ;8)
5.5 Results and Discussion %0
5.5.1 Probability of getting the right SRE and ERE ol
5.5.2 Time taken to find the right SRE and ERE %
5.5.3 Requirement satisfaction 01
5.3 Summary a4
6. Conclusion and Contributions 85
6.1 Thesis Summary 85
6.2 Concluding remarks 85
6.2.1 Service Selection using Optimized Business Service Directory 86
6.2.2 SOAP Model for against rewriting attacks 86

and insecure conversation

6.2.3 Proposed Secure Dissemination Model 87
6.3 Contributions 38
6.4 Future work 90
6.5 Summary 90
REFERENCES 93

LIST OF PUBLICATIONS 99

vii

LIST OF FIGURES

Figure 1.1: Enterprise Architecture framework for an enterprise

Figure 1.2: Architectures for IT Enterprise

Figure 1.3: Web service Platform

Figure 1.4: Enterprise Service Bus Platform in SOA

Figure 1.5: Online shopping Scenario

Figure 1.6: Research Domains in SOA

Figure 2.1: Classification of approaches of service discovery

Figure 3.1: Fuzzy expert system

Figure 3.2: Architecture of the proposed Business Service Directory

for the ESB Platform

Figure 3.3: UML diagram of proposed Business service registry

Figure 3.4: Information flow for optimized service registry component

Figure 3.5: Flow chart for fuzzy rule based model

Figure 3.6: Membership functions for input QoS Parameters

Figure 3.7: Membership functions for output QoS Parameters

Figure 3.8: Architecture of the business service directory

Figure 3.9: EER diagram of used database

Figure 3.10: Snap shot of the home page

Figure 3.11: Snapshot of the submission of a web service in the
service publishing panel

Figure 3.12: Snapshot of the service publishing panel

Figure 3.13: Snapshot of the submission of a web service in the
service searching panel

Figure 3.14: Snapshot of the submission of a web service in the
service publishing panel

Figure 3.15: Snapshot of the heap memory consumption of the component

viii

Page No.

oose - o W

26
29

30

31
32
33
33
38
39
42
43

43
44

44

45

Figure 3.16: Snapshot of the time consumed to perform web publishing 46

Figure 3.17: Snapshot of the time consumed to perform web searching 46
Figure 4.1: SOAP Structure 49
Figure 4.2: Proposed SOAP structure 51
Figure 4.3: Depicting the attack scenario 55
Figure 4.4: Decrypted / original message SOAP message 56
and its hierarchical diagram
Figure 4.5 SOAP message with content tampered and its hierarchical diagram 57
Figure 4.6: SOAP content where the message is shifted to a bogus header 58

and its hierarchical diagram

Figure 4.7: Processing the SOAP message at the receiving end 59
Figure 4.8: Snapshot of time profiling of SOAPcreator in NetBeans 60
Figure 4.9: Encryption of the message for sending with respect to 61

number of tags in the SOAP message

Figure 4.10: Time required to encrypting the signature with respect to 61
number of tags in the SOAP message
Figure 4.11: Computing time required to create an plain SOAP message 62
(series 1) and encrypted message (series 2) with respect to
number of tags in the SOAP message
Figure 5.1: Tree structure of an XML data 65
Figure 5.2: An XML document and its corresponding tree structure 66
Figure 5.3: Linear list representation of the tree in memory 67
Figure 5.4: The double helical structure of DNA 68
Figure 5.5: The architecture diagram of the secure dissemination interface 70
Figure 5.6: The prepared temporary XML file 71
Figure 5.7: Graph of number of bits versus number of combinations 76
in terms of exponentiation
Figure 5.8: Diagrammatic representation of the node 77
Figure 5.9: Graph to Represent the number of bits versus the probability 81
to find the right combination
Figure 5.10: Graph for possible combination and year to crack the right 86

combination with respect to the various symmetric cryptosystem

ix

Table 2.1:

Table 2.2:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table S.1:
Table 5.2:
Table 5.3

Table 5.4

LIST OF TABLES

List of advantages and disadvantages of various soft computing
techniques

A quick summary of work done by various researchers

Web service quality attributes

Data set on searching the web service phone

Rule generated from the data set and there corresponding weight
Comparison of time consumed to parse 26 rules vs. 243 rules
Representation to map DNA nitrogenous bases to Binary number
SRE and ERE assigned to the various consumer

Number of combination versus number of combinations in
quaternary and binary number systems

Time required cracking the combination in various types of

symmetric cryptosystem

Page No.

17

20
36
37
41
47
73
75
76

82

CHAPTER I: INTRODUCTION

In the current scenario of research Service Oriented Architecture (SOA) can be described as one
of the components of Enterprise Architecture (EA). EA came into existence from one of the most
cited works by J. A. Zachman called as “Zachman Framework for Enterprise Architecture”
developed in 1967. The EA provides a holistic view of an entire organisation. It is a coherent
whole of principles, methods, and models that are used in the design and realisation of an
enterprise’s organisational structure, business processes, information systems, and infrastructure
[1]. EA covers the overall construction of the enterprise in terms of business operations, finance,
people, and buildings in addition to technology, and it covers technologies other than IT, such as

for manufacturing or transport. The objective of EA is defined as

"The end object of Enterprise Architecture is not building and running systems, getting
programs to run but is to engineer the enterprise so it is as LEAN as possible (minimum possible
complexity and minimum possible costs) and MEAN as possible, that is, so that is can

dynamically accommodate external demands." John Zachman [1]

The various elements in the EA and the relationship between various components are shown in

figure 1.1.

Enterprise architecture '-.
Business process i
@stem Architecture \

Software Architecture

=
=

Figure 1.1: Enterprise Architecture framework for an enterprise

Interopatability
consistency,
efficiency

Business
Concerns

People, process
and technologies

Enterprise architecture as shown in figure 1.1 consists of system architecture and strategies. It is
the job of the architect to align system architecture with the strategies of the enterprise. The

strategies can be

e Business process
e People, process and technologies
e Interopatability consistency & efficiency

e Political environment

System architecture details the way in which desired functionality is met by hardware and
software components. It also figures out how the components relate to each other and the
intended users of the system. As shown in figure 1.1, system architecture is composed of

software architecture and the hardware.

Application and software architecture terms are used synonymously. Software architecture is the
blueprint for the system as well as the project developing. It defines the work assignments that
must be carried out by design and implementation teams. It assures that the application is built in
right way and fulfills the objective of building the application. This normally includes things
such as decomposing the application into its constituent classes and components, making sure
design patterns are used in the right way, building or using frameworks, etc. It consists of both
business and service concerns. The business concerns are defined as the functional or core

concerns of the application while the service concerns are defined as nonfunctional concerns.

Software architecture to build an IT driven enterprise is shown in figure 1.2. In today’s
distributed computing environment, the code is distributed in the software application in the
middle layer hereby termed middleware. The middleware ensures an n-layer architecture that
adapts a “plug and deploy model” providing platform independence to various layers, flexibility

in coding etc.

1.1 Service Oriented Architecture (SOA)

SOA [2] configures entities (services, registries, contracts, and proxies) to maximize loose

coupling and reuse. It can also be defined as a deployment infrastructure on which new

applications can quickly and easily be built. Organization for the Advancement of Structured

Information Standards (OASIS) defines SOA as the following:

A paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains. It provides a uniform means to offer, discover,

interact with and use capabilities to produce desired effects consistent with measurable

preconditions and expectations.

Software Architecture

Y

Client owns infrastructure

Y

Third party own:

s infrastructure

SOA

A 4 v

2- tier (oracle / VB/ 3 tier (MVC/ N-tier (java EE/
D2K /SQL Server JSP/Servlet ASP) .net /EJB)
Jini

Figure 1.2: Architectures for IT Enterprise

Corba

A A

Web services

J. Leon Zhao et al. [3] states in the paper “Services computing as the foundation of enterprise
agility: Overview of recent advances and introduction to the special issue” that services
computing is a new research field since the year 2003 that goes beyond traditional computing
disciplines as it includes not only architectural, programming, deployment, and other engineering
issues, but also management issues such as business component modeling, business process
design, and service delivery. It explains the importance of service computing in the agile

world.

SOA as mentioned above can be implemented with web services. The web services [1] represent
a type of relationships-based interactions (activities) between at least one service provider and
one service consumer to achieve a certain business goal or solution objective [4].This
relationship can be established by web service platform or enterprise service Bus. The important
features of SOA are techniques like service composition, discovery, message-based
communication, and model-driven implementation. These features are the reason for fast

development of effective and flexible solutions in an enterprise.

In enterprise world for information dissemination, Service Oriented Architecture (SOA) plays an
important role in developing Business to Business (B2B)/ Business to Consumer (B2C)
applications with agility. Applications built on SOA requires interoperating software
applications, running on heterogeneous platforms and frameworks like jini, Corba, Web services
as shown figure 1.2. With SOA, the IT systems perform services that are defined and described
in the context of the enterprise’s business activities. This is the basis for the propagating the
concept of system interoperability that SOA brings, not only within enterprises, but also between

enterprises.

1.2 Achieving SOA

SOA are based on XML that is widely used for cross-platform data communication
e WSDL (Web Service Description Language) [5]: It used to describe the service and
how a service requester can communicate with the web service. XML is used to
define the public interface to the web service. These include protocol bindings and

message formats required to interact with the web service listed in the directory.

e SOAP (Simple Object Access Protocol) [6]: It is based on XML that allows
communication among the web service by sending a one way message. Message
contains a structured data to be sent fro one process to another using any transport
protocol like TCP / HTTP/ SMTP. The data is packed in an envelope and the
communication is said to be completed when the recipient sends a reply back to

sender.

e UDDI (Universal Description, Discovery, and Integration specification) [5]: The
UDDI specifications define a way to publish and discover information about Web
services. The service requester can search the data in the directory, which maintains
WSAL files of all the services published by the service provider. UDDI creates a
platform-independent, open framework for describing services, discovering business

and integrating business services, using the internet.

Architecture for SOA requires providing connectivity among service providers and requesters,
facilitating their interactions even if they are not exactly matched. The pattern can be
implemented using a variety of middleware technologies and programming models. SOA can be

designed using any of the two architectures given below:
1.2.1 Web Service Platform

Web services are a means for business to communicate with each other and with clients; it helps
to provide business agility in a Business to Business (B2B)/ Business to Consumer (B2C)
applications. It allows organizations to communicate data without intimate knowledge of each
other's IT systems. Web services appear as a black box behind the firewall. Web services provide
a standard means of interoperating between different software applications, running on a variety
of platforms and/or frameworks. The Web Service Platform allows businesses to expose business
assets as services. Standardizing interactions amongst services has the added advantage that any
enterprise can out-source parts of its operation that it does not have expertise in. The

implementation of a SOA 1s done using a web service platform which is shown in figure 1.3.

| Service Registry

| Service Description

WSDL

S

Register

AVSDL

Service Client Service Provider

L Service Request Bind and Invoke —L
/

Figure 1.3: Web service Platform [7]

Service Description

Participants in a Web services model are categorized into three types

e Service Requester : Finding a web service of interest is an important task for a

service requester

e Service Provider: Publishing their web services in registries is the task of service

provider

e Service Registry: It maintains the details of all the web services which are
published by the service requester. It also enables the service to lookup for the best
service according to its requirements among large number of functionally-

equivalent services.

The web service platform allows service requesters and service providers to interact in consistent
manner independent of the underlying software domains and enforce business rules and policies
such as data validation rules, service level security, service-level management, service level
agreements . It also allows an SOA to scale up an enterprise —wide business requirements. To
provide interoperatability the basic web services platform consists of specifications (SOAP,
WSDL and UDDI). In order to generate composite services, it is required to discover and select
suitable web services for service requests. Some standards like Web Service Definition
Language (WSDL) can be used to describe functional aspects of a Web service in form of a
service description which is advertised in some Universal Description, Discovery and Integration

(UDDI) registries [7].

1.2.2 Enterprise Service Bus

Application built on SOA requires interoperating software applications, running on
heterogeneous platforms and/or frameworks, which can be achieved by using Enterprise Service
Bus (ESB) Platform. ESB is a middleware which provides a means for business to communicate
with each other and with clients. It is an infrastructure for SOA service connection and message
connection without intimate knowledge of each other's IT systems [6]. Figure 1.4 shows SOA in
ESB platform. It consists of service requesters, service providers, ESB gateway, ESB name
space Directory, Business service directory.

Business Service Directory is design-time directories or customized service directories which
give the details of the various services published by the service providers in the Zone [6]. When
a service requester looks for a service in BSD a service discovery protocol is used to find out the

best web service among various functionally equivalent services.

} A . [————
External service Internal Service Internal Service : . .
der 2 [Business Service
requesters requester 1 requester | Choreography
|
|
[rormmrmme o s s s s
ESB Gateway Enterprise Service Bus

|
|
|
! Service interaction, integration
|
|
|

External Service Internal service Internal service
Providers provider requester 1 provider

Figure 1.4: Enterprise Service Bus Platform in SOA [3]

1.3 Applications of SOA

SOA is applicable in many applications like healthcare, e-governance or any Business to
Business (B2B) or Business to Consumer (B2C) applications. Let us consider a scenario of a

B2C application like online shopping (figurel.5), seeing how it’s implemented using a web

services. When a client puts a request on the portal, a SOAP message is sent to the inventory to
check for the stock, if it’s available then the details of it is appended to the SOAP message, and
the message is further forwarded to billing department. The billing department further prepares
the invoice according to the incoming SOAP message, appends the bill information to the SOAP
message and sends the message to the shipping department, which takes care of shipping the

details to the right person by placing the order to the manufacturer’s web service.

2. After checking the

> | availability of the stock.

| 1= SOAP e
— I = send to billing department

Py Inventory department

l&, 1. Place the order Billing department

\ \ 3. Send shipping -
(o Lo address
\ﬁ\ —

4. Send
Send . ' invoice
QAP -]m-oicc
/ Shipping department
Online portal
e Manufacturer’s
u I 7. Deliver the order .)
' - N - ’ SOAP

6. Place the order to the
manufacturer

-

Figure 1.5: Online shopping Scenario
1.4 Research Domains in SOA

Adopting a SOA needs developing a service strategy that takes into account its business drivers,
context, and application domain (the problem space). The implementation needs various
decisions to be made in various domains as shown in figure 1.6 namely business, engineering,
operations and cross cutting domains [8]. Cross cutting domain has affect in all the domains as it
deals with all the non-functional concerns of the applications. The cross-cutting domain includes

such areas as training, education, and governance. Our problem space is the engineering domain.

Cross cutting Crozs cotting
Concams COnCerns

Engineering
Operations
Business

Cross CUting concems

Figure 1.6: Research Domains in SOA

The business domain deals with the various forms of service orientation and its impact in the
organization. Some of the drivers for service-oriented systems in this domain are the needs to be
on-demand, customizable, trusted, compliant, agile, and measurable. In the context of SOA the
engineering domain deals with the service-oriented system life cycle [9] as one of the main
aspects. The service-oriented system life cycle comprises of various phases like process models
that can be used to build service-oriented systems, requirement models for denoting functional
and non-functional aspects, platform- and computational-independent architectural abstractions,
design patterns, logging, model-driven code generation, verification, testing, and maintenance.

The operations domain deals with the various operations, its evaluation and optimization of
service-oriented systems. Some of the drivers in this domain are for service-oriented systems to
be ambient, user friendly, high impact, pervasive, and adoptable. This domain includes aspects
like adoption, monitoring, and support of deployed service-oriented systems. Cross-cutting

concerns are issues like governance, training, education which affects all the other domains.

1.5 Advantages of SOA

The integration of SOA applications can reduce the dependency of different types of IT systems,
reduce the cost of system maintenance and the complexity of the IT system operation, increase
the flexibility of the system deployment, and at the same time exclude the barrier of service

innovation [10].

It is the replacement of large, monolithic applications that have tiny interoperability interfaces,
grudgingly provided and not guaranteed, by smaller, modular services that have interface

descriptions and contracts. This is one of the fundamental contributions of SOA.

Reusability is the most frequently quoted reasons for SOA adoption as in today’s real world it’s
important to provide business agility in a B2B / B2C applications. For business agility we need
to capture and reuse the experience of the IT architects in such a way that future engagements
can be made simpler and faster. We do this by capturing knowledge gained from each
engagement and using it to build a repository of assets. IT architects can then build future
solutions that are based on these proven assets. This reuse saves time, money, and effort, and

helps ensure delivery of a solid, properly architected solution.

The features which make it a first choice to implement SOA are [3]:

e Pervasiveness

e Simplicity

e Platform-neutrality
e Scalability

e Business agility
1.6 Disadvantages of SOA

SOA Architecture would not be suitable for applications with GUI functionalities.
Application requiring heavy data exchange would become more complex if implemented using
SOA. An application which requires asynchronous communication can’t make use of SOA [6]. It
also becomes an added burden for standalone and short lived applications. So a wise choice is to

be made before selecting the architecture for any software application.
1.7 Organization of the Thesis
The thesis is organized as follows:

Chapter I of the thesis has introduces the concepts of SOA and how it fits in the overall structure
of enterprise architecture. It presents an overview of research domains of SOA. The chapter also

lists out the advantages and disadvantages of SOA.

10

Chapter II discusses the related study of the research work. It outlines the concepts of service
selection, XML processing and security. It outlines how the new paradigm has emerged to play a
significant role in service selection, XML processing and security as a result of the growing
demands of today’s software practitioners and applications. Furthermore, it provides the
motivation for this line of research along with the main research challenges of this study. At the
end the research gaps are listed and based on that objective of the proposed research work are

formulated.

Chapter III presents the optimized business service directory. The proposed business service
directory is a fuzzy expert system. The rules for the expert system are automatically generated
using particle swarm optimization. The dataset used to train the swarms is QWS dataset. The
chapter also contains the details of the implementation of the model. At the end results and

observations are discussed.

Chapter IV discusses about rewriting attack and how it leads to insecure conversation. A SOAP
Model is proposed with three recommendations. It also discusses the implementation of the
model and present how early detection of rewriting attacks are done, thus ensuring secure
conversation. At the end the overhead of the recommendations was discussed and a comparison

with respect to various existing models.

Chapter V discusses the proposed secure dissemination technique. It discusses how XML
encryption can be done using DNA encryption. The technique is computationally secure where
as the overhead of this technique is very less. The technique is implemented as a publish/

subscribe multicast interface.

Chapter VI concludes the thesis by drawing together the main arguments of this work and
summarizing the contributions that have been made. It also outlines the future scope of work that

could be carried out based on this line of research.

11

12

CHAPTER II: RELATED STUDY

As discussed in the previous chapter the research domain in SOA spans over engineering
domain, business domain, operation domain, crosscutting concerns domain. The research
work generates the problem specification from the engineering domain. In the context of
SOA the engineering domain deals with the service-oriented system life cycle as one of the
main aspects. The service-oriented system life cycle comprises of various phases like process
models that can be used to build service-oriented systems, requirement models for denoting
functional and non-functional aspects, platform- and computational-independent architectural
abstractions, design patterns, logging, model-driven code generation, verification, testing, and
maintenance.

The research work addresses some of the important issues of the late requirements and early
design stages. This chapter primarily focuses on completed and ongoing work in service
selection, XML processing and security.

2.1 Service Selection

When a service request is issued, the requirement specifications are looked for in the UDDI /
ESB as shown in figure 1.1 to find services that can provide expected functionality. It is the
job of service discovery protocols to minimize the administrative overhead and increase
usability by locating the best web service among the large number of functionally equivalent
web services, published in UDDI. Research work on various centralized discovery approach

as proposed by researchers [11-18] was analyzed during the literature survey.

The research work in the area of service selection protocols is directed in two different areas
namely, semantic and non-semantic approaches both of which are focused around

discovering the web service based on QoS (Quality of Service) in brief.

e Semantic approach: It performs web service searching based on the domain
knowledge of the attributes. It requires prior systematic structuring of the contents
such that requests are understood and responded based on their meaning.

e Non-semantic approach: It performs web service searching based on the syntax. It
requires the data to be structured as per required format and the requests will be

responded accordingly.

13

——
=

Figure 2.1: Classification of approaches of service discovery

2.1.1 Semantic Approach

Segev, A. et al. [11] analyzed different methods for automatically identifying possible service
composition. They explored two sources for service analysis which are commonly used in

service repositories i.e.

e WSDL description files

e Free textual descriptors,

They also investigated two methods for Web service classification for each tvpe of

descriptor:

e Term Frequency/ Inverse Document Frequency (TF/IDF)

e Context based analysis, and a baseline method.

Their work showed that the web-based context extraction method by analyzing both the
WSDL description and the textual description yields better results than the TF/IDF method

and string matching.

In addition, the results prove the advantage of integrating the analysis of both the WSDL

context descriptor and the service textual descriptor [11].

Kritikos. k et al. [12] have proposed QoS-based WS Description and Discovery (WSDD) to
enable automatic discovery and composition of independently developed and deployed (web)
services. They have considered semantically rich QOS based in automatic discovery of Web
Services (WSs) can be achieved by incorporating semantics into WS matchmaking and
selection (i.e., discovery) process. Its main contribution is the analysis of the requirements for

a semantically rich QoS-based WSDM and an accurate, effective QoS-based WS Discovery

14

(WSDI) process. They also provided a road map to extend WS* technologies for realizing
semantic, functional, and QoS-based WSDI.

This approach [12] comprises of

a) Description of the QoS aspect of WSs (i.e., QoS-based WS description)

b) Filtering of WS functional results based on user constraints on their QoS
descriptions (i.e., QoS-based WS matchmaking) The algorithms were implemented
using Mixed Integer Programming MIP, CP, and explanation-based CP

c) Sorting the results based on user-provided weights on QoS attributes/metrics (i.e.,
WS selection).

Pilioura et al. [13] have proposed PYRAMID-S which uses a hybrid peer-to-peer topology to
organize web service registries based on domains. It has a scalable framework for unified
publication and discovery of semantically enhanced services over heterogeneous registries. In
such a topology, each registry retains its autonomy, meaning that it can use the publication
and discovery mechanisms as well as the ontology of its choice.
The features of PYRAMID-S are:
— unified Web service publication and discovery:
— over heterogeneous registries, thus alleviating the users from the burden of
handling the diversion between different technologies;
— based on syntactic, semantic, and Quality of Service (QoS) information,
improving in this way the precision and the recall;
— preservation of the autonomy of Web service registries by allowing the
accommodation of different publication and discovery mechanisms; and

— Use of a scalable infrastructure which organizes registries based on domains

Yin Baocai et al. [14] proposed an approach to qualify a web service using its semantic
description. They suggested a general ontology to describe the non functional qualifies the
web service using the semantic description of the web services using their non- functional
specifications. This ontology can solve the interoperability of QoS description. The
framework supports the automatic discovery of web services and it can improve the
efficiency for users to find the best services. It uses OWL-S as the description language to

represent QoS ontology.

15

2.1.2 Non-Semantic Approach
Zhang et al. [15] has designed a broker-based architecture called QBroker, to provide end-to-
end QoS management for distributed services. Functionalities of QBroker include service
discovery, planning, selection, and adaptation. The efficiency of QBroker is dominated by the
running time of the service selection algorithm. They also designed efficient algorithms for
quality-driven Web service compositions. Their model defines multiple QoS criteria and
takes global constraints into account. It ensures that the selected services always meet the
QoS requirements. They have also proposed heuristic algorithms to find near-optimal
solutions in polynomial time which is more suitable for making runtime decisions. They have
mapped the service selection to a 0-1 multidimensional multi choice knapsack problem

(MMKP) [15].

Vuong Xuan Tran et al.[16] have suggested an approach where the web services are selected
based on QoS. The web services are ranked based on their quality attributes, but the issue
raised by the researchers was that it’s difficult to provide a precise value to the quality
attributes of the web service. Thus they suggested using fuzzy logic to support using
imprecise QoS constraints. The benefit of this approach is that a user does not need to
mention crisp values of QoS properties. Instead the user can use fuzzy linguistic concepts to

express their expectation of service quality.

However a user has to define at most as many rules as there are degrees of acceptance that
one wants to differentiate. When a number of QoS properties are involved, the number of
rules can be large and it becomes a tedious task for the user. It does not consider that some
QoS criteria can be defined by using only crisp form such as criteria having Boolean or string

value type [16].

Maolin Tang et al. [17] quoted service discovery as so-called optimal web service selection
problem. This paper proposes a new hybrid genetic algorithm for the optimal web service
between some web service implementations like dependency and conflict constraints. When
an implementation is selected for one web service, a particular implementation for another
web service must be selected. This is so called dependency constraint. Sometimes when an
implementation for one web service is selected, a set of implementations for another web
service must be excluded in the web service composition. This is so called conflict constraint.
Thus, the optimal web service selection is a typical constrained combinatorial optimization

problem from the computational point of view. The hybrid Genetic Algorithm (GA) has been

16

implemented and evaluated. They compared various techniques used for service discovery
like penalty-based genetic algorithm, the repairing-based genetic algorithm and the hybrid
genetic algorithm. It is shown that hybrid genetic algorithm is better than above mentioned
techniques. The hybrid genetic algorithm is more suitable for those web service problems

with a large number of abstract web services and a large number of constraints [13].

Table 2.1: List of advantages and disadvantages of various soft computing techniques [19]

Soft computing technique Advantages Disadvantages

used in non semantic approach

Artificial Neural networks[18] O it ey e ey e Easy to over fit

e Rules hard to extract and hard to

understand
Genetic Algorithms [17] ¢ [t updates the population and e [tisdifficult to implement because of
search for the optimum with crossover and mutation.
random techniques. e System doesn’t guarantee success
Fuzzy Logic [16] ¢ User does not need to specify e A user has to define at most as many
concrete values of properties. rules as there are degrees of

acceptance that s/he wants to

differentiate

Al-Masri et al. [18] has used Artificial Neural Networks (ANN) to classify the best web
service according to the user requirements. The ANN classifies the web service based on
QoS. They have designed a Web Service Crawler Engine (WSCE) that provides an active
monitoring tool that continuously collects the most recent and up-to-date QoS values. They
have also provided a QWS data set generated using WSCE for the purpose of research. They
obtained most Web services from public sources on the Web, including UDDI registries,
search engines, and service portals. The dataset consists of 5,000 Web services, each with a
set of nine QWS (Quality of Web Services) attributes that we measured using commercial

benchmark tools [18].

17

2.1.3 Analysis of the Service Selection Protocols

While analyzing non semantic approaches it was observed that it involves soft computing
techniques like Fuzzy Logic, GA, ANN to discover the best web service based on QoS. Their

advantages and disadvantages are discussed in Table 2.1.

Subsequent research work [16] using fuzzy approach states that the problem while using only
fuzzy is that a user has to define at most as many rules as there are degrees of acceptance that
s/he wants to differentiate. When a number of QoS properties are involved, the number of
rules can be large and it becomes a tedious task for the user. Additionally, for each QoS
property, there are number of membership functions being modelled but they may not satisfv

SOIME USers.

2.2 Rewriting Attacks and Secure Conversation

Another challenge which our research work addresses XML processing and security. The
communication among these web services is established using SOAP messages which are
based on XML. XML is the most relevant means to provide interoperatablity among various
entities. When in network a XML file can be prone to hacking and unauthorized access, thus
affecting the data integrity and confidentiality which are supposed to be important issues of
communication. Data integrity and confidentiality can be breached by rewriting attack and
insecure dissemination.

The rewriting attacks leads to insecure conversation as the contents of a SOAP message
protected by an XML Signature as specified in WS-Security can be altered without
invalidating the signature [20].

The work in [21] provides a detailed analysis on the possible scenarios that enable these

signature rewriting attacks. They figured out the limitations of the existing solutions and

proposed a solution that uses a subset of XML Path Language (XPath) called FastXPath

instead of /D attributes for signature referencing in web services messages, and have shown

that this solution is both efficient and secure. Their approach recommended considering

the absolute path from a signed element to the document’s root element (“vertical

fixing™) and to its siblings (“horizontal fixing™). The position of the signed element must

be fixed so that it is not feasible to move the signed element without invalidating the

reference—and thus the signature. As it requires to explicitly naming every single element

on the path from the document root to the signed subtree, there is no flexibility

18

available to move any signed contents to another location within the document.

The disadvantage highlighted by them is that FastXPath poses severe restrictions to the
abilities of defining a signature reference, it turns out to be a trade-off between security and
flexibility, as every flexibility within the reference can potentially be exploited for a
wrapping attack [21].

In [22] the authors have listed out limitations of existing solution and accordingly have
recommended three solutions as part of their work to solve the problem of XML rewriting
attacks. The recommendations are listed below:

1. The first recommendation was to take into account the depth information of signed
object and send this information in the header along with the SOAP message.

2. Their second recommendation keeps information regarding the parent of a signed
element, if an element is copied and pasted in the bogus header then the
information regarding its parent name will not be the same and the attack will be
detected

3. Finally, the third recommendation is the usage of this /d attribute to uniquely
identify a parent of an element. WS-Security specification also specifies that two
instances of /d within a document cannot have the same value.

The disadvantage of this work is that the depth information can be tampered and /d
referencing is not safe as it can also be tampered by the malicious attacker.

The work in [23] has suggested an approach to be applied for early detection of XML
rewriting attacks particularly targeting the secure SOAP-based conversations. This work
suggested that at the time of sending SOAP messages either in a trust scenario and/or in a
secure conversation scenario, one can always keep an account of structure of the SOAP
elements by including the following information into the SOAP account header (not
exhaustive):

* Number of child elements of the root (Envelope).
* Number of header elements.
* Number of references for signing element.

* Predecessor, Successor, and sibling relationship of the signed object.

19

The above solution can detect XML rewriting attacks but it may not comply with the

schema of the WS* standards and might even violate further processing of XML messages.

[24] showed that a SOAP account suggested by [23] is itself vulnerable to XML

rewriting attacks. They suggested that a module can be created which can keep track of the

fact that the received SOAP message has a SOAP account header. If it is there then the

module will verify the signature of the SOAP account. If several intermediaries have their

own SOAP account then there will be a nested signature as it is described. If verification is

successful then the module will do the rest of the routine work.

The above suggestions increases the level of verification with nested signature, hence the

process will be slow as signature generation is a slow process.

Table 2.2: A quick summary of work done by various researchers

Researchers

Work description

Tradeoff

[21] Sebastian Gajek. Meiko Jensen.

Recommended FastYPath

FastXPath is not flexible as it limits the

Lijun Liao, and JI"orgSchwenk abilities of defining a signature
reference [21]

[22]AzzedineBenameur Recommended Sending these information over the

using depth information, parent | network is also not same. as it can also

information and using Id attribute to
uniquely identitying the parent.

be tampered by malicious attacker [16]

[23] Mohammad AshiqurRahaman,
Andreas Schaad

Recommended maintaining the

information and sending it with the

SOAP message

« Number of child elements of the
root

« (Envelope).

« Number of header elements.

* Number of references for
signing element.

* Predecessor, Successor, and
sibling

It may not comply with the schema of
the WS * standards and might even
violate further processing of XML
messages [24].

[24] Yong Liu, Haixia Zhao, Yaowei Li

Suggests signing the SOAP account . if
the intermediaries have their own SOAP
Account then there will be a nested
signature

The process will be slow as signature
generation is a slow process.

[25] Smriti kumar Sinha.
AzzedineBenameur

Suggest using Context-Sensitive

Signature (CSS)

The trade off is that the context is to be
generated and stored in the reference
element of the signature in header

section before signing the message|[5].

Another work [25]

proposes a formal solution to XML

rewriting attack on SOAP

messages using Regular Tree Grammar (RTG). The authors in [25] have used Context-

Sensitive Signature (CSS), which captures the context of the signed element at the time of

signing and incorporates the signed message context in the signature element making any

change detected. The authors provided algorithms to generate the context and to verify it.

20

The trade off is that the context is to be generated and stored in the reference element of
the signature in header section before signing the message. Table 2.2 provides a quick
summary on the work of the various researchers.

In [26, 27] the work highlights various threats on SOAP Messages like replay attack,
parameter tampering, rewriting attack etc., and have proposed an Integrated Application and
Protocol Framework (IAPF) that can successfully combat the security threats. IAPF helps in

the early detection of both XML injection and parameter tampering attacks.

2.3 Secure Dissemination

Secure dissemination [28] of an XML file is one of the techniques to ensure data
integrity and confidentiality. The research work presents a secure dissemination
technique which ensures that extraneous is inaccessible even if the consumer is a
legitimate consumer. Consequently, this avoids information leak. Recent years has seen
remarkable progress in recent vears to address access control policies for secure

dissemination of XML file.

Earlier researchers [29, 30], have implemented secure dissemination using structural
based routing. The routing model presented by them is based on multi-casting of
document portions from an intermediate router to the subscribers. Essentially the router
may send the some document portion multiple times to the subscriber. Another
disadvantage is if the Local XML structure changes, solutions given by [29, 30] requires
associated routing topology to be changed. Thus a subscriber needs to have a prior
knowledge of the routing structure as the router structure as the router cannot fetch any

content which is not hosted currently.

In [5] a centralised publish/ subscribe middleware is presented which is able to
perform selective XML content delivery based on a shared ontology. It suggests
semantic queries over domains concepts to compute a set of candidate concepts and over
publisher’s policies to check evolving policies for a subscriber. In [6-10] presents of the

work as a request response paradigm in client- server architecture.

21

2.4 Research Gaps

A few limitations of the existing research work in this area are:
1. When a number of QoS properties are involved, the number of rules can be large and
it becomes a tedious task for the user, to specify the rules.
ii. Existing solutions of rewriting attacks either don’t comply with Ws Standards, or are
not efficient in detecting the rewriting attacks
iii. The existing solution of the secure dissemination doesn’t support an n-ary tree.

Reconstruction of the tree in the consumer end is also difficult.

2.5 Motivation

The motivation for this research work is the outcome of the study of the relevant
literature that pinpoints to the research gaps in addressing some of the important issues of the
late requirements and early design stages i.e., Service Selection and XML processing and
Security. The rules to locate the best web service should be automatically generated by using
a dataset. One more aspect that ought to be considered is the reduction in the number of rules
by eliminating the rules having zero weight age according to the dataset. Another motivation
is to ensure data integrity and confidentiality by successfully detecting the rewriting attack

and ensuring secure dissemination.

The overall research work is defined in terms of the following three problem statements
a. To propose a Business Service Directory for the ESB Platform for efficient and fast

service selection.

b. To propose SOAP Model for efficient detection of rewriting attacks and ensuring

secure conversation

¢. To propose a Secure Dissemination Technique that keeps a check on information

leakage.

2.6 Objectives and Scope

The research work attempts to bridge the gap in the SOA development life cycle primarily
focusing on the issue of service selection and security. The three proposed artifacts namely
business service directory (BSD), SOAP model and secure dissemination technique fulfills
the stated objectives of better service selection and security these objectives are summarized

as follows:

22

To ensure better service selection among the various functionally equivalent services.
To reduce the time required to search the web service

To design a system where the rule to search the service should be adaptive in nature.
To remove rewriting attacks such that if an authorized person has modified the
content pretending someone else as the constructor, then it can be detected.

To ensure secure conversation such that end-to-end integrity can be established

vi. To encrypt the soap message securely
vii. To ensure the secure dissemination of the XML data such that only those consumers
who are authorized to read the data can read it.
2.7 Summary

This chapter introduced selected work and developments across the broad spectrum of service

selection, XML processing and security research. It provides a comprehensive overview of

state of the art in the field and exhibits a number of open problems that drive continuous

research into SOA. At the core of the chapter is the bifurcation of research work into service

selection, XML processing and security.

The following chapter III, IV and V discusses the above issues separately as three component

of our research work. The next chapter discusses the proposed optimized business service

directory that addresses the issue of service selection.

23

24

CHAPTER III: OPTIMIZED BUSINESS SERVICE
DIRECTORY FOR THE ESB PLATFORM

This chapter discusses the optimized business service directory for the ESB platform.
Enterprise service bus is a middleware which provides dependable and scalable infrastructure
that connects heterogeneous applications and mediates their interactions, and makes them
broadly available as services for additional uses. As shown in figure 1.4 Business Service
Directory (BSD) is maintained to provide the details of the various services publisher in the
zone. To establish a connection between the service provider and service consumer of a
business application, Service search and selection is to be performed in BSD. Selecting the
best web service among the various functionally equivalent web services, published in BSD
is a complex problem.

The major challenge is regarding the changes that arise in QoS of the web services. Thus the
optimized BSD is designed as a fuzzy expert system which can adapt dynamically to respond

to such changes.
3.1 Background

The following section presents a brief introduction of fuzzy logic, fuzzy expert system, fuzzy
clustering and optimization technique PSO. These concepts are used later in the chapter to
implement optimized service discovery protocol in service registry.
3.1.1 Fuzzy Logic

Applying fuzzy logic is beneficial for defining QoS description and measuring quality
parameters in order to compute the overall QoS. Inference methods are used when the input-
output relation can be expressed in the form of if-then rules. We take advantage of the fuzzy
logic for measuring overall QoS.

Aristotle [37] gave the theory of Boolean logic, which is two valued logic: true and false.
Lofti Zadeh extended it to handle the concept of partial truth by presenting Fuzzy Logic,
where the truth value may range between completely true and completely false [38]. It states
that the variable values can be represented by degrees representing its closeness to truth.
These tvpes of variables are called as /inguistic variables for example temperature, humidity
etc. The values of the linguistic variables called as /inguistic values are represented in the
form of degrees for example temperature can be high, low or medium. These degrees may be

managed by specific functions called as membership functions. The membership function is a

25

graphical representation of the magnitude of participation of each input. It associates a weight
with each of the inputs that are processed, define functional overlap between inputs, and
ultimately determines an output response.

There are many types of membership function [38] but we will be using Z, S and Triangular.
The rules in the fuzzy rule base use the input membership values as weighting factors to
determinetheir influence on the fuzzy output sets of the final output conclusion. Once the
functions areinferred, scaled, and combined, they are defuzzified by the defuzzification
interface into a crisp output which drives the system as shown in figure 3.1. This system is

called as fuzzy expert system [39].

ificati Interference Defuzzification :
— Fu.zmﬁcanon N ' .
interface engine interface _
Crisp Fuzzy 7 Fuzzy Crisp
input input output output
Rules
Fuzzy rule
base

Figure 3.1: Fuzzy expert system
A fuzzy expert system [39] is application software that performs a task that would be
performed by a human expert. It simply uses a collection of fuzzy membership functions and
rules, instead of Boolean logic, to reason about data.
3.1.2 Fuzzy C- means Clustering

Clustering is a mathematical tool that attempts to discover structures or certain patterns in a
dataset, where the objects inside each cluster show a certain degree of similarity. In fuzzy
clustering, data elements can belong to more than one cluster, and associated with each
element is a set of membership levels. These indicate the strength of the association between
that data element and a particular cluster. Fuzzy c-means (FCM) [40] clustering is a process
of assigning these membership levels, and then using them to assign data elements to one or
more clusters. This technique was originally introduced by Jim Bezdek in 1981. FCM is a
data clustering technique where each data point belongs to a cluster to some degree that is
specified by a membership grade as an improvement on earlier clustering methods. It
provides a method that shows how to group data points that populate some multidimensional

space into a specific number of different clusters.

26

Areas of application of fuzzy cluster analysis include for example data analysis, pattern
recognition, and image segmentation. The detection of special geometrical shapes like circles
and ellipses can be achieved by so-called shell clustering algorithms. Fuzzy clustering
belongs to the group of soft computing techniques (which include neural nets, fuzzy systems,
and genetic algorithms) [41].

3.1.3 Particle Swarm Optimization
QoS parameters are often changing due to dynamic and volatile service environment. In such
environment, Web Services need to be able to adapt dynamically trying to respect the service
interaction. Changes are required to be captured; evaluated and proper actions need to be
taken accordingly. Particle Swarm Optimization (PSO) [42] is used to optimize the rules
according to the training data as explained in the algorithm explained in section 3.4.
Qur research work proposes PSO, because of its advantages over other soft computing
techniques.
The advantages of PSO are:

e Easy to represent the interaction between attributes

e Consider several attributes once

* Balance between local exploitation and global employment

e PSO is easy to implement and there are few parameters to adjust.

e All the particles tend to converge to the best solution quickly even in

the local version in most cases.

PSO came into origin from the research of food hunting behaviours of birds. Researchers
found that in the course of flight flocks of birds would always suddenly change direction,
scatter and gather [43]. It is used to solve a wide array of different optimization problems.
Their behaviours are unpredictable but always consistent as a whole, with individuals
keeping the most suitable distance. Through the research of the behaviours of similar
biological communities, it is found that there exists a social information sharing mechanism
in biological communities.

Each swarm of PSO can be considered as a point in the solution space. If the scale of swarm
is N, then the position of the i-th (i=0.1. 2. .N) Particle is expressed as Xi. The "best"

position passed by the particle is expressed as pBest [i]. The speed is expressed with Vi.

27

The index of the position of the "best" particle of the swarm is expressed with g. Therefore,

swarm 1 will update its own speed and position according to the following equations [42].

Vi=w* Vi +cl *rand () *(pBest[i] *Xi)+c2*Rand)*(pBest[g] -Xi) (D)
Xi=Xi+ Vi 2)

Where ¢l and ¢2 are two positive constants, rand () and Rand () are two random numbers
within the range [0, 1], and w is the inertia weight, i refers to the swarm.

In other words, proposed BSD will lead to the design of a fuzzy expert system which will
automatically perform service lookup. Fuzzy expert system consists of four components as
shown in figure 3.1. The four components are fuzzification interface, inference engine,
defuzzification interface and rule base. So optimized service registry component should also
have all these fourcomponents to behave as a fuzzy expert system

The significance of our approach is that it solves the above mentioned issues by generating
rules automatically by using a dataset; it also reduces the number of rules by removing the

rules having zero weight age according to the dataset.

3.2 Proposed Business Service Directory for the ESB Platform

Architecture of proposed Business Service Directory for the ESB platform is shown in figure
3.2. The proposed Business Service Directory is a fuzzy expert system. The fuzzification
interface converts crisp input into fuzzy input, which is passed through inference engine. The
inference engine ranks the published web service based on the rules in the Rule base. The
rule base consists of automatically generated rules (using training data) by fuzzy clustering
and PSO. The defuzzification interface defuzzifies the fuzzy output into crisp output. The
rules make the system automatic. These rules can be chosen by the human expert but our
approach generates them automatically from the training dataset, thus it requires no human
intervention in writing the rules for the system. The service environment is dynamic and
volatile, which leads to changes in their respective QoS [2] parameters. In such an
environment, web services needs to be able to adapt dynamically trying to respect the service

interaction.

28

Fuzzy
Crisp input
Fuzzification
—> o
interface
Training data
Rule
S
N generation

After some interval, rules can be updated by using the database as a
feedback in place of training data, thus making it adaptive and dynamic in

nature

Fuzzy

Crisp output

output)
QoS interference Defuzzification 3‘2}\
Engine - interface -
N
Feedback

Figure 3.2: Architecture of the proposed Business Service Directory for the ESB Platform

The Changes in QoS of the webservices are required to be captured and evaluated. Later

proper actions are taken accordingly. Thus the rules can be updated by using the database as a

feedback in place of training data, which makes it adaptive and dynamic in nature. The

Proposed Business Service Directory is presented by means of UML class diagram in figure

3.3.

The working of the proposed Business service directory can be very well explained using the

information flow.

3.3 Information Flow for the Proposed Business Service Directory

The information flow for the proposed business service directory is described below:

1. If the user is a service provider who wants to publish his service in the BSD will

require doing following steps:

a) The service publisher will fill the form of input parameters which are quality

attributes of the web services and submit it to business service directory

b) In the business service directory, the input are accepted and ranked according to

the rules by following a process of inference and defuzzification.

29

¢) The input details of service publishing form and service rank is then stored in the

database i.e., business service directory in a WSDL format

4

2 Famy et |

I L L L TEmrsEsEsEsEsEEmEEE .

EEEEEEEEmETEEEREE "

]

procenaRwgquentd

I L

rank s larg Shing

ong Ly dakabams
Datibain Connamas [y T—r— l
|wen agl

h bl 2 CakLTRA BN Rk a | e sy =~ ———=—=—=========o
erempuarpl in | jew bl Arvepl ind } :
| g © CamzarmDsisMcel !
ity v knd S BaAa b ORI 500 | e, AL RN 1
GIDEEOIRC ISR | el Carmien I lrvaietf e IsAdee - Holtan d
|roomiet: Jomlivsurtnt sy pwa larg terg ¥, ——— !
MEBIEGHT: jrvm el Fepytaat propuredSatenint | g PrepaetEaterin i |
| Comucnind e lp fvieg PSUIESAL i 3 i a1 ! H
]
[
: i
k- e sl ! H
g] ST T e e r i i1 e A ATl it
Faeaviog e laTraveler E i
MREQONEEE e foat H H
Froghe: e I
miatity fost i :
bitprichcn Saal] h
eesuradion Ml 1 |
AR parntan and bing St rg . . ‘
SErATARATS |33 1g SHrg SPRAEN a4 I i i

I
Wil jwea bang Siring Cermpantod sParsse — [| i
PLATINUM foat | wabsepecintion - Sast ! :
GOLD tan |wabsseestuncton san i H
peiSespeacioe]) - don BLVER fos |vakuwcltriangefurclisn foskt ! '
setSesipracicelesdtpmcion) BMORE foud i !
FHC TRl fian SmaapenRaght Saal H H
MO LT e ksl :dont TR aRaEn) Tiel i 1
Izl““‘mﬂ"ﬂ e fweight - foxi st il crdnaia it o 1 H
SeDpcarreniil oddouma sl s atiang eineson) Sl ! '
rr——— :;:;mmnmamwm “_rt“‘ lﬁ" 0 o : 1
Rt i Heakmatunchons) ok ! '
petanpatnatrre frad v Loy Murrbad archan ' !
S ek e neetaTR) ! '
B e N] ! i
LUV SN ' !
JETHENIAD Now i)
welThrnughpultbughpd) Chigkanguas ! !
SO o darg Slarg premrrrry Furcanaa bVl H H
SR teangwF s e V) | .
wFuretenie s #rah) ! H
QUAFUTaR] Ve | H
ehEC e ot : :
1 H
] |]
i H
- I -
i I
| i
i '
[} Ll
| H
i i
[} 1
P 1]
| i
! H
i
13
]
1]
:
L
|
'
"
1
I
1

- - e e e e e e e

Figure 3.3: UML diagram of proposed Business service registry
2. If the user is a service requester

a. The service requester will fill the form of input parameters which are quality

attributes of the web services and submit it to business service directory

30

b. In the business service directory, the input are accepted and ranked according to
the rules by following a process of inference and defuzzification in decision
making engine.

c. The business service directory is then searched for the web service that provides
requested service and has the requested ranking.

d. The details of all the matching web service which were stored in the database by

the service publisher is provided in the database

[ﬂpU[ﬁ Publishes
. ——l Ranks and stores
parameters R
for publishing —————
Look Ranks and

searches

Input — /
parametcrs ﬁ
. 4__
for searching ——- \—/

The details of the
services with same rank

Figure 3.4: Information tlow for optimized service registry component

3.4 Detailed Design for the Business Service Directory

The Designing of Business Service Directory presented in figure 3.4, encompasses two steps.

a) Generating optimized rules using the training dataset for performing service discovery
in the Proposed Business Service Directory.

b) Designing the inference engine using a java EE platform, which triggers the rules to
rank and match the request with the rank of the service published by the service
provider.

3.4.1 Automatic Generation of Rules from Dataset
To rank the web services, the rules can be provided by the expert in the domain or
alternatively it can be generated using the algorithm given below. The rules are generated

using a dataset. The dataset used is called as training set. The technique given below also

31

generates lesser number of rules 1.e., it removes all the rules which are having zero impact on

the system.

Assign membership functions to all the
input variables and output variables

v

Calculate Max and Min of
each input variables and
output variables from the
training data

v

Cluster the data into various values
of input and output variables

2

Generate all possible combinations
of rules

v

Randomly assign the output and the
weights of the rules from the Solution
space

RV

Use Particle Swarm Optimization to
optimize the rules and weights

if the iteration is
>maxiter or the
error=>(.05

Generate the Rules

Figure 3.5: Flow chart for fuzzy rule based model
32

The Flow chart for fuzzy rule based model is shown in figure 3.5 and its corresponding
algorithm is described below:

The above problem domain which involves calculating the rank of a web service based on the
values of QoS parameters can be considered as TSK (Takagi, Sugeno & Kang) model. The
shape of membership functionsfor the input variables are Z, S and Triangular respectively.
The output is constant with parameters ranging from O ->1. The notations used in the

algorithm are described as under

e Population is the no of swarms.
e Pbest is the best value obtained in each iteration.

e Gbest is the best value obtained among all the pbest.

mi1 ' mfZ mf3

\

/ \\;

Figure 3.6: Membership functions for input QoS Parameters.

mid

mi3

mi2

mf

output varisble "output1®

Figure 3.7: Membership functions for output QoS Parameters.

33

The algorithm for fuzzy rule based model is

i. Assign membership function to all the input variables .If there are two linguistic values
of thevariables then assign S to the lower on and Z to the higher one. If the no of values are
more than twoassign triangular membership functions to all the vales lying between higher
and lower. Theparameters for S= [0.2, 0.8]

Z=[0.2,08]

Triangular = [0, 0.5, 1]

As shown in figure 3.6

ii. Assign membership values to the output variables If values <=2 assign parameters 0 to
low and Ito high respectively. If values > 2 assign parameters 0.5 to all the intermediate

values as shown in figure 3.7.

iti. Calculate the max and min of each input parameter and output parameter from the

data set used totrain the particles.

iv. Using FCM technique of fuzzy clustering assign the center points to the to membership

function ofinput and output variables

v. Create a fuzzy inference engine containing all the possible combination of rules formed
from inputvariables

Initialize the variables used in equation I and 2

i.e., Population size= 10

Maximum iteration = 100

wmax = 0.9
wmin = 0.3
cl =2,c2=2

vi. Assign randomly an output to the rule set and optimize the result and calculate the

deviation from the result called error.

vii. Phest=result

34

viii. Pbestfitness= error

ix. Gbest= Minerror

x. velocity V is also assigned a random value

xi.. Vmax = 1

xii. Repeat steps from 12 — 18 till iteration <maxiteration& flag == O(flag checks

whether the output is in acceptable limit.

Vi=w*VI+cl *randO*(pBest[i]-Xi) +c2*RandO *(pBest[g] —Xi

Xi =Xi + Vi

X is considered as the result of the rule set which is optimized by the particles.
xiii. Calculate the output according to the input in the training set.

xiv. Match the output; calculate the deviation from the result

xv. pbest=X

Pbestfitness= error

Gbest=pbest

GbestFitness= min of ghest

xvi. if the deviations is in acceptable limit mark flag=1

xvii. Assign the value of gbest as the consequent of the rules.

xviii. Weight /degree of each rule is equal to the maximum value of membership value of

the input variables

35

Table 3.1: Web service quality attributes [44]

Parameter Name Description Units
Response Time Time taken to send a request and receive a response ms
Availability Number of successful invocations/total invocations %

Throughput Total Number of invocations for a given period of time invokes/second
Successability Number of response / number of request messages %
Reliability Ratio of the number of error messages to total messages Yo
Compliance The extent to which a WSDL document follows WSDL %
specification
Best Practices The extent to which a Webservice follows WS-I Basic Profile Yo
Latency Time taken for the server to process a given request ms
Documentation Measure of documentation (i.e. description tags) in WSDL %
WsRF Webservice Relevancy Function: a rank for Webservice Quality %
Service Classification Levels representing service offering qualities (1 through 4) Classifer
Service Name Name of the Webservice none

In order to train the particles publicly available QWS dataset [45, 46] is used. The QWS
dataset consists of information of QoS of various web services. The QoS which are listed in
the dataset are shown in table 3.1. The main goal of this dataset is to offer a basis for Web
service researchers. This dataset is collected considering a subset of 365 real web service
implementations that exist on the Web today. The services were collected using our Web
service Crawler Engine (WSCE) [45]. The majority of Web services were obtained from
public sources on the Web including Universal Description, Discovery, and Integration
(UDDI) registries, search engines, and service portals. The public dataset consists of 365
Web services each with a set of nine QWS attributes that we have been measured using

commercial benchmark tools.

36

Each service was tested over a ten-minute period for three consecutive days by the

researchers [44]. The various quality attributes considered are shown in table 3.2:

Table 3.2: Data set on searching the web service phone [44]

DOTSGeoPhone 126.2 12.3 8.7 80 86 Platinum
Phone 150.45 7.4 82.1 82 37 Gold
DOTSPhoneAppen | 118.5 0.7 70.2 80 90 Gold

d

PhoneVerify 131 1.6 65.9 72 41 Gold
PhoneNotify 437.62 1 68.4 69 93 Silver
PhoneService 133 1.4 64.7 82 10 Bronze
Phonebook 464 3.1 43.2 80 2 Bronze

Out of the above mentioned quality attributes a data set of five quality attributes based on the
availability in QWS dataset was considered as input variables.
In the research work, the dataset for web service phone was considered

I. Response Time (ms) = {high, average. low}
II. Throughput (hits/sec) = {high, average, low}
I1I. Reliability (%) = {high, average, low}

IV. Best Practices (%) = {high, average, low}
V. Documentation = {high, average, low}

One parameter is considered as output variable
I. Rank ={ Platinum (High quality) ,Gold ,Silver ,Bronze (Low quality)}

37

The range for linguistic values (high, average and low) of QoS is calculated by performing
fuzzyclustering on the training data. A data set which was generated using the demo [44] and
searching for a web service phone is shown in table 3.2.
3.4.2 Designing the Inference Engine

The inference engine uses the above generated rules to rank the web services published by
the service provider. It will then save the details of the web service in a database. If a request
arrives from a service requester, it will be also ranked by the inference engine and based on
the criteria of the service name and rank, the request will be searched. If a match found the
details as well as the web address of the web service is provided to the service requester. The
service requester can then directly communicate with the web service and establish the
connection.

The registry is implemented using tools and technologies comprising of NetBeans IDE, JSP,
Java EE, MySQL, Apache Tomcat, and XML. Servlet is used to process user request and
JSPs is used to create the view which are the core component of the project. This project
follows Model View Controller (MVC) architecture which keeps the code clean and

manageable. Through MVC the processing, view and database code are kept separate.

The Database
Uservice Processing Element Accessing Code
(model)
Next View Database

Figure 3.8: Architecture of the business service directory

The User view will constitute of a fuzzy rule parser. All the rules are stored in an XML file.
Fuzzy rule parser triggers the rules when a request or a publishing takes place. XML is
chosen for database accessing code because it requires less time than database hit and it’s
easy to manipulate. XML has an advantage that a large number of data can be stored and can

be manipulated easily.

38

Defuzzification is done using weighted average technique. The registry provides a publishing
API. The web service publishers can publish their web services on the basis of some
parameter. Initially all the given parameters are stored in a database so that there should not
be any delay in processing. Later all the data are converted into XML, as searching in the
database consumes more time than searching in the tree structure of XML. Database chosen
is MySQL. The enhanced entity relationship (EER) diagram in figure 3.9 describes the

relationship and attributes in the various tables of database.

3.5. Implementation of the Optimized Business Service Directory

The fuzzy expert business service directory is implemented in two phases:
a. Generating the rules by implementing the algorithm described in section 3.5.1

b. Implementing the inference engine described in section 3.5.2

—_| company v
companyid INT(11)
companyname VARCHAZ{100)

»

__| companydata v
datad INT(11)
responseime FLOAT

____________________________ J< = throughput FLOAT

| reliability FLOAT

| bestpractice FLOAT

! docum entation ALOAT

e e T —j= & company_companyid INT(11)
url VARCHAR(100)

» servicenam e VARCHAR(45)

>

e e s
|
|
|
T e s e e sopd

Figure 3.9: EER diagram of used database

39

First the rules are generated using the QWS dataset and then an inference engine is developed
for the optimized business service directory which has a service requester and provider form.
The data when fed on the form will process according to the rules using the designed fuzzy

rule parser.

The output of the rule is then defuzzified to give a crisp output. The crisp output is the rank of
the web service. If the rank is calculated for the service provider, the application will store all

the details of the web service along with the rank.

When the service requester is looking for a web service in the database, his requirement is
also ranked by the above mentioned technique, and then the web service with the specified
rank is located in the database. If the search is successful, then the details of the web service

stored in the database are provided to the service requester.

3.5.1 Automatic Generation of Rules
Rules generated after implementing the algorithm explained in section 3.4.1 using Matlab 7.0
is shown in table 3.3. The number of rules generated is 26. The number of rules generated
(26) using the rule based model are less in comparison to generated by using Fuzzy Logic
1.e., 243, Lesser the number of rules to trigger lesser is the seek time required to locate the

best web service. The rules given above are stored in the rule base.

Whenever a service request comes from a service requester. it places his requirements. for
example if a phone service which is highly reliable and has average response time is
requested. The inference engine will rank the request according to the rules given in the rule
base and match it with the rank of services registered by their service providers. Once a
match is found the service requester will be given the network address of the selected service
provider. The web service search lists all the details of the services and service provider. As
there can be various services that gives similar service with same ranking. It now depends on

the service requester to pick one among them and perform service composition.

40

Table 3.3: Rule generated from the data set and there corresponding weight

1. if Response Time 15 low and throughput 1s low and reliability 15 average and best practices is low and
documentation if low then output 1s bronze 0.121455

2

if Response Time 15 low and throughput 1s low and reliabilitv 15 average and best practices 15 low and
documentation if average then output 15 silver 0467807

3. 1f Response Time is low and throughput 1s low and reliability 1s average and best practices 1s average
and documentation if low then output is silver 0.034978

4. if Response Time is low and throughput is low and reliability 1s average and best practices is average
and documentation if average then outpur 1s sulver 0.134724

5. if Response Time is low and throughput is low and reliability 1s average and best practices is average
and documentation if high then output is platmum 0.000811

6. 1f Response Time 15 low and throughpurt 15 low and reliability 15 average and best practices 1s high and
documentation if low then output 1s platmum 0.847967

7. if Response Time 15 low and throughput 15 low and reliability 1s average and best practices 1s hugh and
documentation 1f high then output 1s gold 0.439231

23, 1f Response Tume 1s hugh and throughput 15 low and reliability 15 average and best practices 1s low and
documentation 1f high then output 1s platmum 0573544

24, 1f Response Time 1s lugh and throughput 1s low and reliability 15 high and best practices 1s low and
documentation if high then output 1s silver 0.426456

25, if Response Time is high and throughput is average and reliability 1s low and best practices is average
and documentation 1f low then output 1s platinum 0.000285

26. if Response Time is high and throughput is average and reliability is low and best practices is high and
documentation 1if low then output 15 platmum 0.154625

3.5.2 Implementation of Inference Engine
The designed Business Service Directory consists of the inference engine using a Java EE
platform. The controller shown in figure 3.9 consists of a fuzzy rule Parser. As we know
Directory provides web service on the basis of rank. The rank is calculated on the basis of
some parameters e.g. response time, throughput etc., supplied by the web service publishers.

The rules are as under in an XML format:

<!ELEMENT response-time EMPTY=

<!/ELEMENT throughput EMPTY=

<!ELEMENT reliability EMPTY =

<! ELEMENTbestpractice EMPTY =

<!ELEMENT documenration EMPTY >

<!ELEMENT rank EMPTY >

<IATTLIST response-time value (high | low | average) #REQUIRED>
<IATTLIST throughput value (high | low | average) #REQUIRED=
<IATTLIST reliabiliny value (high | low | average) ®REQUIRED~
<!ATTLISThesipractice value (high | low | average) #REQUIRED >
<!ATTLIST documentation vaiue (high | low | average) EREQUIRED >
<!ATTLIST rank value (platinum | gold | silver | bronze) 8REQUIRED=
<!ELEMENTrule(responsetime, throughput,reliability, besipractice,documentation, rank) =
</ELEMENT rules (rule+)=

41

To parse the XML a DOM parser is used. DOM parser provides accessing of XML element
in a hierarchical way. This makes accessing easier and faster. All XML elements are loaded

simultaneously in memory and can be accessed in any order.

3.5.3 Working of the Proposed Business Service Directory
The tools used for implementing the component comprised of NetBeans IDE, JSP, Java EE,
MySQL, Apache Tomcat and XML. This section presents the snapshots of the implemented

Components.

parametric web service search

a registry for web services

PUBLISHING DEVELOPERS

(Toai (1826140 REN =0 \Welcome To Our Website

METAMORPHOSIS DESIGN
Download publishing format

This website template is released under a Creative Commons Attribution 2.5

Figure 3.10: Snap shot of the home page
When clicked on publishing icon by the service provider the following form appears. The

provider will have to fill the details of the publishable web service. After entering the details

in the form the details are entered in the database as shown in figure 3.11.

42

HOME SEARCH PUBLISHING ABOUT CONTACT

LEUELELLIEBEL L Welcome To Service Publishing Panel

The parameters are the way to decide.
Download publishing format

How to send parameters to Details Of Web Services And Publishing Company
our website

Company Name

URL

Service Name
CALENDAR
| = Response Time in ms

Throughput in

January 2008

M T W T F S S invokes/second
i O | B | Reliability in %
6 || 711 8 [|/9 1100137 || 42 Best Practice in %

131714 | 16 || 216 [1748 19
20 [EEl 22 23 24 25 26

27 28 29 30 31

Figure 3.11: Snapshot of the service publishing panel
A message appears that the web service and its details are added in the database as shown

Documentation in %

in figure 3.12.

HOME SEARCH PUBLISHING ABOUT CONTACT

NOTICE FOR PUBLISHERS Web Service is published sucessfully

Download publishing format

Figure 3.12: Snapshot of the submission of a web service in the service publishing panel

43

HOME SEARCH PUBLISHING ABOUT CONTACT

Uloailei-8 26 8- HEL =B Welcome To Service Searching Panel

The parameters are the way to decide.
Download publishing format

How to send parameters to

our website Details Of Web Services And Publiching Company

Response Time

CALENDAR Throughput

Reliability
January 2008
M T w T F S § Best Practice
g S - I S -
T R I L Lk s ¢ A Documentation

13 14 15 16 17 18 19
20BN 2 23 24 25 2
27 28 .29 30 1

[. Search Websemnvices]

Figure 3.13: Snapshot of the submission of a web service in the service searching panel

If a service requester searches the web service, he will click on the search icon on the home

page.

After entering the details of the web service the user is looking for, the list of relevant web

service is provided as shown in figure 3.13 and figure 3.14 respectively.

PUBLISHING CONTACT

(lehiel -2 Le U HELILEM The following are the result

*The result is based on parameter supplied by companies

Download publishi ormat
How to send parameters to = messaging(Service:sms)(Rank gold)
our websiie WWW SIS Com

= messaging(Service:sms)(Rank gold)

Figure 3.14: Snapshot of the submission of a web service in the service publishing panel

44

3.6 Results and Observations

After implementing the optimized business service directory, a check was done on the
amount of heap memory consumed by the component and the time required to publish and

search a service.

The figure 3.15 shows the heap memory consumption of the component. It can be seen that
there is fluctuation in the heap memory consumed when the process in NetBeans IDE starts
execution and later it depicts a constant consumption of memory i.e. in this case it consumes
10MB of memory. The figure shows that the memory consumption is not different in case of

parsing 26 rules in comparison to 256 rules.

B anb L e

Fila ® Fumi = el s = e

S - - ra im 1 b s T s

Figure 3.15: Snapshot of the heap memory consumption of the component

Figure 3.16 shows the time required to perform web publishing. The time required to process
the request to publish the service is 122*10-3 sec. The snapshot in figure 3.17 shows the time
required to process the request of web search is171*10-3msec, and to parse the xml rules

time required is 39.9*10-3 sec.

45

] ety pus - : —

E-mail Bum v Open ~

File = Prnt »

erg.huzzy. modd. G DataMode, addingC
crg.apache.jep.ndex_jep._jspSenvice (s ceriiet
org.apache.jsp.publshers_sp._spService |
urg.apache.jep. serssarch_jo._jspService (=
org.apache. 1. message_jep. <clmit>

VieRespance]
|
I

i o N T T S S S IR P —
erg-apache.jsp message . _psplnit.

orgufuzzy.servist. AddCompamyDataseniet. doPost oy serdet i HipSarvieRessst, 18y serviet hipHbpSer e Raspones)
erg. Ay, servist. AddCompanyDatatendet, <mit> |

erg. Buzzy modsl. ComperyCataMode. <init>

org.furzy, datshase DatabaseConnection. <imit> ()

erg.fuzzy.dio PuzzyloglataTraveler. <init> (|

g apache.jop.message 0. <init> ()

Figure 3.16: Snapshot of the time consumed to perform web publishing

] Syt s Widow: Pt e .

file = Print * Emal Bum v Open

arg.apache. s ublishers_fso._jspService [
p.anache Eouserssardh_Bo._jspService [
g.pache odeladst =0, _jspService s
org.zpache Jepmessage _jep. <dlinit>
ong.apache p depimdst_sp, <clnit>
org.anache feomessage 0. _jspService [=iax
crg.apache Jp messageJip._Jspinit |
@g.apache o depianisl_sp. _ispInit |
ang.fimzy.parser. Company fntts {fost]

g, fuzzy.parse CusteringValuss, <init> |

E ok 4. . |, <iit> |

g, fumry.servict AddComponyDotaSorvct. dofost (javax scrvict il MifpEcrc flegusst, jovexsc ot Ml itpSor v Fsspanic
g fumzy parser. Fuzzyvsue. <init>

org.fuzy. parser MemberFunction. zFunction (o
ag.f Ml iangh

Figure 3.17: Snapshot of the time consumed to perform web searching

Hat Snats - Methed Self time [96] =
e Burzy. datsbace DatabaseConnection, b 0]
org.fuzzy serviet. AddCompanyDataServiet, processRequest (12 vy ser et i t, javax, sendet bt HitpSes

5eif time
282 ms (51.5%)
122 ms [
39ms (4%

135me

Ligms (03%]
0.867ms (5.2%
D780 me (024%
D654 (014

0.3B3ms
Doe2ms
D04 ms
0.012ms
0.007 ms
0.007 ms
0.004 ms

Invocations
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
=)
1

R o TRl e Sl e Al e T bl s e s NS

On carrying out the qualitative analysis of the technique described above to generate the

rules, as apart of the research work in comparison to the technique which uses fuzzy logic the

followingobservations are made:

1. The time required to search the web service in the database also called as seek time will

be significantly less as it will be dependent on the number of rules required to trigger and the

number of rules is less in the proposed technique as compared to implementing the BSD

using fuzzy logic. The time complexity to parse the rules is O (N) where N is the no of rules.

46

Lesser the number of rules to trigger less will be the seek time. The seek time is also affected
by the database size and the number of quality attributes considered qualifying the web
service.

In the scenario considered and the related work, efforts were directed towards search for
seven web services and it was found that the time required by the rule generation technique
using PSO and fuzzy clustering is faster than the alternative technique which uses fuzzy logic
[16].

The time was calculated by considering the time required to execute

ParseXmiRule(String xmlPath, ArraylList parameters) function in the project.

Table 3.4: Comparison of time consumed to parse 26 rules vs. 243 rules

services Service 1 Service 2 | Service 3 Service 4 Service 5 Service 6 Service 7

Time required to | 187ms 263 ms 399 ms 222 ms 301 ms 322 ms 343 ms
parse the 26 rules
generated by Fuzzy
clustering and PSO

Time required to | 693 ms 613 ms 309 ms 371 ms 480 ms 530 ms 574ms
parse the 243 rules
generated by Fuzzy
logic

2. The rules are successfully generated automatically using dataset thus making the
system intelligent, in comparison to the technique using fuzzy logic [6] where the rules are to
be entered by a human expert. Human intervention makes the system error prone and manual.

3. The rules are adaptive i.e., any change in the dataset or the ranking criteria will
automatically be reflected in the rules and thus a new set of rules will be generated. The web
services can be ranked according to the new rules.

4. The quality of rules is dependent on the training dataset; the data should be less
overlapping and should have all varieties of output. The rules can still be generated using less
number of entries in the dataset.

3.7 Summary

This chapter has proposed the optimized BSD. The proposed business service directory is
automatic in nature as it a fuzzy expert system, whichwill rank the web services according to
the rules generated by dataset. The PSO and fuzzy clustering reduces the rules. Considering
the available data set. the number of rules is reduced from 243 (product of linguistic values of

input and output variables) to 26. The lesser the number of rules, faster will be the processing
47

of ranking. The component is designed and can be used as a registry to publish and search the
web services. The architecture is adaptive in nature as any change in QoS of a web service
will change the rank of the web service. The proposed optimized service registry will enable
one to develop a better B2B or a B2C kind of e-commerce application with agility. The
service requester can compare among the list of web service and choose the appropriate
service provider based on its requirements. Finally to summarize, the proposed model is

better as it automatically monitors the rank of the web service using the generated rules.
The following chapters present the SOAP model (chapter IV) and secure dissemination

(chapter V). Both the chapters in particular address the main issue of XML processing and

security.

48

CHAPTER 1V: A SOAP MODEL AGAINST REWRITING
ATTACKS AND INSECURE CONVERSATION

As discussed in the second chapter service selection and XML processing and Security form
the basis of our research work. Due to broad scope XML processing and security is further
divided into two rewriting attacks and secure content based dissemination. This chapter is
addresses rewriting attacks while the next chapter addresses the issue of secure content based

dissemination.
4. 1 Background

The communication among these web services is established using SOAP messages which
are based on XML. XML is the most relevant means to provide interoperatablity among
various entities. When in network a XML file can be prone to hacking and unauthorized
access, thus affecting the data integrity and confidentiality which are supposed to be
important issues of communication. Data integrity and confidentiality can be breached by
rewriting attack and insecure dissemination.

SOAP is defined as an enveloping protocol that is sometimes seen as a messaging protocol as
well as a means of using functionality that is published by a remote application [4]. In other
words, it acts as an adhesive to combine various heterogeneous and loosely coupled entities
called as web services. The information passed in the message may represent either
documents or Remote Procedure Calls (RPCs) that invoke specific procedures at the service

provider. Figure 4.1 shows a typical structure of the SOAP message.

<?xml version="1.0"7>
<:Envelope
xmins:="http:/’www.w3.org/2001/12/-envelope”
cencodingStyle="http://www.w3.org/2001/1 2/~encoding">
S<SOAPheaderheaderfor = “xyz ">
rrnodename > abe</r:nodename >

r:nodeaddr= http://www.google.com=/r:nodeaddr>

rehashvalue =hagsghghghghgfhghl2</r:hashvalue=

<r:hashvalue></r:hashvalue>
<:Header>

/:Header>

M

= :B“-{v =

<:Fault>

Figure 4.1. SOAP Structure

49

[t can be seen from figure 4.1 that the signed data object is referenced using a reference
Uniform Resource Identifier (URI) within the XML Signature element, which is a child of
the XML signature element. Thus the signed object is inside the XML Signature Element.
The signed data object contains the XML Signature Element, which contains its signature,
within it. Therefore the signed data object is the parent of its signature element [20]. This
indirect referencing does not give any information regarding the actual location of the signed
object.

Processing of the given SOAP message consists of two independent steps:

L The recipient first searches for the referenced element and then computes the
digest value over this element and compares it to the value given in the digest
value. Later he verifies for the signature value.

1l. Next step is to execute the function defined in the SOAP body.

Therefore, the signed object can easily be relocated and the signature value still remains
valid. This situation leads to rewriting attacks. Further, if the SOAP request passes through
intermediaries en route to the destination web service, and if an authorized person has
modified the content pretending someone else as the constructor, then there is no way to find

out the end-to-end integrity [24].

4.2 Proposed Model

As evident from the related study and subsequent analysis of the work of past researchers
have made us conclude that many researchers have worked towards securing SOAP message.
We propose the SOAP model with three recommendations and ensure by implementing a
case study that it will prevent rewriting attacks and have end to end integrity. The proposed

model has following three recommendations

* Using timestamp in the message body and generate corresponding signature, the
signature and timestamp needs to be encrypted by a shared key.

« Using value referencing for signature validation and message processing both, instead
of using two different ways of referencing for both.

* Encrypting the signature and the timestamp with a shared key and put the encrypted
value in the SOAP header. Later encrypt the whole SOAP body instead of sending an

open SOAP Message in the network to prevent unauthorized access.

50

The figure 4.2 shows the structure of the SOAP message according to the proposed method.

EnvelopeXenc:

HEADER

Xene: ds: Signature
timestamp

Body 1

Xenc: Encrypted Data

Timestamp

Header

. ds: Signature
timetamp

Body 2

Xenc: Encrypted Data

Timestamp

Figure 4.2: Proposed SOAP structure

The building blocks of the model includes: confidentiality, authentication, integrity and
secure conversation.

4.2.1 Working of the Model

Each pair of entities in conversation possesses a shared key which is used to encrypt/decrypt
the message according to the agreement. In general we assume that each entity in
conversation is authentic and will not tamper the SOAP message. However message can be
attacked by in-house and out-of-the-house (foreign) intruders. Out-of-the-house intruders,
which are not the part of actual conversation, will not be able to decrypt the message as they

will not have the shared kev according to the model. They can at most cause total destruction

of the message and make it unreadable for the entities in conversation. This attack can easily

be traced down as the receiver will not be able to decrvpt the message with the shared key.

51

An in-house intruder can be dangerous as it possesses the right key and can decrypt the
message and modify it and send it further pretending that it is not the constructor. There may

be two kinds of attacks which can be performed by in-house intruders:
1) Tampering the message created by different set of entity in communication
2) Re-locating the message or header under different fragment.

The case of tampering the message created by different set of entity in communication can be
detected by signature validation. The message can be validated against the decrypted
signature. It must be noted that different pairs of entities have different shared key. Due to
this restriction, the in-house intruder will not be able to affect the signature (collectively
containing the signature and timestamp) part of message generated by different pairs. If the
key is demanded from the constructor, then the receiver will be responsible for the message

he has forwarded to rest of the entities.
There are two purposes of introducing the timestamp in SOAP message:

1. To reduce the probability of false hit for any particular signature function used to
generate the signature digest.

ii. To verify the message creation time as the in-house intruder can impose a false
impression and try to re-arrange the order of the message which may be sometimes
important. The order of message generation can be helpful as it depicts the correct

path of message circulation.

To protect the message from second tvpe of attack the XParh expression language can be
used. This model is based on existing technologies like XPATH with Streaming API for XML
(StAX). The reason behind using StAX over Document Object Model (DOM) [48] is that it’s
an offline data structure and thus has less memory consumption [49]. StAX is a push parser
which refers to a programming model in which an XML parser pushes XML data to the client
as the parser encounters elements in an XML infoset. Thus it enables to search from root to
the leaf having the correct id instead of directly jumping to the node of given id. If re-location
is done by the in-house intruder the search will fail and hence attack can be detected. This
approach also avoids extra processing as the content can be copied under different fragment
of SOAP message. The referencing to the node in this model is done using value hence the

reference is called as value referencing.

52

The process of encryption and decryption of SOAP messages are specified below supported

by the following symbolic notations:

a.

E: The encryption algorithm used.

E": The corresponding decryption.

G;: The global key shared between all entities involved in conversation.
Kag: Key shared between entity A and B.

T: the timestamp

SIG: The signature function

Map:Message shared between A and B

EMg: Encrypted message between A and B

SOAPB: The SOAP message body containing message

Web service workflow while sending a SOAP message

Prepare the SOAP body Mg
Randomly insert Time stamp inside the message Ts.
Now XML signature is generated out of the modified message.
S=SIG (M,5+T)

The next step would be to append the timestamp and signature inside the header of
the message and encrypt it with a shared key Kas. Whenever a receiver of the
message wants to authenticate that the constructor, it will demand this Key Kap
from the constructor. While validating if the signature and the timestamp don’t
match that shows the message was tampered in the mid way by any authorized
entity.

EMp=E(S+T, Kup)
Later encrypt the entire SOAP message with a different shared key, called as group
key Gs, This Key will be available to all the members of the group communication,
who are authorized to append / read the message.

53

ESOAP=E (SOAPB+EM,5 Gj)

Send the prepared message through the network.

b. Web service workflow after receiving a SOAP Message

Receive the SOAP message
Decrypt the message with a shared key G; in agreement, which is available with
reliable agents only. Shared key ensures that the message can’t be accessed by the
unauthorized entity.
SOAPB +FEM,5 = E'(ESOAP, G,)

[f an authorized or trustworthy entity modifies the content then secure conversation
can be ensured by validating the signature and the timestamp.
If an authorized entity in the conversation changes some content and receiver requires
checking its integrity. The receiver will request the constructor to send him the key
Kap. The signature and the timestamp is decrypted by the key and validated by the
signature generated from the content. Signature as a sort of Hash function which can
have collisions, timestamp can be then used as a collision resolver i.e., Timestamp
will be validated only if there may be any false hit.

S'= SIGM.5)

If (S'=SIG(SOAPR))) then message is verified
If any other entity in the conversation wants to add information, it will append the
information in the new body and its corresponding timestamp and signature is also

maintained.

4.2.2 Model Implementation: Detection of XML Rewriting Attacks

For implementation the tools and technologies used included windows 7 operating system,

JavaSE version 1.6, XML version 1.0, NetBeans version 7.1, Java Cryptography
Architecture(JCA) API version 1.2, Xparh version 2.0, StAX version 2.0, JAX-WS 2.0

version, Signature was generated using SHA algorithm. In the example scenario Advanced

54

Encryption Standard (AES) with a key size of 128 bit (out of the various available encryption
algorithms) is used to encrypt signature and timestamp. One can choose encryption algorithm

depending on the difficulty level of security required.

While sending a SOAP message it is important to have an SOA environment that the should
be free from recurring rewriting attack or insecure conversation, it’s important to ensure that
the SOAP message is sent and received without any tampering, even if the message has been
tampered, there should be early detection. Consider a scenario, where a message shown

below is sent by WebservicesSOAPMessageCreator to Web servicesSOAPMessageAcceptor

as shown in figure 4.3.

[t can modify only if it knows the
shared key

Message 1s tampered by authorized
intermediaries by adding bogus
header, modifying the message

Figure 4.3: Depicting the attack scenario

The message is created using the steps mentioned in section 4.2.1 and sent over a network to
the other web service. The message can’t be tampered by the malicious attacker as it doesn’t
have the global key G, An in-house intruder can decrypt the message as it has the shared key

G;. The example scenario is shown in figure 4.3.

55

<?xml version="1.0" encoding="UTF-8" 7>
<SOAP-ENV :Envelopexmlns:SOAP-
ENV="http://schemas.xmISOAP.org/SOAP/envelope/
">
<SOAP-
ENV:Headerxmlns:exp="http://SOAPexperiment.com
" exp:ad="xyz">
<exp:hashValuexmlns:exp="http://SOAPexperiment.c
om">
<xenc:EncryptedDataxmlns:xenc="http://www.w3.org/
2001/04/xmlenc#" Type="http://www.w3.0rg/2001/04/x
mlenc#Content">

<xenc:EneryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes12
8-chc" />

<ds:KeyInfoxmlns:ds="http://www.w3.0rg/2000/09/xm
Idsig#">
<xenc:EncryptedKeyxmlns:xenc="http://www.w3.org/2
001/04/xmlenc#">

<xenc:EneryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenckw-
tripledes" />

-<xenc:CipherData>

<xenc:CipherValue=PaVSntY G8JzUwXeivEDosiKy8
sUCUSONmuW+{27+XIc=</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedKey>

</ds:KeyInfo>

-<xenc:CipherData>
<xenc:CipherValue=......oocvvvevirvinvnnans
CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</exp:hashValue>

</SOAP-ENV:Header>
<SOAP-ENV:Body 1d="xyz">
<po:Purchase-
Orderxmlns:po="http://SOAPexperiment.org/purchas
e'">

<item-details>

<item-name>Car</item-name>

veeenn SiXeNC:

<time-stamp>Mon Apr 02 00:56:12 GMT+05:30

2012</time-stamp>
<item-price>120000</item-price>
<pumber-of-item>10</number-of-item>
<merchant-name>maruti</merchant-name>
</item-details>

</po:Purchase-Order>

</SOAP-ENV:Body>

</SOAP-ENV :Envelope>

(a)

Soa

p:

envelope

(exp:id=\"

Soap: Soap: body xyz\"]",
header
— po:
Wsse!])umhﬂge]tem_name
security order = car
: : No_of ite
d_b' ms= 10
signature
| Item_price=
4 ™
ds: (@exp:d 120000
reference =XVZ
-/
Timestamp
..........
)
Merchant_
name=
maruti
—

(b)

Figure 4.4: (a) Decrypted / original message SOAP message and (b) Represents its hierarchical diagram

56

Message after going through the network reaches at the receiving end, is then decrypted by

the key G;. The decrypted message is shown in figure 4 4.

If a trusted entity in the conversation breaks the trust and sends the message to some other
after modifying it and pretends that he is just a sender not the constructor. The message can
be validated whether it was modified in the transit, by validating against the signature and the

timestamp as explained above.

<xml version="1.0" encoding="UTF-8" 7>
SOAP-ENV:Envelopexmlns: SOAP-ENV="http://schemas.xmISOAP.org/SOAP/envelope/">
SOAP-ENV:Header>
‘exp:hashValuexmlns:exp="http://SOAPexperiment.org/exp">
‘SignaturexmlIns="http://www.w3.0rg/2000/09/xmldsig#">
SignedInfo>
CanonicalizationMethodAlgorithm="http://www.w3.0rg/2001/10
ml-exc-c14n#WithComments" /> Soap:
SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal" envelope
Reference URI="">

Transforms>

TransformAlgorithm="http://www.w3.0rg/2000/09/xmldsigtenvelope| @expiid=\"
STransforms=> header xyz\"|",
DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’

DigestValue=PVICxi6k VItsk TPRIPJJtCw Kugw=</Digest Value> I

. po:

:}{]:_cterzr]lc? wsse: purchase Item_name
/Signedinfo> security sl = car
Signature Value>dhwidouKSEHxuLeYVtY2dg8NkzFgorhCHzw cIW J
GeAdYpQZ+gtPAg==</SignatureValue> ,—I—\

KeyInto> ds:

KeyValue> signature

DSAKeyValue>...</DSAKeyValue> ;|—/ 0 .
KeyValue> (") em_priee=
K c;-'lnl"o‘;- ds: @exp:id 420000
'fSién'llurc‘J reference Yz)
; ’ —
Jexp:hashValue> Timestamp
/SOAP-ENV:Header> T
SOAP-ENV:Body 1d="xyz"> 4 N\
‘po:Purchase-OrderxmIns:po="http://SOAPexperiment.org/purchase"> M(‘r(“lidm—
‘item-details> name= -
item-name>car</item-name> ABXvehic

‘time-stamp>Wed Mar 07 11:17:00 GMT+05:30 2012</time-stamp> <
dtem-price>420000</item-price>
number-of-item=>50</number-of-item>
‘murchant-name>ABX vehicles</murchant-name>
Jitem-details>
Jpo:Purchase-Order>
ISOAP-ENV:Body=
JSOAP-ENV:Envelope>
(a) (b)

Figure 4.5: (a) SOAP message with content tampered and (b) represents its hierarchical diagram

57

<?xml version="1.0" encoding="UTF-8" 7>
-<SOAP-ENV:Envelopexmlns: SOAP-ENV="http://schemas.xmISOAP.org/SOAP/envelope/">
-<SOAP-ENV:Header>
-<exp:hashValuexmIns:exp="http://SOAPexperiment.org/exp">
=<Signaturexmlns="http://www.w3.org/2000/09/xmldsig#">
-<SignedInfo>
_<CanonicalizationMethod Algorithm="http://iwww.w3.0rg/2001/10/xml-exc-c14n#¥WithComments" />
_<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal" />
-<Reference URI="">
-<Transforms>
_<TransformAlgorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"
</Transforms>
_<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsigi#shal" />
_<DigestValue>PVICxi6kVI9tsk 7TPR3PJJtCwKuqw=</DigestValue>
_</Reference>
_</SignedInfo>
_<Signature Value>dhwi4ouKSEHxuLeYVtY2dg8NkzFgorhCHzwcl
WEKXGcAdYpQZ+gfPAg==</SignatureValue>

Soap:
envelope

T P
@exprid=
Xvzl

Soap:
header

Soap: body

Modified
content

-<KeyInfo> P \ J
-<KeyValue> 3
SSEy W rSoap:bod;
-<DSAKeyValue>................ </DSAKeyValue> e [PpereOIp oty @expi
) security 1d="bogus =
</KeyValue> \ J\ d=xvz
</KeyInfo> |
_</Signature>
<fexp:hashValue> ds:
</SOAP-ENV:Header> signature po:

-<SOAP-ENV:Body id="xyz"> Item_name

= cdar

purchase
Shifting the code in a Bogus header order
ds:

-</SOAP-ENV:Body>
=<SOAP-ENV:Body id="bogus

-<po:Purchase-OrderxmlIns:po="/ttp://SOAPexperiment.org/purchase"> reference
-<item-details>
_< <item-name>Car</item e>

—
(@exp:d

<Time-stamp>Mon Apr 02¥0:56:12 GMT+05:30 2012</time-stamp>
<item-price=>120000</item-price>
<number-of-item>10</number-of-item>
<merchant-name>maruti</merchant-name>

</item-details>

=XVZ Item_price=

120000

_<fitem-details> Timestamp
_</po:Purchase-Order> =
</SOAP-ENV:Body 1> —
<ISOAP-ENV:Envelope>
Merchant
name=
maruti
(a) (®) \. J

Figure 4.6: (a) SOAP content where the message is shifted to a bogus header (b) shows the hierarchical structure

Figure 4.5 and 4.6 shows the example of attack an authorized entity can perform. Fig 4.5
shows how the content can be tampered, but it will be detected as the signature will not be
validated as per the algorithm. The attacker cannot change the signature as it is encrypted, and if
it requires changing the signature, it has to ask for the key K,z Once it has obtained the key K5

from SOAPMessageCreator, it will not be able to pretend as if it is not the constructor

58

Figure 4.6 shows how an authorized entity can shift the message to a bogus header. Even if the
body is shifted to a bogus header, Instead of directly jumping to the node of given id. a search is
made from root to the leaf having the correct id SOAP-ENV:Envelope/ SOAP-
ENV: Header[(@exp:id=\"xyz\"]" as shown in Figure 4.7. The search will fail and hence attack
can be detected. This approach also avoids extra processing if the content is copied under
different fragment of SOAP message. Thus the model successfully detected rewriting attacks

and established secure conversation

NodeList SOAPmhead=(NodeList)path.evaluate("/SOAP-ENV: Envelope/SOAP-ENV:Header| @exp:1d=\"xyz\"|", document,
XPathConstants. NODESET),

DOMSignContextdomsc=new DOMSignContext(keyPair.getPrivate(),SOAPmhead.item(0));
XMLSignatureFactorysignatureFactory=XML SignatureFactory.getInstance("DOM").

Reference reference=signatureFactory.newReference("#xyz", signatureFactory.newDigestMethod(DigestMethod. SHA, null),
Collections.singletonList(signatureFactory .newTransform(Transform. ENVELOPED, (TransformParameterSpec)null)), null,
null);

SignedInfo

si=signatureFactory newSignedInfo(signatureFactory .newCanonicalizationMethod(CanonicalizationMethod. INCLUSIVE_WITH

COMMENTS, (C14NMethodParameterSpec)null), signatureFactory.newSignatureMethod(SignatureMethod. DSA_SHA1, null),
Collections.singletonList(reference));

KeylnfoFactorykeylnfoFactory=signatureFactory.getKeyInfoFactory();

KeyValuekv=keyInfoFactory newKey Value(keyPair.getPublic());

KevInfo kevInfo=kevInfoFactorv.newKevInfo(Collections.singletonList(kv)):

Figure 4.7: Processing the SOAP message at the receiving end
4.3 Results and Observations: Performance Issues in Model Evaluation

After implementing the example scenario in section 4, performance of the SOAP model was
analyzed as any signature and encryption operation on XML message requires considerable

XML processing time which is directly proportionate to the size of the message [26].

The time required to construct the message = Time required generating signature + time

required to encrypt the signature with K5 + time required to encrypt the SOAP body with Gs.

The time required to process the SOAP message = Time required decrypting the SOAP body

with Gg + Time required validate signature.

59

Incorporating all the three recommendations on the SOAP message would add overhead in terms
of time required to construct the message at the sender head. time required to process the

message in the receiving end.

Analysis of the effect of increase in SOAP size with respect to following criteria was done:
(1)The time required for encrypting the message for sending

(2)The time required for decrypting of the received message

(3)The time required for encrypting the signature

The snapshot of time profiling in NetBeans is shown in figure 4.8.

Hot Spots - Method Self time [%] v Self time Invocations

org.s0ap.send, SendSoapessane. sendSOAPMessage (1212, ml s0zp, S0APMessans) - 1544 ms (33.4%) 2
org,security, CreateSecureSOAPMessage, appendSignature | . 632 ms (16.1% 2
org.reator, SOAPMessageCreatorFrame, initComponents | l 253ms (6.5%) 1
org.security. CreateSecureSOAPMessage. generateSoapMessage (0r0.b | 152ms | 2
org.security. CreateSecureSOAPMessage. getSharedKey | l 144ms (3.7%] 1
org.creator, SOAPMessageCreatorFrame, <init> | | 139ms [3.6%) 1
org.jcp.xml.dsig.internal.dom, DOMReference. transform (jzvax. xml.crypto.Data, jzvax.ml.crypto. XMLCrypto I 69.7ms (1.8% 1
org.security. CreateSecureS0APMessage. encryptSOAPMessage (| | 62.2ms (1.6%) 2
soapmessagacreatordient, SOAPMessageCreatorChient, main (Strinal]) I 62.2ms (1.6%) 1
org.apache.xml.security.encryption. XMLCipher, encryptKey (or | B.5ms (1.2% 1
org.apache, xerces.parsers, XML11Configuration. <init> (0o | 3B.9ms 7
org.jop.xml.dsig.internal.dom, ApacheTransform, <clinit: | 373ms (1% 1
org.apache.xerces.parsers. AbstractDOMParser. startDocument (org.apache. xerces. o \MLLocator, String, o | 31.7ms (0.8%) 5
org.apache. xerces.jaxp.DocumentBulderFactoryimpl newDocumentBuilder () | 2.6ms (0.7% 7
org.apache. xerces.parsers, ObjectFactory. newInstance (String | (0,6%) 7
org.apache. yerces. jaxp.DocumentBuiderimpl, <init> (0ro.zpache. xerces | Jilderf: mpl, java.uti.t ble, java.utl.Ha an) el 7

T CallTree @mspoﬂ%cmmd @ o

Figure 4.8: Snapshot of time profiling of SOAPcreator in NetBeans

To analyze the overhead of the encryption and decryption, we plotfted a graph as shown in
figure 5.9. The graph depicted the plot of time required for message encryption and
decryption versus the number of tags in the SOAP message. The time required to encrypt a
SOAP message with 5 tags was 102 milliseconds and as the number of tags grew to a count
of 50 the time required to decrypt the message was 124 milliseconds. The graph clearly
shows that the increase in y-axis is too less in comparison to the corresponding increment in
the y-axis. The percentage of growth was .04%. The red line in the graph shows time taken to

decrypt the message with key G; It was observed that the time required to decrypt a message

60

of 5 tags was 119 milliseconds and as the SOAP message size grew 1o 50 tags the time take

to decrypt the message was 183 milliseconds. In this case also it was seen that the overhead

of decrypting doesn’t subsequently increase with the number of tags in the SOAP message.

The percentage of growth in the time with respect to the number of tags was 0.14%.

200
180
160
140
120
100
80
60
40
20

time in milli secs

5 10

15 20 25 30 35 40 45 50

number of tags in SOAP message

®=ecncrypt Soap message

=l—decrypt Soap message

Figure 4.9: Encryption of the message for sending with respect to number of tags in the SOAP message

900
800
700
600
500
400
300
200
100

time in milli secs

/

—

5 10

15 20 25 30 35 40 45 50

Number of tags in SOAP message

——=time taken to generate the
signature

Figure 4.10: Time required to encrypting the signature with respect to number of tags in the SOAP message

As the recommendations in the model also contained generation of signature, it was observed

that how the time taken to generate the signature varies as number of tags increases. The

graph in figure 4.10 shows the time required for encrypting the signature with respect to

number of tags in the SOAP message. Time required for Signature generation will depend on

the key generation algorithm like Data Encryption Standard (DES) or AES.

61

It depends on the programmer which key generation algorithm he/ she wants to use
depending on the difficulty level of security required. The time required to generate the
signature for a message with 5 tags was 542 milliseconds, while the time taken to generate
the signature for a message with 50 tags was 788 milliseconds. It can be seen that the
percentage of growth is 0.5%. Thus it can be inferred that the proposed SOAP model doesn’t

have much overhead.

We have compared computing time for generation of encrypting the whole SOAP messages
and plain SOAP message generation w.r.to number of tags, it was observed that the average
overhead of sticking to the proposed model was 2%. The graph in figure 4.11 depicts the

same. Thus it can be inferred that the proposed SOAP model has significantly less overhead.

800

700 /

E 500 / —
E o //_,:——’/,/ /
E 300 -7/ Seriesl
= 200 w— Series2
/
100
0 T T T T T T T !

S S \@Q \5@ {o@q,@? rf,')@ n,@Q ,,;,‘3“ n,%@u.“@ b‘"@ 5@?

number of tags

Figure 4.11: Computing time required to create an plain SOAP message (series 1) and encrypted message
(series 2) with respect to number of tags in the SOAP message

4.3.1 Comparison of the Proposed Model with the Earlier Models
[21] Has proposed FastXPath, which is not flexible as it limits the abilities of defining a
signature reference. The proposed model is based on existing technologies like XPATH with
StAX. The reason behind using StAX is to enable search from root to the leaf having the
correct id instead of directly jumping to the node of given id. If re-location is done by the in-
house intruder the search will fail and hence attack can be detected. This approach also
avoids extra processing as the content can be copied under different fragment of SOAP
message. The referencing to the node in this model is done using value hence the reference is

called as value referencing. Thus it does not limit the abilities of defining signature reference

62

[22] Recommended using depth information, parent information and using /d attribute to
uniquely identifving the parent. As the depth information can also be tampered by the
malicious attacker. We are not attaching the extra information, we are just attaching
timestamp and embedding it into SOAP body and then encrypting the whole SOAP body.
Thus the malicious attacker cannot access the added information

[23] has an disadvantage that it doesn’t comply with the schema of the WS* standards, our
model sticks to the basic structure of SOAP model mentioned in WS standards.

[24] has the disadvantage that the process will be slow as signature generation is a slow
process. Our model has no nested signature as signature generation is a time taking process:
we have lesser levels of signature

[25] The trade off is that the context is to be generated and stored in the reference element
of the signature in header section before signing the message. We are not involving any extra
step of generating context, thus it will have less time taking than the method suggested in
[25].

4.4 Summary

This chapter attempts to highlight that rewriting attack is the price that one has to pay for the
robustness, extensibility and flexibility of web service specifications and also for the
separation of concerns in the web services frameworks [49]. It was to address these
challenges of rewriting attacks and secure conversation that a SOAP messages transmission
faces in enterprise web service applications that model aimed to achieve the properties of
simplicity and light transmission has been developed.

Further in this chapter the working of the model is based on three possible recommendations
namely, using shared key for encrypting timestamp in the message body for generating
corresponding signature. Second recommendation is using value referencing both for
signature validation and message processing. Final recommendation is encrypting the whole
SOAP body instead of sending an open SOAP Message in the network to prevent

unauthorized access.

The following chapter continues this with the work on secure dissemination i.e., the third and

the last component of the research work.

63

64

CHAPTER 5: SECURE CONTENT BASED DISSEMINATION OF
XML CONTENT

As mentioned in the previous chapter secure dissemination of an XML file is one of the
techniques to ensure data integrity and confidentiality. This chapter proposes a secure
dissemination technique such that extraneous data not meant for a consumer should be
inaccessible. The information should not be accessible to authorized consumer, if it is not meant

for him as flow of extraneous data may leak information.

5.1 Background

Let us consider a scenario where large documents at the source end called as producer, can be
accessed by large number of service requesters called as consumers. The consumer should be
able to view only relevant data which he has been authorized to view. Even a legitimate
consumer can exploit the knowledge of context from the data elements it has access to [29].
These access policies should be specified by the producer. Flow of extraneous data to a
consumer may lead to information leakage. In particular the extraneous data is prone to off-line
dictionary attacks even by legitimate consumer that can exploit contextual knowledge from the
data elements it has to access [30].

Security of the data is an important issue as having better QOS [2] is all in vain if data integrity

cannot be ensured. The problem scenario of secure dissemination is represented in figure 5.1.

Figure 5.1: Hierarchical structure of XML tags

65

The n-ary tree T represents the tree structure of a XML generated by the producer or the service
provider. The access policy for the scenario shown in figure 5.1 depicts that the nodes in blue are
requested by consumer 1, red nodes and green can be accessed by consumer 2 and consumer 3
respectively.

The various technologies used and details of their features which have been used is described in

section 5.1.1 and 5.1.2.

S.1.1 XML
XML [50] is a declarative and narrative language and need parser of type DOM to fetch out
useful information described therein at processing end. DOM [51] structure is a composed
element. An element contains a portion of the document delimited by two fags: the start tag at
the beginning of the element, with the form <tag-name>, and the end tag, at the end of the
element, with the form </fag-name>, where tag-name indicates the type of recommended data.

The structure looks like as shown as in figure 5.2.

Copyright=
ABC

<document>

<last updated>July 28, 2012</last_updated>

<copyright>ABC company</copyright> url

Maintainer=ra =http://
<maintainer email="ras@juitcom" Last s@iuit WWW.ju
updated=july .
it.com/

url="http://www juit.com/"> 282012

<name= Email=

ras@juit.com
<first_name>marko</first_name>

F name=
<middle_name>D</middle name> marko

<last name>Harold</last name> Middle

name=

</name> b

</maintainer>

</ document>

Figure 5.2: An XML document and its corresponding tree structure.

66

An XML document has an underlying tree structure. The nodes of the tree represents elements
their attributes, and edges represent relationships between them [2]. A tree can be represented in
the computer memory in many ways.

One of the sequential techniques and a compact representation of tree structure is to represent
tree in memory using linear list [52]. It is the most common representation of the tree states that
the nodes can be stored by consecutive addressing.

The tree in figure 5.3 can be represented in the memory as (A (B (E), C (F, G), D (H, 1, J))
A

Figure 5.3: Linear list representation of the tree in memory

The root A will have a link to all of its children’s from left to right; the children’s will further
link to their children. Thus if the producer want to transmit the data which consumer 3 has
subscribed for, only the address of D should be known to the consumer and the whole subtree
can be traced easily. Thus any subtree is accessible if a consumer is able to locate the address of
the root of the subtree. We are trying to exploit the above property of the tree, for securely
disseminating the tree.

To ensure security of data, the linear list can further be encoded in a DNA (Deoxyribonucleic
acid) strand [54]. The properties of DNA are its compact nature and simplicity in implementation
which makes it an ideal choice to encrypt the tree structure of XML data. DNA also provides

high complexity at decoding end without right information.

67

5.1.2 DNA

DNA is a double stranded molecule as shown in figure 5.4. The building blocks of DNA double
strand are the variant combinations of the four nitrogenous bases adenine (A), thymine (T),
guanine (G) and cytosine (C). Two strands of DNA can form (under suitable conditions) a
double strand if the respective bases are Watson-Crick complements of each other - A matches
with T and C matches with G, also 3° end matches with S’end [53].

The main idea of computing with DNA is to encode data in a DNA strand form in order to
simulate arithmetical and logical operations using Watson crick complement [54]. It’s like we
are working with a Quaternary means 4-ary number system. High information density of DNA
molecules and massive parallelism involved in the DNA reactions make DNA computing a
powerful tool. DNA is a good medium for data hiding because of its great length and high
randomness. DNA has the attribute of simplicity and compactness identified to choose a security
protocol.

DNA cryptography has been proposed by Gehani et al. [55], Kartalopoulos [56] and Tanaka et
al. [57] as a new born cryptography field. It’s also called as DNA stenography, where we tend to

hide data in a DNA strand with compactness and simplicity.

sugor-onosphaie

surun hallral B < 3 4 am

Figure 5.4: The double helical structure of DNA [58]

5.1.3 Restriction Enzymes
Restriction enzymes are molecular scissors that cut DNA into fragments at specific sites in their
sequence. The enzymes degrade the foreign DNA by cutting the area that contains specific

sequences of nucleotides. Since discovering the function of these enzymes, molecular biologists

68

have isolated them from a variety of single-celled organisms for cutting DNA into fragments

[59].

Haelll, isolated from Haemophilus aegyptius, is an example of a restriction enzyme. Its

recognition sequence is:

GG, CC
CC “GG

Where ever in the DNA strand it will find the sequence shown above it will cut the strand
between G and C.

There is a large set of database of available restriction enzyme [60, 61]. The RBASE database
registers 4000 restriction enzymes. We are not focusing on the scissor property of the enzyme,
but are concerned about their property of identifying the recognition site as shown in above
example. This property of the restriction enzyme is used to specify the access policy.

The idea is to assign a Starting Restriction Enzyme (SRE) and Ending Restriction Enzyme (ERE)
to a specific consumer so that when a data is prefixed and suffixed by the respective enzyme then
the corresponding consumer can be located. We have encountered that in the real world there are
4000 types of restriction enzymes, this will limit the number of combinations to 4000(SRE) *
4000(ERE). Hence we have not picked up real restriction enzymes but our SRE and ERE
consists of sequence of bits { A, T,C,G} of length n, wheren € { 1,2,3, } .

5.2 Proposed Secure Dissemination Technique

The technique consists of three things, three actors namely
1. 1 Producer, who prepares an encrypted XML document to transmit through the network
ii. N number of Consumer who has to read the message from the XML document
iii. A multicast dissemination interface, which act as disseminators which customizes the access
policies for each customer by assigning a flag to the customer, such that the customer can

extract the message meant for him through the XML file and decode it to get the message.

69

1. subscribe

. 1.subscribe
2.publislt
3. data - publish

Secure
dissemination
interface

4 Consumer 2
|

3.data . ‘

1.subscribe

2. publish

Figure 5.5: The architecture diagram of the secure dissemination interface

The secure dissemination technique is implemented as multicast dissemination interface which is
built dynamically and asynchronously using publish / subscribe methodology as shown in figure
5.5. Once the consumer subscribes with the interface, it will be assigned a SRE and ERE. The
consumer will subscribe with secure dissemination interface for the service which the service
provider has published. The data is prepared according to the technique and sent to the consumer
such that there is no information leak.

A temporary XML document is prepared by prefixing and postfixing the XML tags which the
consumer is authorized as shown in figure 5.6. If a consumer is allowed to visit a top level tag
then he/she is eligible to see all the child tags. If there are more than one subscriber of a node, for
example x and y has subscribed for the root node, then any one pair of the SRE and ERE is used

for annotation and the other consumer is informed about the new pair of SRE and ERE.

70

<document>
<last_updated for="consumer3">July 28, 2012</last_updated>
<copyright for="consumer2">ABC company</copyright>
<maintainer email="ras@juitcom"
url="http://www juit.com/">
<pname for="consumer]">
<first_name>marko</first_name>
<middle_name>D</middle _name>
<last_name>Harold</last name>
</name>
</maintainer>
</ document>

Figure 5.6: The prepared temporary XML file

The interface starts processing this temporary XML document and later provides the following

two options:

a. Produce one single file to send to all clients
In this case the interface chooses as many SRE and ERE as there are “for” attribute in the
temporary XML file. Now before the start tag of each tag having “for” attribute the software will

append information.

b. Produces separate file for each set of client
The interfaces will produce as many encoded file as there are “for” attribute in the temporary
file. In this example there will be three output files. Each encoding is done with different set of

SRE and ERE. The interface will give the name of SRE and ERE used for that particular file.

71

At the producer end the procedural flow involves:

1. It prepares a temporary XML file to be transported to the consumer by prefixing the data with
a tag called as ‘for consumer _

ii. Later the temporary file is picked and where ever a “for * tag is located file, it’s replaced by
SRE and the data is suffixed by ERE of the concerned consumer number.

iii. The producer encrypts the content of all the XML elements in a DNA strand.

iv. Later transports it to various consumers.

At the consumer end when the data is received, the procedural flow involves:

1. The consumer receives the encrypted file

ii. Later it searches for the data that will fall between his specifies restriction enzymes.
iii. Consumer obtains data access to Root node and children address
iv. Data of the child nodes can be extracted from the addresses obtained from step ii.

v. This extraction continues till all the leaf nodes are obtained.

5.3 Working of the Proposed Secure Dissemination Technique

The content of the node in XML contains attributes of an XML element. That content is encoded
in a way that will avoid malicious attacks. As stated in the introduction DNA encryption has
been chosen for encoding the data. The DNA molecule is composed of four basic groups of A, C,
G and T. Thus each XML node’s content is treated as a text; each character of the text is parsed

and encoded using computer mapped character encoding like UTF, ASCIL.

72

5.3.1 XML File Encryption in a DNA strand
Here, we illustrate encoding for the character ‘A’. The ASCII value is considered and its
equivalent binary number equivalent is generated.
The procedure is outlined below:
ASCII value is considered and its equivalent binary no is generated. Let us take an example
A ->its ASCII value is 65
We now convert the ASCII value into its equivalent binary no is 100001. This binary number is
the encoded in the form of DNA strand. As we know the DNA strand is composed of (A+
C+T+G)*, thus possible patterns for this encoding format are 4! =24. According to Watson-Crick
complementarily rule [62, 63] nucleotide base A is complement to T and C is complement to G.
Take DNA digital coding into account, it should reflect the biological characteristics of 4
nucleotide bases, the complementary rule that (~0) =1, and (~1=0) is proposed in this DNA
digital coding. According to the complementary rule, the complement of 0(00) is 3(11) and 1(01)
is 2(10) and vice versa. So among these 24 patterns, only 8 kinds of patterns (0123/CTAG,
0123/CATG, 0123/GTAC, 0123/GATC, 0123/TCGA, 0123/TGCA, 0123/ACGT, and
0123/AGCT) which are topologically identical fit the complementary rule of the nucleotide bases
[64].
Among the eight patterns, we have chosen a representation as shown in table 5.1 to explain the

method of encryption:

Table 5.1: Representation to map DNA nitrogenous bases to Binary number

Binary number DNA encoding
00 A
01 C
10 T
11 G

Using the table 5.1 now the encoded DNA strand looks like the following:
10 00 00 01

VL

73

Thus the nucleotide TAAG is the encrypted form of A.

Following the above explained procedure of encryption the root node in the figure 5.2

“document” is encoded:

01000100 01001111 01000011 01010101 01001101 01000101 0100111001010100

CACACAGGCAAGCCCCCAGCCACCCAGTCCCA

Thus after encryption every data of node will look like: Y {A, T, C, G}.

To add an additional level of encryption, we recommend XORing the data with a key. Each
character can be XORed with an 8 bit key, which will be known to all the consumers. An out

house intruder has to try 2 apart from knowing SRE and ERE to decode a data.

The same word “document “ if XORed by a key 10011011 becomes

Original form 01000100 (01001111 (01000011 p1010101 01001101 01000101 {01001110 01010100
Key 10011011 (10011011 [10011011{10011011 10011011 {{0011011 {10011011 [10011011

XOR 11011111 {11010100 |10110001 1001110 1{10101101{1011110 {11010101 1001111

The DNA strand after encryption now appears to be
GCGGGCCA GCTAGATAGCCAGCGT GCAC GAGG

5.3.2 Assigning a Starting and Restriction Enzyme to Each Consumer

The property of restriction enzyme to identify the recognition site is used to specify the access
policy. Thus two restriction enzymes are randomly assigned to each consumer subscribed for the
XML data. This restriction enzyme 1s prefixed and suffixed to data as an annotation specifying

that which consumer is authorized to access the data. One which is prefixed is called as SRE and

74

other one is called as ERE. Considering figure 5.1, there are three consumers subscribed to the

document. X, y, z are the name assigned to them and their respective SRE and ERE are

Table 5.2. SRE and ERE assigned to the various consumer

Name of the consumer SRE ERE
Name Recognition site Name Recognition site
X FEcoRI- GAATTC FEecoRIL CCWGG
y Smal CCCGGG Sau3A GATC
7 EcoRV GATATC Kpnl GGTACC

SRE and ERE of consumer x and y are mathematically represented as <SRE,, ERE, > and
<SRE,, ERE, > respectively. When a data is hidden in a DNA strand, it’s actually annoted with
the consumer’s SRE and ERE to signify that consumer x has the authorization to access the node
and the subtree. If consumer x is authorized to access the root node then the strand appears to be

GAATTC GCGGGCCA GCTAGATAGCCAGCGT GCAC GAGG CCWGG

If there are more than one subscriber of a node, for example x and y has subscribed for the root
node, then any one pair of the SRE and ERE is used for annotation and the other consumer is

informed about the new pair of SRE and ERE.

5.3.3 Scattering of Data in the Garbage File
A garbage file F can be defined as a large text file consisting of random combinations of A, C, T,
G. DNA cryptography has an advantage that it provides four options for each bit as it in

Quaternary. Thus the numbers of combinations are 4 for each bit.

75

Figure 5.7 shows a graphical representation of number of bits versus number of combinations in
terms of exponentiation. It can be seen that the values of binary is lower than quaternary. Table
5.3 shows the table of number of combinations versus number of bits for both quaternary and

binary number system.

90
80

70 /-——_
60 /

50

40 // /_— —— quaternary
30 binary

20 /

10 -

exponentaition of number of combinations

1 25 50 75 100 125 128

number of bits

Figure 5.7: Shows number of bits versus number of combinations in terms of exponentiation

Table 5.3 : Number of combination versus number of combinations in quaternary and binary number systems

No of bits 1 25 50 75 100 125 128
quaternary 20 6E+15 6.76E+30 7.61E+45 8.57E+60 9.65E+75 | 9.88E+78
binary 2 67108862 2.25E+15 7.56E+22 2.54E+30 8.51E+37 | 6.8E+38

The data is embedded into the garbage file at random locations. A table 7ab is also maintained to
store the information of the address of the node in the file. The location is calculated as number
of words from starting of the file (Iength of each word is of 3 characters each). The attributes of
table 7ab are <name of the node N , address addr of the node, length L of the data in the node>

when encrypted using the method mentioned in section 5.3.1.

76

The address addry is assigned randomly such that
addresss addry ={ addr| addr < addr;
addr> addr; +1;}
where 1<=1<=n-1

li is the string length of the data at node i

The node is stored in the file and the address of the node is appended beside data of the parent.
So that while traversing if one knows the node he can find all the children of the node in the
garbage file. The location is also encrypted in the format as mentioned in section 5.3.1.

Now the strands will have a representation as shown in figure 5.8, stating that the whole subtree

T starting from the node is visible to the client X.

'

SRE DATA of the node ADDRESS of the child ERE

GAATTC GCGGGCCA GCTAGATAGCCAGCGT GCAC GAGG ACTGGGTAECATG Cj.WGG

If T2 is the subset of T, and it has to be sent to consumer y then head of sub tree T, will be
prefixed and suffixed with <SRE,, EREy >.Thus signifying that consumer y will only able to
locate the head of T, and its children, but will not be able to search the address of the of its

parent node in the file.

SRE Address of leftmost ERE

child

Data in the encrypted Address of rightmost

child

form

Figure 5.8: Diagrammatic representation of the node

The proposed secure dissemination technique is based on publish/subscribe. Whenever a
consumer subscribes for the data, then the required file F’ is sent to him.
The consumer will first locate the data starting with SRE and ERE. Then he will try to extract the

data and child’s addresses. And unfold rest of the tree till leaf is encountered.

77

5.4 Proposed Algorithm of the Secure Dissemination
The working of the algorithm for secure dissemination which implements the technique

explained in section 5.3 involves the following two tasks:

e Execution at the server end as producer of the file

¢ Execution at consumer end to construct the sub tree

5.4.1 The Algorithm followed at Server End
i. Initialization:

a. Generate a garbage file F =) {A,T,C,G} is prepared

ii. XML FILE is parsed and each tag is traversed using preorder traversal
a. 1= preorder(T) /*For each node r
An entry is maintained in the table T */

Ax = randomaddress() /* randomly assign an address to each node to be inserted in the
garbage file F in the garbage file. Such that it doesn’t match with
any earlier assigned address or any earlier assigned address+ length
of the data.

Add (< T, Name of the node r, Address assigned to the node Ay,
Length of the data of the traversed node>*/

iii. D=r->info //Distheinfoat node
iv. Ex(Dx) =encrypt(D) // Perform DNA encryption
v. List= ADD(E, (Dy)// maintain a list of data elements and its encrypted value
vi. GetSubscribedConsumer()//For each client
a. LIST 1= add(SRE ERE, n) in the table Enzymes // SRE and ERE to each consumer x such

that the recognition site doesn’t exits in the

data. n number of bits of SRE and ERE.

78

vii. X’= prepXMLTemp() //Parse the XML file and according to access policy prefixing and

postfixing for the XML tags which the consumer is authorized.

viii. F? =Modify(X’) // The server then parses temporary XML file X’ checks out if an tag is
prefixed with for then SRE is picked from the table LIST1 and prefixes
to Ei (Dy). The data now transforms into SRE E (Dy), where X is the
consumer Number. Then the address location of the children are suffixed
after looking into the table T.

The data now becomes SREx E (Dx) A icfimostchild of X -+ A rightmostchild of X.
At the end the data is suffixed with ERE, to show that the reading of the
data has to end here. The data now becomes

SRE E (Dx) A teftmostchild of X, --- »A rightmostehild of X EREx

The data is now embedded into the location which was entered in table T

ix. Transmit the prepared file F’ to all the consumers

5.4.2 The algorithm followed at Consumer End
i. loc =Search(F’, SRE) //Scan the SRE allocated to the consumer by the Server in the
received garbage file F’. The position of last bit of SRE in F’ is

called as loc
1. locl = Search(F’, SRE) //Scan the ERE allocated to the consumer by the Server in the
received garbage file F’. The position of last bit of ERE is called as

locl

1. stringl= readcontent(loc, loc1,F’) //Read all the characters between loc and locl in stringl.

Stri ng I contains E (DN) A]cﬁmostchi]d of N -... A rightmostchild of N

1v. E (Dx) = Extractdata (stringl) // Extract encrypted data from stringl. Where N is the root

of the subtree which the consumer is authorized to access.

79

V.

vi.

vil.

Viil.

Data= Decrypt(E (Dx)) // Decrypt the encoded data

T = Root(data) // insert data as root node in subtree

Repeat till all leafnode is reached
A = Extractaddresses(string1) // For each address (Ajcfimostchild of X ---- A rightmostehild of X)
string 1= readcontent(loc, loc1,F”)
E (Dx) = Extractdata (stringl) //Where X is the node extracted
Data= Decrypt(E (Dx))
Insert(T, data, X)// insert data as a child under the node X

Return (T)

5.5 Results and Discussion
The secure dissemination technique and the algorithm is discussed based on two point of views

e Probability of getting the right SRE and ERE
e Time taken to find the right SRE and ERE

e Requirement Satisfaction

5.5.1 Probability of Getting the Right SRE and ERE

If we consider the classical DNA encryption then there is a dataset of 4000 restriction enzyme.

4000
1

combinations for choosing both SRE and ERE from a dataset of restriction enzymes. Hence the

The number of options is () = 4000 . We can have at most 4000* 4000 number of

probability of getting the right set of enzyme is

P(A) =1/ 4000)2
This limits the power of DNA encryption as it’s easy to find the right set of restriction enzymes.
To increase the number of combinations, we are not constraining the choice of restriction
enzymes to classical dataset of restriction enzymes. We are customizing an enzyme in the
following fashion to lower the probability to guess the right set of enzyme. The enzyme can be

any combination of A, C, T, G which can span up to any length.

80

In the light of the above definition let us compute the probability of guessing the right set of
enzyme:
The total number of combination is as follows
4+42 + 4%+ 42 + 45 + -+ 4"
So if the length enzyme is taken up to n length then the probability is
p(4) = 1/(4+42 + 43 + 44 4 45 + o 4 47)

3

Hence the probability becomes p(4) = @D

3

— =0.0001831.
4(46-1)

Taking n=5 we get p(4) =

The figure 5.9 shows the probability of getting the right combination with respect to number of

bits. It can be seen that the expression is highly convergent to zero.

DNA

0.0002
0.00018 2 0.00018315

0.00016 \\
0.00014
\
\

0.00012

0.0001 \
0.00008

0.00006 \\
0.00004
\
\

0.00002
0 T 1665331547911 =31 31372 -4 16682 E=-6103634E-7601205E-79

Number of bits

probability of finding the right combination

Figure 5.9: Graph to represents the number of bits versus the probility to find the right combination

81

5.5.2 Time Taken to Find the Right SRE and ERE

Time taken to find the right SRE or ERE depends on checking all possible key combinations

until the correct key is found. This is also called as Brute-force attack[65-68] where

systematically all possible key combinations are checked [69]. The calculation of the time taken

is as follows:

Faster supercomputer: 10.51 Pentaflops = 10.51 E+15 Flops (Floating point operations per

second)

Assume that Number of Flops required per combination check: 1000

No. of combination checks per second = (10.51 E+15)/ 1000 = 10.51E+12

No. of seconds in one Year = 365 x 24 x 60 x 60 = 31536000

If o« is the number of combinations of a technique then number of years to crack =

oC

[(10.51 E+12)x 31536000]

Substituting the value of « for different symmetric cryptosystem is shown in table 5.4.

Table 5.4: Time required cracking the combination in various types of symmetric cryptosystem.

Key size DES (56 AES (128 AES (192 AES DNA 128

binary bits) binary bits) binary bits) (256 quaternary bits

[70] binary
bits) [71]

Possible 7.2E+16 3.403E+38 6.2E+57 1.1E+77 1.15E+77 |72]
combinations
(2)
Time to 399secs 1.02E+18 1.87E+37 3.31E+56 3.4E+56
crack(years)

82

; -
gs == S S= S= ==

DES (56 binary AES (128 binary AES (192 binary AES (256 binary DNA 128
bits) bits) bits) bits) quaternary bits

Time in terms of exponential
[
=

various symetric cryptosystems
B Possible combinations

1 Time to crack(years)

Figure 5.10: Graph for possible combination and year to crack the right combination with respect to the various

symmetric cryptosystem.

It can be observed from the table 5.4 and figure 5.10 that the time taken to crack the right key /
restriction enzyme is high in comparison to other symmetric cryptosystem. Thus proving that the
technique is computationally secure [73].

5.5.3 Requirement satisfaction

The requirement of the problem was to ensure integrity, confidentiality and access control.
Integrity is obtained as the probability of cracking the data is low as shown in the above section.
Confidentiality and access control is also obtained as the consumer will be able to access data
which he has subscribed to by the interface. The proposed technique support underlying nary tree
structure of the XML document and hides the data in the form of linked list in a garbage file. The
overhead is less as a single file is sent to all the consumers. The disadvantage of the solutions
given by [29, 30] is if the Local XML structure changes, requires associated routing topology to
be changed. Thus a subscriber needs to have a prior knowledge of the routing structure as the
router structure as the router cannot fetch any content which is not hosted currently. We have
implemented at server level, thus any change is just mentioned at the interface level. Thus
reducing the cost and time required for a change in the system. This approach will not have

scalability issues as other symmetric crypto systems. In [31, 36] the requestor asks for a set of

83

concepts and therefore requires knowledge of the ontological structure while in our work the

ontological part is transparent for the requestor as the focus is on general access control.

Finally, our work is related to the secure XML broadcasting problem where the focus is the
secure dissemination of XML documents to authorized users. In our approach we are specifying
access policies using variable length key inspired from real world restriction enzymes, which is a

computationally secure technique.

5.6 Summary

This chapter has proposed a secure dissemination technique to ensure that the consumers of the
data are the legitimate ones according to the access policies. It presents a computationally secure
technique in which there is a possibility to break the system theoretically but it’s infeasible to do
so by any known practical means. A multicast dissemination interface at the server/ producer end
is proposed to implement the secure dissemination technique. Each client/consumer will
subscribe in the interface and then automatically will be assigned a pair of randomly generated
restriction enzymes called as SRE and ERE. The data will be appended with the SRE and ERE to
signify that the data is meant for the respective consumer who has been assigned a particular
SRE and ERE. Later the data is encrypted according to the technique and scattered in the
garbage file. The garbage file is then transported to all the consumers where they will be able to

view only the data as per the access control policies.

This chapter also highlights that due to the quaternary number system followed in the technique,
it has very low probability of cracking the key. The number of years to crack the combination is
also very high in comparison to various pre-existing symmetric cryptosystems like DES and
AES. The results indicate that the proposed technique not only satisfies the requirement
specification of secure dissemination but also points out its robustness in terms of time required
to break the key. The time to crack the key is quite long and increases with increase in key length

thus proving it to be computationally hard to crack by any known practical means.

The next chapter integrates the conclusion and contributions from chapter I1I, IV and V to reflect

on the broad issues of interoperatability that formed the cornerstone of our research work.

84

CHAPTER 6: CONCLUSIONS AND CONTRIBUTIONS

The overall goal of our research work was to resolve the interoperatability issues in an
enterprise web service platform. As the web services are under the heterogeneous ownership
domains, there should be a uniform means to offer, discover and interact with each other.
This chapter recapitulates the work that has been carried out as part of this research effort. It
summarizes the conclusion that could be gained from the work on service selection & XML
processing and security which form the basis of the research work. It provides an overview of
the thesis structure. At the end it summarizes what has been learnt from this work and how

these experiences contribute to the wider field of research.

6.1 Thesis Summary

Chapter I presented the concepts of SOA, how it can be achieved and what are its advantages
and disadvantages. Chapter II presented the bulk of the contribution made by eminent
researchers in the research domain of service selection, XML processing and security.
Chapter I1I addressed the issue of service selection and the contribution of the optimized
business service directory for the ESB web service platform. It showed how this will improve
the integration of the web services which are under different administrative domains. Chapter
IV addressed the issue of rewriting attacks and how it leads to insecure conversation. The
chapter explained the three recommendations suggested to avoid and detect rewriting attacks
and also proved that the overhead of incorporating these recommendations were significantly
less. Chapter V presented the secure dissemination technique to avoid information leakage.
A multicast dissemination interface at the server/ producer end is proposed to implement the
secure dissemination technique. Incorporating all the three suggestion in the enterprise web

service platform will resolve the interoperatabily issues.

6.2 Concluding Remarks

This chapter summarizes the results of the work described in chapter III, IV and V. The
concluding remarks is gained from the two problems service selection and XML processing

and security which form the basis of our research work.

85

6.2.1 Service Selection using Optimized Business Service Directory

One of the essential challenges in service selection is how to provide a suitable set of service
candidates faster. Users demand systems that guarantee services with quality of Service
(QoS) attributes like security, safety, flexibility of platforms reliability, performance,
throughput and risk. SOA helps to provide value added services to the user with agility by
following a publish-find-compose technique. The service selection is generally based on the
QOS. The proposed Business service directory minimizes administrative overhead and
increases usability by locating the best web service among the large number of functionally
equivalent web services.

The results highlight that the time required to trigger 26 rules is less than the time required to
triggers 243 rules. It was found that the time required by the rule generation technique using

PSO and fuzzy clustering is faster than the alternative technique which uses fuzzy logic [4].

The seek time of the webservice is less i.e., lesser are number of rules to trigger the

less will be the seek time.

¢ The proposed optimized service registry will enable one to develop a better B2B or a
B2C kind of e-commerce application with agility.

e The service requester can compare among the list of web service and choose the
appropriate service provider based on its requirements.

e [t automatically monitors the rank of the web service using the generated rules which

makes it adaptive in nature.

6.2.2 SOAP Model for against rewriting attacks and insecure conversation
The rewriting attacks leads to insecure conversation as the contents of a SOAP message
protected by an XML Signature as specified in WS-Security can be altered without
invalidating the signature. The proposed SOAP model avoids rewriting attacks and ensures
secure conversation. The model highlighted three possible recommendations namely, using
shared key for encrypting timestamp in the message body for generating corresponding
signature; Secondly, using value referencing both for signature validation and message
processing; and finally encrypting the whole SOAP body instead of sending an open SOAP

Message in the network to prevent unauthorized access.

86

The features of the model constitute of the following points

e The referencing to the node in this model is done using value hence the reference is
called as value referencing. Thus it does not limit the abilities of defining signature
reference.

¢ The model sticks to the basic structure of SOAP model mentioned in WS standards.

e We are not attaching the extra information, we are just attaching timestamp and
embedding it into SOAP body and then encrypting the whole SOAP body. Thus the

malicious attacker cannot access the added information

The comparison in section 4.3.1 showed that the proposed SOAP model is better than the
earlier SOAP model. It also has less overhead in terms of performance metric time which is
an important issue in security. It was observed that growth in time required for message
encryption and decryption versus the number of tags in the SOAP message was .04% and
0.14%. It was also seen that the Time required to encrypting the signature with respect to
number of tags in the SOAP message had a growth of 0.5%. Thus it can be inferred that the
proposed SOAP model doesn’t have much overhead.

6.2.3 Proposed Secure Dissemination Model
Secure dissemination of an XML file is one of the techniques to ensure data integrity and
confidentiality. The research work presents a secure dissemination technique which ensures
that extraneous is inaccessible even if the consumer is a legitimate consumer. Consequently,
this avoids information leak. The technique applies DNA cryptography due to its feature of
compactness and simplicity. The technique encrypts the data and hides it in a garbage file,
such that only legitimate consumer can see only the subscribed amount of data according to
the access policies. It also presents multicast dissemination interface that implements the
proposed technique at the server level. The interface is built dynamically and asynchronously
using publish—subscribe middleware which is able to perform selective XML content

delivery.

87

The model has the following features:
e The model supports the structure of the data in the form of N-ary tree. The tree at the
consumer end can be easily reconstructed.
e The time taken to crack the right key / restriction enzyme is high in comparison to
other symmetric cryptosystem.
e [t was seen that the probability of finding the right key is highly convergent to zero

6.3 Contributions

Here we summarize the main contributions and achievements of the research carried out

as part of this thesis.

i. Reduced Seek Time

The time required to search the web service in the database also called as seek time will be
significantly less as it will be dependent on the number of rules required to trigger and the
number of rules is less in the proposed technique as compared to implementing the BSD
using fuzzy logic. The time complexity to parse the rules is O (N) where N is the no of rules.
Lesser the number of rules to trigger less will be the seek time. The seek time is also affected
by the database size and the number of quality attributes considered qualifving the web

service.

ii. Intelligent System

The rules are successfully generated automatically using dataset thus making the system
intelligent, in comparison to the technique using fuzzy logic where the rules are to be entered
by a human expert. Human intervention makes the system error prone and manual. The
quality of rules is dependent on the training dataset; the data should be less overlapping and
should have all varieties of output. The rules can still be generated using less number of

entries in the dataset.

iii. Adaptive in nature
The rules are adaptive i.e., any change in the dataset or the ranking criteria will automatically
be reflected in the rules and thus a new set of rules will be generated. The web services can

be ranked according to the new rules.

88

iv. Early Detection of Rewriting Attacks

The proposed SOAP model helps the consumer to find detect that the SOAP message in
conversation has suffered rewriting attack. If there is any change in the SOAP message, then
the signatures will never match. Thus the signature invalidation proved that there is a

rewriting attack.

v. Ensuring Secure Conversation

The proposed SOAP Model ensures secure conversation as a non-authorized person can ever
tamper the message as it is encrypted. If a trusted entity in the conversation breaks the trust
and sends the message to some other after modifying it and pretends that he is just a sender
not the constructor. The message can be validated whether it was modified in the transit, by

validating against the signature and the timestamp.

vi. Time Independent

One of the outcome of the research work highlights that the increase in the length of the
SOAP message with tags is independent of the time required for encryption and decryption.
A graph plot of time required to encrypt the message for sending with respect to number of
tags in the SOAP message showed that the percentage of growth in the time with respect to
the number of tags was 0.14%. Another graph plotted shows that the time required to
encrypt the signature w.r.to the number of tags in the SOAP message shows that the

percentage of growth is 0.5%.

vii. Computationally Secure

The proposed secure dissemination technique present a computationally secure technique .
There is a possibility to break the system theoretically but it’s infeasible to do so by any
known practical means as the time to crack the key is quite long and increases with
increase in key length thus proving it to be computationally hard to crack by any

known practical means.

viii. Superior 4- ary System

The 4- ary number system considered makes more number of combinations than

89

various other existing symmetric cryptosystem as the number of combinations to

crack the key is much larger.

ix. XML Encryption in a DNA Strand

Proposed secure dissemination technique secures the data in a DNA strand and
provides data integrity. It ensures that the consumers of the data are the legitimate
ones according to the access policies.

X. Multicast Dissemination Interface

A multicast dissemination interface at the server/ producer end is proposed to
implement the secure dissemination technique. Each client/consumer will subscribe
in the interface and then automatically will be assigned a pair of randomly generated
restriction enzymes called as SRE and ERE. The data will be appended with the SRE
and ERE to signify that the data is meant for the respective consumer who has been
assigned a particular SRE and ERE. Later the data is encrypted according to the
technique and scattered in the garbage file. The garbage file is then transported to all
the consumers where they will be able to view only the data as per the access control
policies.

6.4 Future Work

The future work will involve optimizing and integrating the elements of the ESB
platform incrementally. We would like to extend the proposed service selection
algorithm to locate the web service semantically as well. We also aim to use software
agents for service selection. Agents can be allocated for selecting a web service in a
zone. We plan to further investigate to find out how other access control policies and
integrity models can be implemented using the proposed secure dissemination
technique. We further plan to address other interoperatability issues like service level

agreements, to enhance the performance of ESB web service platform.
6.5 Summary

At the end the research work attempts to bridge the gap in the SOA development life cycle
primarily focusing on the issue of service selection and security. The three proposed artifacts

namely BSD, SOAP model and secure dissemination technique fulfils the stated objectives of

90

better service selection and security. Incorporating these proposed changes would ensure
better and adaptable service selection. It not only successfully detects rewriting attacks and
establishes secure conversation in the to-and-fro message transmission but also satisfies the
requirement specification of secure dissemination by pointing out its robustness by being

computationally secure.

91

92

References
[1] J. A. Zachman, "A Framework for Information Systems Architecture”, IBM Systems
Journal, Vol. 26, Issue 3.pp. 276-292, 1987.

[2] L.Brien, P.Merson, L.Bass, “Quality Attributes for Service-Oriented Architectures™,
Proceedings of the International Workshop on Systems Development in SOA
Environments, Minneapolis, MN, pp.3, 2007

[3] J. Leon Zhao, T. Mohan, L. Liliang, “Services Computing as the Foundation of Enterprise
Agility: Overview of Recent Advances and Introduction to the Special Issue™,
Information systems Front, Vol. 9, Issue 1.pp.1-8, 2007

[4] L.-J. Zhang, J. Zhang, and H. Cai, in Services Computing, Springer and Tsinghua Univ.
Press, July 2007

[5] M. Keen, S. Bishop, Patterns: Implementing an SOA Using an Enterprise Service Bus,
IBM Red book, July 2004

[6] E.Newcomer, Understanding SOA with Web Services, Pearson Education India, 2005

[7] Q.Yu, X.Liu, A. Bouguettaya , B. Medjahed, "Deploying and Managing Webservices:
Issues, Solutions, and Directions”, The VLDB Journal — The International Journal on
Very Large Data Bases, Vol. 17 ,Issue 3, pp. 537- 572, May 2008

[8] Lewis, Grace, Smith, Dennis, Proceedings of the International Workshop on the
Foundations of Service-Oriented Architecture (FSOA 2007) (CMU/SEI-2008-SR-011).
Software Engineering Institute, Carnegie Mellon University, 2008.

[9] D.E.Cox,"Management of the Service-Oriented-Architecture Life Cycle”, IBM Systems
Journal Vol. 44, Issue 3, pp.709 - 726 , 2005

[10] Shuangxi Huang, Yushun Fan,” Model Driven and Service Oriented Enterprise
Integration---The Method”, Proceedings of the Framework and Platform Sixth
International Conference on Advanced Language Processing and Web Information
Technology, Henan, China, pp. 504 - 509, 2007

[11] A. Segev, E. Toch, “Context-Based Matching and Ranking of Web Services for
Composition”, IEEE Transactions on Services Computing, Vol .2, Issue. 3 pp. 210 —
222, 2009

[12]K. Kritikos, D.Plexousakis, “Requirements for QoS-based Web Service Description and
Discovery”, IEEE Transactions on Service Computing, Vol. 2,Issue. 4, pp. 321-336 ,2009

93

[13] T. Pilioura, Tsalgatidou, A. “Unified publication and Discovery of Semantic Web
services” ACM Transaction on Web, Vol .3, Issue.3, Article 11, 44 pages, 2009

[14] Y.Baocai.Y. Huirong.F.Pengbin, G. Liheng, L.Mingli, "A framework and QoS based
web services discovery” Proceedings of the IEEE Intermational Conference Software
Engineering and Service Sciences (ICSESS), Beijing, China, pp 755 — 758, 2010

[15] T. Yu, Y. Zhang, K. Lin, “Efficient algorithms for Web services selection with end-to-
end QoS constraints”, ACM Transaction on Web, Vol.1, Issue.l, Article 6, 26 pages.
2007.

[16] V. Xuan Tran, H. Tsuji, “QoS based Ranking for Web Services: Fuzzy Approaches”,
Proceedings of the 4th International Conference on Next Generation Web Services
Practices, Seoul, South Korea, pp. 77 — 82, 2008

[17] M.Tang , L. Ai,”A Hybrid Genetic Algorithm for the Optimal Constrained Web Service
Selection Problem in Web Service Composition™ ,Proceedings Of IEEE Congress on the
Evolutionary Computation (CEC), Barcelona, Spain, pp. 1 -8, 2010

[18] E. Al-Masri, Q.H.Mahmoud,” Discovering the Best Web Service: A Neural Network-
based Solution™ ,Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, 2009, San Antonio, Texas, pp. 4250 — 4255, 2009

[19]R. Mohana,D. Dahiya,” Approach and Impact of a Protocol for Selection of Service in
Web Service Platform™ , ACM SIGSOFT Software Engineering Notes ,Vol. 37 Issue 1,
pp. 1-6 . 2012

[20] M. McIntosh and P. Austel, "XML Signature Element Wrapping Attacks and
Countermeasures “,Proceedings Of the workshop on Secure web services , VA, USA ,
Pp. 20 - 27, 2005

[21] S.Gajek, M.Jensen, L. Liao, JorgSchwenk . ~Analysis of Ségnat.jure Wrap&ng
onierence on e

Attacks and Countermeasures”, Proceedings of IEEE International
services, ICWS, CA, USA ,pp. 575 — 582, 2009

|22|PA‘Ben‘ameur.”XML Rewriting Attacks: Existing Solutions and Their Limitations”,
p goggecélél és of the ACM workshop on Secure Web Services ., New York, NY, USA. pp.

[23] M. AshiqurRahaman, A. Schaad, 7 SOAP-based Secure Conversation and
Collaboration”, Proceedings of IEEE International Conference on Web services, Salt
Lake City, USA . pp. 471 — 480, 2007

[24] Y. Liu, H. Zhao, Y.i L1,” Research on Secure Transmission of messages™, Proceedings

of 12th International Conference on Computer Supported Cooperative Work in Design,
Xi'an, China, pp. 771 — 776, 2008.

[25 |MS. K. Sinha, A Benameur,“A Formal Solution to Rewriting Attacks on SOAP
essages”, Proceedings of ACM Workshop on Secure Web Services SWS '08 , Virginia,
USA. pp. 53 - 60, 2008 .

[26] N.Sidharth, J.Liu “Intrusion Resistant SOAP Messaging with IAPF”, Proceedings of
EEE Asia- Pacific Services Computing Conference, Yilan, Taiwan, pp. §56-862 , 2008

[27]N.Sidharth, J.Liu, "A Framework for Enhancing Web services Security," Proceedings

of 317 annual International Computer Software and Applications Conference , Beijing,
China, pp. 23-30, 2007

94

[28] M. Srivatsa and L. Liu, “Securing Publish—Subscribe Overlay Services with Eventguard™,
zégc%?ﬁn r(si()(s)f 12th ACM Conference on Computing Communication and Security, pp.

[29] E. Bertino, E.Ferrari,”Secure and Selective Dissemination of XML documents™ ,ACM
Transactions on Information and System Security - TISSEC , Vol. 5, Issue.3, pp. 290-
331, 2002

[30] A. Kundu, E.Bertino,” A New Model for Secure Dissemination of XML Content”, [EEE
Transaction on Systems, Man, and Cybernetics—Part C: Applications and Reviews, Vol.
38, Issue. 3, pp.292-301, MAY 2008

[31]M. A. Rahaman, Y. Roudier, P. Miseldine, and A. Schaad,” Ontology-based Secure
XML Content Distribution”, Proceedings of 24th International Information Security
Conference, Pafos, Cyprus, pp. 294-306 May 2009.

[32] W.-C. L. Bo Luo, Dongwon Lee and P. Liu,”A Flexible Framework for Architecting
XML Access Control Enforcement Mechanisms™ Vol. 3178/2004 of Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, December 2004.

[33] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati,” Fine Grained Access
Control for SOAP Eservices™, In Proceedings of the 10th International Conference on
World Wide Web, New York, NY, USA . pp. 504-513, 2001

[34] W. Fan, C.-Y. Chan, and M. Garofalakis,” Secure XML Querying With Security
Views”, In Proceedings of the 2004 ACM SIGMOD Intemational Conference on
Management of Data”, pp. 587-598. New York, USA, 2004.

[35] G. Kuper, F. Massacci, and N. Rassadko. “Generalized XML Security Views”, In
Proceedings of the Tenth ACM symposium on Access Control Models and Technologies, pp.
77-84, New York, NY, USA.2005.

[36] M. Murata, A. Tozawa, M. Kudo, and S. Hada,” XML Access Control Using Static
Analysis”, Proceedings of the 10th ACM conference on Computer and Communications
Security, pp. 73-84, New York, USA, 2003.

[37] L.A Zadeh, “Fuzzy Sets™, Information and Control, Vol. 8, Issue 3, pp. 338-353, 1965

[38] L.A. Zadeh ,“The Role of Fuzzy Logic in the Management of Uncertainty in Expert
Systems “,Fuzzy Sets and Systems, Vol. 11, Issues 1, pp. 197-198, 1983

[39] http://www.austinlinks.com/Fuzzy/expert-systems.html as on July, 2011
[40] http://en.wikipedia.org/wiki/Cluster _analysis on July, 2011
[41] D.tikk et al..”A Survey on Universal Approximation and its Limits in Soft Computing

Techniques™, International Journal of Approximate Reasoning, Vol. 33, Issue 2, pp.
185-202, 2003.

95

[42] J. Kennedy, “The Particle Swarm: Social adaptation of knowledge”, Proceedings of the
International Conference on Evolutionary Computation, Alaska, USA, pp. 303-308, 1997
[43] L.B Zhang, “Solving Multi Objective Optimization Problems Using Particle Swarm
Optimization™, in the Proceedings of the IEEE on Evolutionary Computation, pp.2400 —
2405, USA 2003.

[44] http://www.uoguelph.ca/~gmahmoud/qws/index. html as on Jan 2011

[45] E. Al-Masri, Q. H. Mahmoud, "Discovering the best webservice", Proceedings of 16th
International Conference on World Wide Web (WWW), Alberta, Canada (poster), pp.
1257-1258, 2007

[46] E. Al-Masri, Q. H. Mahmoud, "QoS-based Discovery and Ranking of Webservices",
Proceedings of IEEE 16th International Conference on Computer Communications and
Networks (ICCCN), Hawaii USA, Pp. 529-534.,2007

[47] hitp://www.w3schools.com/soap/default.asp as on Jan, 2013
[48] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, et al. (2007).,”XML path
language (XPath) 2.0.”"W3C Recommendation.

[49] N. Gruschka, M. Jensen, F. Kohlar and L.Liao *“On Interoperability Failures in WS-
Security: The XML Signature Wrapping Attack™ in Electronic Business
Il\rfllter(;lpezrgllnlllty: Concepts, Opportunities and Challenges .IGI Global . pp. 615-635,

arch, :

[50] http://www.w3.org/TR/xpath as on July, 2012

[51] F. Wang, “A space efficient XML DOM parser” , Data & Knowledge Engineering, Vol.
60, Issue 1, Pp: 185-207, 2007

[52] D. E. Knuth Art of Computer Programming, Volume 1: Fundamental Algorithms
(3rd Edition)

[53] Xing Wang, Qiang Zhang, © DNA Computing-Based Cryptography”, Fourth
International Conference on Bio-Inspired Computing, 2009, pp: 1 — 3.

[54] A. Leier, “Cryptography with DNA Binary Strands”, Biosystems, Vol.57, Issue 1,
pp. 13-22 | June 2000

[55] A. Gehani, T. LaBean, and J. Reif, "DNA-Based Cryptography," Aspects of Molecular
Computing Lecture Notes in Computer Science, Vol 2950, pp: 167-188, 2004

[56]S. V. Kartalopoulos, “DNA-Inspired Cryptographic Method in Optical Communications,
Authentication and Data Mimicking” in the Proceedings of the IEEE on Military

Communications Conference, Atlantic City, NJ, Vol.2, Pp:772-779, 2005

[57]K. Tanaka, A. Okamoto and I. Saito, “Public-key System using DNA as a One-Way
Function for Key Distribution™, Bio systems, Vol. 81, Issue 1, pp:25-29, 2005

96

[58] A. Gehani, T. LaBean and J. Reif, “DNA-based cryptography”, Lecture Notes in
Computer Science, Vol.2950, pp.167-188, 2002

[59] M.SAEB , E. EL-ABD , M. E. EL-ZANATY “On Covert Data Communication
Channels Employing DNA Recombinant and Mutagenesis-based Steganographic
Techniques™ in the Proceedings of International Conference on Computer Engineering
and Applications (WSEAS), Wisconsin, USA, pp. 200-206 , 2007

[60] http://rebase.neb.com/rebase/rebase.enz html as on August, 2012
|61] http://www.neb.com/nebecomm/products/category 1 .asp as on August, 2012

[62] X. Wang, Q. Zhang” DNA Computing-based Cryptography”,Fourth International
Conference on Bio-Inspired Computing, pp. 1 — 3, 2009

[63] A. Delgado. “DNA chips as Lookup Tables for Rule-Based Systems™, Engineering
Science and Education Journal Vol. 11, Issue .3 pp .99 - 105, Jun 2002

[64] G. Cui , L. Qin, Y. Wang , X. Zhang, “An Encryption Scheme Using DNA
Technology™, 3rd International Conference on Bio-Inspired Computing: Theories and
Applications, pp. 37 — 42, 2008.

[65] J.-Sik Cho ,“Securing Against Brute-Force Attack: A Hash-based RFID Mutual
Authentication Protocol Using a Secret Value” Computer Communications, Vol.34, Issue
.3, 1 pp.391-397, 2011

[66] R. E. Korf, "Planning As Search: A Quantitative Approach”, Artificial Intelligence Vol.
33, Issue 1. pp. 65-88, 1987

[67] A. J. McCoy, R. W. Grosse-Kunstleve, L. C. Storoni and R. J. Read, “Likelihood-
Enhanced Fast Translation Functions”, Acta Crystallographica Biological
Crystallography Vol. 61, pp. 458-464 ,2005

[68] M. J. Wiener, “"The Full Cost of Cryptanalytic Attacks™, Journal of Cryptology. pp.
105-124, 2004

[69]http://www.eetimes.com/design/embedded-internet-design/4372428/How-secure-is-AES-
against-brute-force-attacks- as on August, 2012

[70] C.-Chung Lu, “Integrated Design of AES (Advanced Encryption Standard) Encrypter
and Decrypter”, Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, pp. 277 — 285, 2009

[71] D. Salama A. Elminaam,” Evaluating the Performance of Symmetric Encryption
Algorithms™, International Journal of Network Security, Vol.10, Issue.3, pp.216-222,
2010

[72]http://www.plosone.org/article/info%3 Ado1%2F10.1371%2Fjournal. pone.0044212#pone
.0044212-Leel as on August, 2012

97

[73] M. Naor,” Computationally Secure Oblivious Transfer”, Journal of cryptology, Vol.10,
Issue.3, pp. 1-5

98

LIST OF PUBLICATIONS

Journals

1. Rajni Mohana and Deepak Dahiyva. “Specifying Access Policies for Secure Content

Dissemination of XML: A Technique Inspired by DNA Cryptography”. Paper
published in the Journal of Computing and Information Technology (CIT), Vol. 21,
No. 2. University of Zagreb, Croatia (ISSN 1330-1136), pp. 1 - 14.

Rajni Mohana and Dahiya. “Addressing Interoperability Failures in WS-
Security:A SOAP Model Against Rewriting Attacks and Insecure Conversation”,
Paper accepted for publication in the International Journal of Computers and Their
Applications (IJCA), US (Accepted for Publication).

Rajni Mohana and Deepak Dahiya “An Optimized Business Service Directory for the
ESBPlatform in SOA”. Paper published in the International Journal of Computer
Networks and Communications (IJCNC), Vol. 4, No. 5, September 2012, India (ISSN
0975 —2293), pp. 165- 186.

Rajni Mohana and Deepak Dahiva. “Approach and Impact of a Protocol for Selection
of Service in Web Service Platform ~ Paper published in the ACM SIGSOFT Software
Engineering Notes(SEN), USA, Vol. 37, No. 1, January 2012, pp. 1 - 6.

Rajni Mohana and Deepak Dahiva. “A Proposed SOAP Model Against Wrapping
Attacks and Insecure Conversation". Paper published in the International Journal of
Computer Science Issues (IJCSI), Vol. 10, Issue 2, No 3, March 2013, (ISSN: 1694-
0814), pp. 151 - 156.

Conferences

Rajni Mohana and Deepak Dahiya. “Optimized Service Discovery using QoS
basedRanking: A Fuzzy Clustering and Particle Swarm Optimization Approach,”
Paper published in the IEEE Proceedings of the 35" IEEE Computer Software and
Applications Conference, Munich, Germany (IEEE COMPSAC 2011), pp. 452 — 457.
Rajni Mohana and Deepak Dahiva. “Designing QoS based Service discovery as a
Fuzzy Expert System™. Paper published in the Springer Series in Communications in
Computer and Information Science (CCIS) of the 4th International Conference on
Contemporary Computing, Jaypee Institute of Information Technology, Noida, India,
(IC3 2011), pp. 533 - 534. (Poster)

99

3. Atul Saurabh, Deepak Dahiya and Rajni Mohana. “Maximizing Automatic Code
Generation: Using XML Based MDA”, Paper published in the Springer Series in
Communications in Computer and Information Science (CCIS) of the 5th
International Conference on Contemporary Computing, Jaypee Institute of

Information Technology, Noida, India, (IC3 2012), pp. 283 - 293.

100

