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CHAPTER 1
INTRODUCTION

An embedded system is an element of a complete device in itself which includes

hardware as well as software. Embedded systems have major applications in lots of day

today’s appliances. Reduction in memory size is essential to achieve better performance.

Embedded devices also often have different design constraints in comparison with

general purpose computers. Some embedded system constraints are listed below:

1.

Available system-memory

2. Available processor speed

3.

Limited power dissipation

There are strict constraints on the embedded systems for small system size, low weight,

low power consumption, good performance, high reliability and low cost. All these

factors play a major role in the application of embedded systems which are going to be

discussed below in detail [P. J. Koopman, 1989].

1.

Size and weight: Applications such as aircrafts and portable equipments have a
severe weight limitation. Some applications also have size limitation. A typical
embedded system can have a maximum size in hardly any cubic inches and
maximum weight in few pounds only.

Reliability: Military and automotive applications need extremely reliable
operating conditions that can deal with vibration, shock, extreme heat and cold etc
because in remote areas, system must be capable enough to survive without any
repair service.

Cost: Applications like consumer electronics products have cost as a very
important factor. In general, system complexity is directly proportional to the
system cost. Hence, these systems must be designed with very less complexity.
Power and cooling: Power consumption of the system is also affected by the
system complexity. High power consuming systems require heavy and huge

power supply mechanism. Moreover, more the power consumed by the system,



more the heat produced and hence increase in the requirement of cooling
mechanism.

5. Performance: There are a number of applications requiring higher performance,
such as voice translation, moving picture recognition, and others. In many
multimedia embedded applications performance constraints are formulated as soft or
hard real-time time constraints for a periodic task, such as frame decoding in a video
player. Unlike as in general purpose computers, where performance is an important
optimization criteria, embedded systems may not always benefit from increased
performance beyond given real-time constraints. For example, for a video player
application, the user satisfaction with the device will not improve if the player can
decode 100 instead of 30 frames per second, since the video clips are typically
encoded with the rate of no higher than 30 fps due to the limited ability of a human

eye to distinguish between fast changing frames.

1.2 Cache Memory Overview

Cache memory is like random access memory accessed by processor faster than accessing
a RAM. When a processor requires some data for a process execution, it first checks the
presence of data in the cache memory and if it finds the data there, it needs not to read
data from larger memory i.e memory at next level in hierarchy which is more time-

consuming.

—» CACKE —»  MAN

MEMORY «——  MEMORY

CPU I
TRANSFER TRANSFER

Figure 1.1: CPU organization



Cache is more close to processor as cache locates between normal main memory and

CPU. The architecture of CPU is shown in fig. 1.1 [Rob Williams, 2006]. A word is

transferred between CPU and cache memory while a block transfer takes place to and

from main memory and cache memory.

1.2.1 Unit of Transfer

Figure 1.2 explains the concept of mapping a main memory address generated by the

processor to cache memory [D. Tarnoff, 2006]. This mapping is used in case of reading

and writing data from and to the cache memory. There are majorly three different types of

mapping functions explained below.

Address from Processor

If data not found in cache

I

Y

Main
Memory

Cache

Address

Y

Data

Data Copies from main memory to cache

Figure 1.2: A basic main memory to cache memory mapping scheme

1. Direct mapping (fig. 1.3) : [N.P.Jouppi, 1990] In case of direct mapping,

each main memory block maps to only one cache line, hence it will always

be found in the same place in memory by using formula given below [D.

Tarnoff, 2006]:

l=bmodm

Where

1 = Number of mapped cache line.
b = Number of main memory block.

m = Number of cache lines



Advantages and disadvantages of direct mapping are [R. Williams, 2006]:
It is simple to understand.
It is economical

It has a permanent location for a given block
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Figure 1.3: Direct mapping arrangement [M.D.Hill, 1988]

Ex. Main memory =1MB= 2%
Cache memory=128KB= 217
Block size=16 B=2" Set size= 1block
No.of sets in cache= cache size / (block size * set size) =27 / (2** 1)=2"

No. Of tag bits =20 - 13 -4 =3

2. Fully associative mapping (fig. 1.4): In this mapping, a main memory block can
be mapped to any cache block as whole memory is one set here [D. Tarnoff,

2006]. The size of tag is d bits and word size is b bits.
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Figure 1.4: Fully associative mapping arrangement [M.D.Hill, 1988]

Ex. Main memory =256MB= 2%
Cache memory=64KB= 2°

Block size=32 B =2°

No. Of tag bits =28 - 5 =23

3. Set associative mapping (fig. 1.5): Cache is divided into m sets. N blocks/lines
can be contained within each set. Such a cache memory is called n-way set
associative. It is hybrid of direct and associative mapping [D. Tarnoff, 2006].
Number of lines in a cache =m ¢ n

Size of tag = (d-b) bits

when n = 1, direct mapping

when m = 1, fully associative mapping



Ex. Main memory =1MB= 2%
Cache memory=128KB= 2"
Block size=16 B=2"  Set size= 8 blocks= 2’
No.of sets in cache= cache size / (set size * block size) = 27 / (2° * 2%y =2!?
No. Of tag bits =20 - 10-4 =6
A main memory block can map to any cache block in its specified set as shown in the fig.
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Figure 1.5: Set associative mapping arrangement [M.D.Hill, 1988]

1.2.2 Locality of Reference [A.A.Jayya, 2005]

In programming, instructions and data are likely to cluster together (loops, subroutines
etc.), this property is referred to locality of reference.
e Clusters will change in long duration.

e (Clusters remain same in short duration [D. Tarnoff, 2006].



There are 3 types of locality of reference which can be exploited to keep more frequently

referenced information into cache memory.

1.

Spatial locality: The tendency of a process to retrieve items whose addresses are
close to one another is called spatial locality [M. Mano, 1989]. For example,
operations on tables or arrays involve accesses of a certain clustered area in the
address space.

Temporal locality: Memory items that are recently referenced are more likely to
be referenced soon than those which have not been referenced for a longer time.
Memory items (instructions or data) in a few localized areas of the memory
(program or data structure) are more frequently referenced than other areas. (Ex:
loops, functions, subroutines, arrays etc.)

Sequential locality: Execution of instructions follows a sequential order unless

branch instructions create out of order executions.

1.2.3 Replacement Policy

The main objective of replacement policy is to locate a space in cache memory for a

required main memory block. The replacement policy tells the slot to be swapped out to

make space free for the new block [M.J. Murdocca, 2007]. Some of the most widely used

replacement policies are:

Belady’s algorithm: The most efficient caching algorithm rejects the unwanted
information for the longest duration in the future reference. This optimal choice is
referred to as Belady's optimal algorithm or sometimes the clairvoyant algorithm.
Since it is generally impossible to guess how far in the future this information will
be needed, hence this is generally not possible to implement in practice.

Random: In this policy, a victim block is randomly chosen and then discarded to
make space for new block. Due to its simplicity, it has been used in ARM
processors. It admits efficient stochastic simulation.

FIFO (First-In First-Out): The easiest page-replacement algorithm is FIFO
algorithm. As the name suggests, it keeps track of all the pages in memory by
implementing a queue, by keeping the latest arrived page at the back, and the

earlier arrived pages in front. As deletion in queue is done from front, so as the
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memory page from the front is replaced to vacant room for the new block to be
inserted at the end of the queue [Shenoy, 2008]. Although, it does not perform
good in practical application, still it is cheap.

e LRU (Least Recently Used): Least recently used discards the least recently used
memory blocks first. When each block is used record is maintained by this

algorithm which is an expensive job.

1.2.4 Cache Addressing Models [A. A. Jerraya, 2005]

There are two cache addressing models. One is physical address cache and another is

virtual address cache. Both are discussed in detail below.

Physical address cache: When a cache is accessed with a physical memory address, it is
called a physical address cache. Cache is indexed and tagged with physical address.

Figure 1.6 describes the concept of physical addressing.

AR — MM U frotress— ADDRESS —
CACHE
DATA or
CPU instrucTiong  MAIN
MEMORY
DATA or
B INSTRUCTIONS

Figure 1.6: A unified cache accessed by physical address [Mark D. Hill, 1987]

Different pros and cons are:
e There is no need to perform cache flushing.
e There are no aliasing problem

e It slows down accessing cache until MMU finishes translating the address.



Virtual address cache: When a cache is indexed or tagged with a virtual address, it is
called virtual address cache. In this model, both cache and MMU translation can be done

in parallel. Virtual addressing is shown in fig. 1.7.

VIRTUAL - MMU PHYSICAL

ADDRESS ADDRESS

MAIN

CPU onra o |MEMORY
CACHE _I-\I-STRUCTIONE

DATA or

INSTRUCTIONS

Figure 1.7: A unified cache accessed by virtual address [Mark D. Hill, 1987]

Different pros and cons are:
e Enhanced efficiency to access cache faster.
e C(Cache aliasing

e Frequent cache flushing

1.2.5 Memory Capacity Planning

As only a fraction of all main memory blocks can be placed in cache memory (CM) at a
time, a word needed by the CPU may or may not be found in cache memory.

Hit ratio, H: Probability for the CPU to find the needed information in cache memory.

No.of times referenced words are in cache

Hit Ratio =

Total Number of memory accesses



Miss ratio, M: Probability of not finding the needed information in cache memory and
main memory has to be accessed.
M= 1-H

Access frequency to Mi:
Fi = (] -Hl)(l-Hz) ,,,,,, (l-Hi_l)Hi
Here H; corresponds to hit ratio at i" memory level.

Effective access time is defined as time taken to access data. [ K.Hwang, 1993]

(No.of hits)(Time per hit)+ (No.of misses)(Time per miss)
Total number of memory accesses

Effective access time =

Ter = Sum (F; * T;) for all memory levels

Cost optimization:

Ciotal = Sum (C; * S;) for all memory levels

Here C; represents cost of cache per bit and S; denotes the size of cache in bits at level

1.

1.3 Systems on Chip

A system on a chip is an integration of computer components like processor, memories,
communication network etc on a single chip. Embedded systems are characteristic
applications of SoC. The SoC and microcontroller both are of same degree. Normally,
microcontrollers have RAM of capacity 100 KB with single-chip-systems, while SoC has
more powerful processors proficient of running desktop versions of Windows and Linux,
which require external memory chips and are also used with a range of external

peripherals. System on a chip indicates a technical direction more than reality and hence
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chip integration is increasing day by day to cut down manufacturing costs and to facilitate

smaller systems.

1.4 Multiprocessor Systems on Chip

An MPSoC is a system on-chip, a VLSI system that incorporates most or all the
components necessary for an application—that uses multiple programmable processors as
system components. MPSoC’s are widely used in networking, communications, signal
processing and multimedia among other applications. MPSoC’s embody an important and
distinct branch of multiprocessors. They are not simply traditional multiprocessors shrunk
to a single chip however they have been designed to satisfy the unique requirements of
embedded applications. MPSoC’s have been in production for much longer than multi
core processors. In MPSoC’s, each processor has its own cache memory with one or two
levels, which is called local memory. In addition they have an independent private cache
memory for each processor; there is a possibility that two or more cache memories may
contain different versions of the same information at the same time. This is called cache-

memory coherence problem discussed in detail later in this chapter.

P1 P2 Pn

Interconnection Network

Main Main  |---eeees Main
Memory Memory Memory

Figure 1.8: Architecture of multiprocessor system with shared memories [ V. Gandhi, 2013]
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Figure 1.8 shows the traditional view of architecture of shared-memory multiprocessor
1.e. a collection of processors and memory connected by an interconnection network. This

architecture is less complicated and hence preferred than others.

The architecture of an MPSoC system is a combination of three things: PE’s, memory
elements and a communication infrastructure for communication between both. While
keeping processing in mind, MPSoC’s are classified into two classes:

e Homogeneous: In a homogeneous system, all PE’s in the system have the same
architecture. The fact that all PE’s have the same architecture facilitates task
migration, as a result of there's no would like for translating the code of a given
application to alternative design.

e Heterogeneous: During this category the design of a minimum of one PE’s is
totally different from the others. The advantage of this category is to develop real
time systems. As an example, an MPSoC system will have an ARM processor for
handling system tasks and a DSP processor for handling 3G signals. Considering
the communication infrastructure accustomed interconnect PE’s and memory
components, three infrastructures are ordinarily used in MPSoC: dedicated wires,

shared buses and networks-on-chip (NoC’s).

MPSoC styles are largely supported networks-on-chip (NoC’s) as they supply
quantifiability, high information measure, energy potency, dependability, parallel
communication and climbable style exploration house. A NoC agent is associate on-chip
network composed by switches that are connected among themselves by communication

channels.

1.5 Memory Organization

According to [M. Kandemir, 2005], one in all the foremost essential elements that
confirm the success of an MPSoC-based design is its memory system. This assertion is
even by the actual fact that applications may spend many cycles expecting the conclusion

of read/write memory operations.
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The technology employed to develop processing elements advances quicker than that
used in the development of memory components, which enables PE’s to work at higher
frequencies. This disparity allows PE’s to consume data at rates not possibly achieved by
DRAM memories and creating a performance gap. To decrease this gap, a solution
commonly applied in high-end microprocessors is the use of static memories and a
memory hierarchy. In a hierarchy, several levels of memories are used to decrease
average memory access latency. The main idea is to place faster however smaller
memories closer to processors and slower however larger memories in further levels. The
smaller memories contain a subset, which consists usually of the most accessed data from
the data stored in the next adjacent level. In general-purpose systems, there usually exist
four levels of memory: level 1 cache, level 2 cache, main memory and secondary

memory.

Cache memories can provide an acceptable data rate to feed the processor, maximizing
the number of instructions that are executed in a certain period. Caches work as
temporary, fast access memories that prevent the processors to stall while waiting for an
instruction or data from main memory. Another interesting point in the use of caches is
that they can reduce energy consumption, once memory accesses are local, avoiding
transactions on a bus/network-on-chip that would be necessary to bring a block of data

from main memory/secondary memory.

MPSoC systems tend to have hundreds of elements [ITR, 2011]. As the system size
increases, there is a need to develop mechanisms that optimize these systems in several
aspects such as energy consumption, latency and resource allocation. To decrease energy
consumption, techniques such as DFVS may be applied to decrease the energy
consumption of PE’s when they are executing low priority tasks or are idle. Also, in
multiple memory bank systems, there is the possibility of migrating data from a bank to
another to approximate them to the processors that are mostly accessing those data.
Accesses done to the data after migration tend to consume less energy in communication

and take less time as the distance between the memory bank and the PE’s decreases.

Shared memory is that memory which can be concurrently accessed by multiple programs

for communication between them and to avoid redundant copies i.e cache incoherence. In

13



such systems, depending on history programs may run on single processor or multiple

processors [V. Gandhi, 2013].

Keeping shared memory near to processor increases the inter-processor communication
hence, better except that it decreases non shared memory accesses and if shared memory
is kept at lower level of hierarchy, it acts vice versa. Hence, the architectures sharing less
layers of the memory hierarchy can scale better. The various available design alternatives

are as follows:

o Shared L1 cache — It is used where all processors share a single pipeline and are
using the concept of multithreading.

e Shared L2 cache — It is mainly used in chip multiprocessor systems (CMP). It is in
level next to shared L1 cache. Access time of shared L2 cache is higher and hence
private L2 caches are mainly used in a lot of existing CMP systems.

e Shared main memory - In this organization, every processor or core has its own
private L1 and L2 caches as well as a single shared main memory.

e No physical sharing — [L.Ryzhyk, 2006] In this architecture, each processor has its
own private main memory and also have an access to the memory located
remotely to other nodes through interconnection network. As, the cost of local
memory access is much lower than the remote memory access; thus this
architecture is known as NUMA ( Non — uniform memory access) [ Burroughs

Corporation, 1990].

After the design of memory hierarchy is decided, the next step is to devise the
interconnection between different levels of the memory hierarchy. The interconnection is
divided into two major types that are bus-based and network-based interconnects. The
main difference between these two is that a bus consists of shared resource used by a
single client at a time, and hence supports a single flow of data, whereas an
interconnection network allows multiple concurrent flow of data and hence larger

bandwidth.

Data memory architecture consists of three components: cache memory, scratch-pad

memory (SPM) and main memory. The cache memory and the SPM are on-chip SRAMs

14



and the main memory can be assumed to be an off-chip DRAM (with a higher access
latency). As shown in fig. 1.9, the address space is divided between off-chip memory and

on-chip SPM, the former of which is accessed through the on-chip cache.

DRAM

! 1

CACHE p———®—| ON-CHIFP SPM

! f

T ¥
L P PROCESSOR |—agp—————

Figure 1.9: System architecture with on-chip and off-chip memory organization

1.6 Current Issues of Cache Memory Access

1.6.1 Multiple Processor Synchronization

Embedded platforms are almost invariantly deployed in tightly resource constrained
contexts. Hence, the performance and power cost of synchronization is a serious concern
that is further compounded by the issue of providing effective programming abstractions.
Deadlocks are difficult to avoid, especially when systems have multiple resources.
Moreover, even when the system is operating correctly, conditions like lock spinning may
impose a significant overhead in power and performance, since they tend to flood the

interconnect with useless transactions.

1.6.2 Processor-Memory Speed Gap

In multiprocessor systems on chip (MPSoC’s), the effect of the increasing processor—

memory speed gap is being more significant due to the heavier access contention on the
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network and the use of shared memory. Therefore, improvement in memory performance

is critical to the successful use of MPSoC systems.

1.6.3 Cache Coherence

Shared memory is a common inter-processor communication paradigm for single-chip
multiprocessor platforms. Presence of duplicate date in multiple caches is cache
coherence as shown in fig. 1.10. These are 2 general techniques to avoid cache coherence

issues and others in fig. 1.11:-

1. Write through: [D.Tarnoff, 2006] Every time any modification to any value is
updated in main memory as well as in cache memory. It generates lots of traffic. It
also delays write operation as it has to update two memories simultaneously.

2. Write back: Updates is initially made in cache memory only and corresponding
dirty flag bit is set. So, only that blocks whose dirty bit is set needs to be written to
main memory and other caches remain same. Research shows that 15% of total

memory references are write operations [D.Tarnoff, 2006].

Write through technique still not guaranteed the presence of invalid data in other

processors private caches.

PROCESSOR }<—> CACHE ["&—

;
— MAIN
COHERENCY
f > MEMORY

PROCESSOR ¢—#® CACHE |——

Figure 1.10: Cache coherency
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Cache Cache

‘/Rcad\‘ write
Data is present Data is not present Data is present in Data is not present
in cache in the cache Cache in the cache

Data is forwarded Load Through: Write Through: Write Allocate:
to CPU Forward the word Write data to both Bring line into cache,

cache and main memory then update it.

Or Or Or
Fill cache line and then Write Back Write No-Allocate
forward the word Write data to cache only.  Update main memory
Defer main memory only.
Figure 1.11: Types of cache access and their methods

1.6.4 Power Consumption [M. Kandemir, 2009]

It is important for system availability to minimize power consumption by the system.
Power consumption is one of the most significant factors that differentiate an MPSoC-
based system from all other equivalent systems. Increasing the number of processors as in
MPSoC means increase in the power consumption by processors with their local caches.

Hence, this clearly leads to higher power consumption.
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1.7 SPM

Scratchpad memory (SPM) is a small on chip memory with fast speed [R. Banakar,
2002]. Scratchpad is a memory mainly used to store small data items to increase to

retrieval time and hence it is called as special high-speed memory.

SPM is located next closest to CPU apart from its internal registers and hence can be
considered similar to the L1 cache and it uses DMA to transfer data between memory and
CPU as shown in fig. 1.12. There is a difference between memory access latencies of
main memory and scratch pad memory as a system with scratchpads is also called as a
system with non-uniform memory access latencies. A scratch pad usually does not
contain the data stored in main memory while cache memory always contains the

replicate data.

Introduction of SPM simplifies the caching logic as it stores the intermediate results in it
and only in case of multiple processors in MPSOC and these results are not always be

taken to the main memory.

1.8 Dissertation Contribution and Qutline

In this dissertation, the possible solutions to the cache coherence problem in
multiprocessor systems have been proposed. The thesis has been organized into 11
chapters and out of that chapter 1 present’s introduction comprises problem statement and
contribution. Chapter 2 presents history of problem stated and their already given

solutions.
In chapter 3, implementation of semaphore scheme to synchronize different shared cache

memories in an MPSoC is proposed. Furthermore, proposal of using semaphores for

processor synchronization is evaluated and proves better than locks and transactions.
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Figure 1.12: SPM and cache organization in SoC

Chapter 4 describes a simulation based performance evaluation of some memory design
issues like associativity and replacement policy in cache and scratch-pad memory (SPM).
Moreover, three common cache replacement policies FIFO, LRU and Random in SPM is
implemented and evaluated the finest replacement policy in SPM for embedded systems.
Moreover, a comparison study between use of SPM in the system and a system without
SPM is also performed. LRU outperforms among three replacement policies in both the
environments. An overall decrease of 61% in cache miss rate is achieved with the use of

SPM in the system taking same environment for all evaluations.

Chapter 5 designs a multiprocessor shared memory simulator named Memory Map. This
simulator allows user to specify its own runtime cache configuration and also can vary the
number of processors within the application program. This simulator can find only cache

miss and cache hit rate for any configuration of the system.
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A new highly efficient cache replacement policy called tag based dual mapping
replacement policy (TDMRP) is proposed in chapter 6. It has also been compared with
two existing policies i.e. FIFO and LRU in terms of cache hit ratio and energy consumed
taking 2-way associative cache using extended Simple Scalar and CACTI power model.
Simulation results on SimpleScalar demonstrate an increase of 7% cache hit ratio than in
LRU and 13% to FIFO. In the similar manner, TDMRP saves 48% of energy consumed
in case of LRU and consumes 35% less energy as compared to FIFO. Hence, TDMRP
proves out to be the outstanding option in case of replacement policy for 2-way and more

associative caches.

With the implausible rise in microprocessor technology having high speed processors and
enhanced the processor-memory speed gap, the design of on chip memory hierarchy is a
momentous concern in embedded systems. Chapter 7 describes a simulation based
performance evaluation of some design issues like associativity and replacement policies
of cache memory vs. scratch-pad memory (SPM). In addition, the use of new cache
replacement policy, called tag based dual cache replacement policy in SPM is
implemented and access the best approach for replacement in SPM for embedded
systems. A considerable decrease in cache miss rate has been evaluated by the use of tag
based dual replacement policy in comparison to some other policies like LRU, FIFO and

Random under same environment.

The major issue in integrating heterogeneous processors with their private memories on a
single chip in a MPSoC is to keep the updated data in caches. In chapter 8, a record based
cache coherence protocol is implemented to make caches coherent in heterogeneous
MPSoC. Performance improvement up to 18.75% is achieved while using proposed
approach in four different benchmarks on LIMES simulator as compared to three other

snoopy cache coherence protocols Dragon, Berkeley and MESIL
Chapter 9 describes the design of Fraction associative cache, which minimizes the

conflicts that arise in direct-mapped accesses by reserving fractional space for conflicting

locations; however, it does not affect primary mapped address. Thus this scheme exploits
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temporal locality without disturbing the spatial locality and at the same time it does not

result in under-utilization of memory reserved for resolving conflict misses.

In chapter 10, the effect of increasing network load on throughput and average packet
delay in different NoC topologies with 10 bit and 32 bit flit length is described and
evaluated. Moreover, this chapter shows the effect of network size (No. of IP nodes) on

performance metrics throughput and average packet delay.

Chapter 11 concludes this dissertation with a summary and discussion of future

directions.
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CHAPTER 2
LITERATURE REVIEW

2.1 Cesare Ferri, R. Iris Bahar and Maurice Herlihy. Energy efficient synchronization
techniques for embedded architectures. Proceedings of the 18th ACM Great Lakes
symposium on VLSI, pp 435-440, GLVLSI, 2008.

Conclusion: In this paper, authors have discussed transactional memory and distribution
semaphores which are two hardware implementation techniques for obtaining energy-
efficient synchronization for embedded systems. Authors in this paper have proposed a
modification to the earlier used transactional hardware scheme. The proposed scheme
clears the contents of the transactional cache into the memory present next in the memory
hierarchy. They also proved a 17% decrease in energy over a traditional transactional
memory implementation. However, authors have also shown that shutting down the TC
can be counter-productive in cases where it leads to high bus traffic; therefore it is
necessary to enable this “aggressive shutdown” policy adaptively according to application
characteristics. For implementation of distributed semaphores to support conditional
synchronization, it has been found that in most cases workloads using these distributed
semaphores (sometimes in conjunction with transactional memory) were substantially
more energy efficient than the same workloads using locking. Much of this benefit is due
to a reduced load on the system bus. Finally they propose to perform wider experiments

on more range of benchmarks.

2.2. Tali Moreshet, R. Iris Bahar and Maurice Herlihy. Energy-aware microprocessor
synchronization: Transactional memory vs. locks. Workshop on memory
performance issues held in conjunction with the International Symposium on High-

Performance Computer Architecture, Austin, TX, February 2006.

Conclusion: in this paper, authors compared transactional memory to locks. When rare
conflicts, transactions have an advantage over locks in terms of performance as well as

energy due to fewer accesses to main memory. As conflicts become more common,
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however, the cost of transaction re-executions becomes a significant drawback in terms of
energy as compared to locks. By simulation of several SPLASH-2 benchmarks, authors
were unable to produce high contention levels. Therefore, to investigate the behaviour of
high-contention applications, they formulate a simple synthetic benchmark in which the
level of contention can be easily “tuned” to different levels. Then they used this
benchmark under various configurations to test the high contention mode for transactional
memory. Their results open a range of further issues. They prove that neither
transactional memory nor locking code was designed with energy consumption in mind.
Moreover, they propose a promising energy-aware approach for handling synchronization
in shared-memory multiprocessors: use speculative synchronization via transactions for
the majority of low-contention program executions, switching to enforced serialization
when contention is high. Forcing serialization may reduce overall system throughput,

however is advantageous in terms of energy.

2.3. llya Issenin, Erik Brockmeyer, Bart Durinck and Nikhil D. Dutt. Data-reuse-driven
energy-aware co synthesis of scratch pad memory and hierarchical bus-based
communication architecture for multiprocessor streaming applications. IEEE
transactions on computer-aided design of integrated circuits and systems, vol. 27, no.

8, august 2008.

Conclusion: The increasing use of MPSoC’ s places a big burden on system designers to
evaluate customized memory and communication architectures having different power,
cost, and performance tradeoffs. In this paper, authors have presented a novel
multiprocessor data reuse analysis technique for SPM that opens up a large space of
unexplored options for memory customization. Moreover, they presented several
techniques aimed at memory and communication system synthesis. Traditionally, the
memory and communication subsystems were designed and sequentially optimized,
potentially missing out on a large number of good design points. Hence, authors proposed
a novel approach for MPSoC memory an energy-aware co synthesis based on data reuse
information and an architecture communication template for architecture with
hierarchical buses with TDMA arbitration. They proposed a template for a data-parallel
partitioned application and suggested several ways to solve the co synthesis problem—

optimally by an MILP solver or by a heuristic. Lastly, they compared these two
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approaches, as well as against a traditional two-step synthesis technique that first
determines memory configuration and then performs communication synthesis.
According to their results, an optimal MILP solution takes a reasonable amount of time
for systems with up to 16 processors and provides results which are at max 50% better
than the results from the other two approaches. Additionally, while providing 17%, on
average, worse results than the optimal MILP technique, heuristic achieves near-optimal
results on some of the benchmarks with much smaller execution times. If the MILP
solution does not terminate in an allotted amount of time, the designer can choose to use

the best of the results obtained by heuristic and the two-step technique.

2.4 Med Aymen Siala, Slim Ben Saoud. A Survey on Existing MPSOCs architectures.
International Journal of Computer Applications (IJCA), Volume 19, issue 3, April
2011.

Conclusion: In this paper, authors have presented a generic study on different MPSOC’s
aspects. First of all, they discussed about topologies and communications inside the chip.
In this first section the presented different types of interconnections, from the very old
(the not communicating processors, the point to point communications or the bus), to the
most recent ones (the NOC’s). In the second part of this survey, a brief introduction to
”Globally Asynchronous Locally Synchronous™ system was done, as this type of systems
is very used for MPSOC’s researches and industrial world examples. Finally, a view on
different memory organizations of MPSOC’s has been presented, since memories
represent a real challenge for futures MPSOC’s. After this study, future works can be
devoted to give some solutions to actual existing problems. Among these problems
memory organization strategies which present a big challenge, face to the huge increasing
of the computing capacities which hasn’t been followed by an equivalent amelioration in

memories latencies.
2.5.Dr. Gheith Abandah, Asma Abdelkarim. Performance evaluation of recently proposed

cache replacement policies. CPE 731: Advanced computer architecture, University of

Jordan Computer Engineering Department, January 19, 2010.
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Conclusion: In this simulation experiment five SPEC SPU2000 benchmarks were
simulated for three of the recently proposed replacement policies. The benchmarks are:
ammp, art, bzip2, equake and parser. The replacement policies are: MLP-aware, DIP and
Adaptive (LRU-LFU) insertion policy. The results showed that adaptive policies can
significantly improve the performance of the L2 cache for memory intensive workloads
for which LRU has bad performance. Each of the simulated replacement policies has its
own way in improving performance for these workloads. What makes adaptive policies
appealing is that they maintain approximately equivalent performance for LRU-friendly
workloads while achieving this improvement. The MLP-aware replacement policy and
DIP use distinct approaches in improving the performance of the caches; the MLP-aware
replacement policy improves miss penalty by exploiting memory level parallelism while
DIP improves the miss rate by preventing thrashing of the cache. Combining these two
ideas may combine the improvements of these two replacement policies to achieve even

more and more performance improvement.

2.6. Mohsen Soryani, Mohsen Sharifi, Mohammad Hossein Rezvani. Performance
evaluation of cache memory organizations in embedded systems. International
Conference on Information Technology (ITNG'07), Las Vegas, Nevada, USA April,
2004.

Conclusion: Authors in this paper have main concern on cache memory organization. So,
they performs evaluation to find main cache design issues like cache size, associativity
and replacement policy in embedded processors. They choose some application from
SPEC CPU2000 benchmark suite based on eccentricity and clustering concept. The
results show that the gain of increasing associativity in the case of data and unified caches
1s more than instruction caches. In L1 data cache and L1 unified cache the largest miss
rate reduction occurs for transition from a direct mapped to a 2-way set associative. In
floating point applications, for large caches associativity higher than two does not
efficiently reduce the miss rate; however for small caches the amount of reduction in miss

rate is noticeable.

Typically, for larger data cache sizes random policy dominates, while for smaller cache

sizes FIFO dominates. However in general for L1 data cache it is hard to select a winner
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replacement policy between FIFO and Random policies, and the difference between them
decreases as the cache size increases. For large caches the MRU policy is a good
approximation of LRU policy. Compared to LRU policy, MRU has less complexity and
according to results has negligible miss rate degradation. According to their experiment
results, the performance of OPT policy is near the performance of MRU of cache twice as
big. Hence, eliminating this gap will reduce the size of caches even to one half of their

current sizes.

2.7.G. Chen, O. Ozturk, M. Kandemir and M. Karakoy. Dynamic scratch-pad memory
management for irregular array access patterns. Proceedings in Design, Automation

and Test in Europe, DATE '06, Volume 1, pp 168-175, March, 2006.

Conclusion: Scratch-pad memories (SPMs) are being increasing used in embedded
systems and recent research has studied several compiler optimizations, designed
specifically for these software-managed on-chip memories. Most of these techniques are
able to handle only applications with regular data access patterns. Unfortunately, not all
embedded applications exhibit only regular data access patterns (e.g., some codes from
embedded multi-media) and requirement of compiler techniques to optimize their
behaviour when they need to be executed in the SPM-based architectures. Authors
address this problem by proposing a scheme that enlists both compiler’s and runtime
system’s help. They perform experiments with seven embedded applications dominated
by irregular data access patterns which show that this hybrid scheme is very effective in
practice. They prove by results that this approach is very successful with the applications
that have irregular patterns and improves their execution cycles by about 54% over a
state-of-the-art SPM management technique and 23% over the conventional cache
memories. Also, the additional code size overhead incurred by the approach is less than

5% for all the applications tested.

2.8. Chuanjun Zhang and Bing Xue. A tag-based cache replacement.Computer Design
(ICCD), IEEE International Conference in Amsterdam, pp 92-97, Oct 2010.

Conclusion: Authors proposed the tag-based replacements that share the status bits of

cache blocks that have the same tag and use both the frequency and access information of
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tags instead of cache blocks. The experimental results show that the tag based
replacement significantly reduces average miss rate at cache capacities of 512KB, 1MB
and 2MB. The processor performance improvement using the tag-based replacement is up
to 40% with an average of 4.5% over the block-based LRU. The performance
improvement is achieved with significantly less hardware compared to conventional
LRU, LFU, and their derivatives. In future, they propose to include the implementation of
other block based replacements by using tag-based techniques and the development of
new tag-based replacements for multi-core processors. One important difference between
the tag-based replacement and conventional block based replacement is that the tags that
have been evicted from the cache are still tracked. The tag-based replacement reduces the
average miss rate of the baseline IMB L2 cache by 15% over conventional LRU with
95% status bits reduction over conventional LRU. The performance improvement of a
processor using the tag based replacement is up to 40% with an average of 4.5% over

LRU.

2.9. Bahman Hashemi. Simulation and evaluation snoopy cache coherence protocols with
update strategy in shared memory multiprocessor systems. Proceedings of the 2011
IEEE Ninth International Symposium on Parallel and Distributed Processing with
Applications Workshops, ISPAW 2011, pp 259-265, IEEE Computer
Society Washington, DC, USA, 2011.

Conclusion: According to their results, WTU protocol has low performance however
Firefly and Dragon have high performance, because precision block sharing information
in WTU protocol is low however in Firefly and Dragon is high, therefore precision block
sharing information in multiprocessor systems is the major factor for different
performance of update snoopy cache coherence protocols. Therefore if information
amount is to be high then performance will be high; and hence implementation cost will
be high as well. Therefore in multiprocessor systems, selection of cache coherence
protocol is important decision that can make meaningful effect on cost and performance

of shared memory multiprocessor systems.
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2.10 Samaher Al-Hothali, Safeeullah Soomro, Khurram Tanvir and Ruchi Tuli. Snoopy
and directory based cache coherence protocols: A critical analysis. In Journal of

Information & Communication Technology Volume 4, No. 1, Spring, 2010.

Conclusion: If enough bus bandwidth is available, then all transactions are a either
request or response messages observed by all processors and hence snoopy protocols
perform faster than other protocols. Snoopy protocols have one disadvantage of non
scalability. Each and every request must be broadcasted in a system, so that with the
increase in system size, the logical or physical bus and the provided bandwidth should
also grow. On the other hand, in directory based protocols messages are point to point and
hence requires less bandwidth and have less tendency to have higher latencies. Protocols
for cache coherence are critical to multiprocessor systems. In general, the directory based
protocol is more used for larger systems to increase their performance; while snooping

protocol is used for smaller systems.

Snoopy protocols have low average miss latency, especially for cache-to cache misses.
However, Directory based protocols scale much better than snoopy protocols. They have
the ability to exploit arbitrary point-to-point interconnects. The directory access and the
extra interconnect traversal is on the critical path of cache to cache misses. It involves the

storage and manipulation of directory state.

2.11. P. Ezhumalai, A. Chilambuchelvan and C. Arun. Novel NoC topology construction
for high-performance communications. Journal of Computer Networks and
Communications, Hindawi Publishing Corporation,Volume 2011, Article ID 405697,
6 pages, March, 2011.

Conclusion: In this paper authors proved EBFT as the best topology due to least packet
latency and highest throughput. Moreover, authors have compared it with mesh, torus and
BFT NoC topologies. BFT comes second in this comparison of topologies. Although BFT
and EBFT are performing better than mesh and torus topologies, they suffer from
backbone link breaking problem. Their proposed solution provides the decoupling of the
evaluation cost function from the exploration function, thereby enabling different user

objectives and constraints to be considered.

28



2.12. Taechwan Cho and Sangbang Choi. A multi-path hybrid routing algorithm in
network routing. International Journal of Hybrid Information Technology Vol. S,

Issue 3, July, 2012.

Conclusion: In this paper, authors have presented a Multi-Path Hybrid Shortest Path Tree
(MP-HSPT) algorithm and it offers an efficient shortest path decision that can be used to
reduce the total execution time using the multi-path information. The total execution time
declined and hence also leads to reductions in packet losses. The proposed MP-HSPT
algorithm provides better performance when compared with the well known methods like
Dijkstra, Dynamic Dijkstra, and HSPT in terms of computation time for the shortest path.
Their comparison results with other routing algorithms prove that the multi-path hybrid

routing algorithm provides better performance due to decrease in the execution time.
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CHAPTER 3

A SEMAPHORE IMPLEMENTATION FOR PROCESSOR
SYNCHRONIZATION WITH SHARED MEMORY IN
MULTIPROCESSOR SYSTEM-ON-A-CHIP

3.1 Introduction

A System-on-a-chip is basically a chip which consists of some components like
processors, memory etc communicated through a network called NoC. It can perform
different functions like digital, analog and mixed-signal functions. Embedded system is
one of the major application of SoC’s. With the increasing demand of compact and fast
system results in the development of integrating multiple processors on a single chip and
it is called multiprocessor system on chip (MPSoC). The multiprocessor System-on-a-
chip [S. Pasricha, 2007] is defined as a special system-on-a-chip (SoC) which has
multiple processors with their private memories and a shared memory is present on a
single chip. They have major application in the field of embedded systems which require

a fast, efficient and compact system.

The various components present on an MPSoC chip are a number of homogeneous or
heterogeneous processors, two or more levels of memory hierarchy and also peripheral
components. An on-chip interconnects for example AMBA is used to provide connections

between all these components. Each component has its own utility.

Shared cache is the mode of communication between multiple processors on a single chip
[D. Cho, 2009]. Parallel execution of multiple cores is the main requirement for
embedded applications [I. Issenin, 2008]. SoCs with tens of cores are ordinary [S. Borkar,
2007], [M.A.J. Jamali, 2009], [P. Ezhumalai, 2009], [M. Ali, 2005] and platforms with
hundreds of cores have been already announced. There are numerous benefits of using
systems with multiple cores: Low power consumption, easy to scale and also faster

execution time.
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One of the most important and strong problem is how to implement parallelism in
systems with multi-core architects. After the evolution of threads, a way to parallelism in
MPSoC seems clear [J.W. Chung, 2006] because of the possible parallel execution of
multiple threads. The actual benefit of implementing multiple processors on a single chip
is parallel execution [I. Issenin, 2006]. There are already a lot of solutions provided by
some authors to solve this problem of multiple processor synchronization which are going

to be discussed in next section.

3.2 Literature Survey

The general approach used for solving synchronization problem is the use of locks [C.
Ferri, 1993]. A lock on a data item is acquired by a processor if it wants to access that
data item. Locks are exclusive in nature i.e. no two processors can simultaneously lock
same data item. However locks are used worldwide, still they have some disadvantages.
The first disadvantage is that locks cause more thread delay and sometimes failure also.
The reason of thread delay is context switching. Hence, with the hindrance in freeing the
thread by a lock, other concurrently executing threads waiting for the data to be free may
also be blocked. Secondly, locks also obstruct concept of concurrency because locks must
be acquired conventionally means a thread must always acquire a lock even if there is no

chance of conflicts.

Authors in [T. Moreshet, 2006] evaluated and compared the energy consumed by
transactional memory and locks which are well known solutions to multiprocessor
memory synchronization problem. According to their results, these two synchronization
techniques consume a lot of energy as it depends upon the conflict rate. According to
their results, both use of transactional memory and use of locks are consuming a lot of
energy which is not good for embedded systems. Hence, there is a need to develop an

energy efficient synchronization approach.

C. Ferri and other authors in [C. Ferri, 2007] also compared locking mechanism with
transaction based synchronization approach on the basis of frequency, power numbers
and architectural assumptions which are further based upon simple cores used for an

embedded system with multiple processors. They prove the advantage of transactional
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memory over locks in case of performance by their simulation results and also they prove
that energy constraints of such embedded systems can only be achieved through vigilant
hardware design. The graphs drawn on the basis of results are the proof of benefits in
terms of energy consumption by the system as well as the easiness in coding. However,

they show a limitation in terms of their applicability to multi-core embedded systems.

In [R. Bahar, 2008] authors implemented distributed semaphores and transactional
memory approaches to evaluate their energy consumption. Their results clearly prove that
these two approaches were not energy efficient due to some constraints on such systems
as compared to general purpose systems. Hence, they proposed an enhancement to
transactional hardware approach to solve this issue. In this approach, the contents of the
transactional cache were flushed into the memory present next in the cache hierarchy.
They prove a saving of 17% by using this modified approach over conventional
transactional memory implementation. Although their mechanism proves an energy
efficient solution in comparison to locking, still there does not exist any scheme which

proves to be best in every situation.

Researchers have given many solutions to solve the problem of multiprocessor
synchronization in an MPSoC like locking, transaction based synchronization [M. Loghi,
2006] and many more. Still there were a lot of drawbacks like some have high energy
consumption; some have large cache miss rates and high CPU cycles etc. Hence, this
problem still remains unsolved. In the next section, a new synchronization technique is

proposed which tries to address these problems.

3.3 Semaphores

Most of the system energy gets wasted in the frequent transactions abort and restart
operations which occurs due to the synchronization conflicts [E.W. Dijkstra, 1971].
Hence, motivating by this problem, authors proposed an energy efficient and high
performance solution of implementing the concept of semaphores. A system used for
sending signals by using two flags that are held in hands. This concept was first given in
1893 and used for signalling the trains. In computer science, a semaphore is a variable of

integer data type. It is can only be accessed through wait and signal operations of
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semaphore in atomic manner. Moreover, the semaphore value can only be altered by wait
and signal operations. Signal operation incremented the value of semaphore by one while
wait operation decrements the value by one. Unlike locks, semaphores are also exclusive
in nature i.e. not more than one processor can simultaneously modify the same semaphore
value. If a processor wants to access a data item which is currently accessed by another
processor in shared memory, then the processor must wait for the other processor to
complete the execution. This is called wait operation. A queue of waiting processors for
the semaphore value is maintained in FIFO manner and the blocked processor is placed

into that waiting queue. The status of the processor is set to waiting state.

A signal operation switches the processor from waiting to ready. The processor is now
present in the ready queue i.e. ready to execute. The algorithm explained above is listed
below in steps in fig. 3.1. A counting semaphore is used. Its value has been initialized

with maximum no. threads (processors) generated.

Input: Total no. of processors wants to access the data value.

Step 1. Initialize the value of semaphore s with no. of processors wants to access that data
values in shared memory.
Step 2. For each shared data value d
For each processor accessing shared memory

If s!=0 then processor can access the data and decrease the value of s by 1.

Else wait and add requesting processor to waiting queue of semaphore.
Step 3. Whenever any processor completes execution, it increments s by 1 i.e. signal for other
processor and also move that processor from waiting queue to ready queue and starts

execution.

Output: Sequence of processor execution.

Figure 3.1: Semaphore algorithm

A threads increments the semaphore value by one if a processor requests access to the
resource and decrement the value of semaphore by one if one processor executes signal

operation i.e. completes execution.
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3.4 Simulation Environment

When the processor requests a data access, it is firstly get checked in cache memory and
if data is present in cache memory then the processor reads data from cache or writes data
to the cache instantly [D.H. Albonesi, 1999], [R.I. Bahar, 1998], which is much quicker

than reading to and from main memory. Similar is the case with writing operation.

There are three different categories of cache memory : [H. Akkary, 2003] an instruction
cache to increase the speed of fetch instruction, [R. Fromm, 1997] a data cache which
speeds up fetching and storing of data and a translation look aside buffer (TLB) [L.
Hammond, 2012] used for converting virtual address generated by processor to physical
address of memory for both instructions and data. In this implementation, both data cache
and TLB cache has been considered. In a MPSoC, there are processors own private

memory and also common shared memories for all processors [M. Huang, 2000].

The evaluation environment consists of four processors on a chip with their own private
memories and also two shared memories attached to each processor. ARM bus is used for

communication between processors and memory as shown in fig. 3.2.

Threads are used for implementing multiple cores on a chip. The system consists of 4
cores, each having direct-mapped Dland T1 cache memory, a set of 64 KB private
memories for each processor and also two 64KB shared memories, all connected through

an interconnect [S. Mittal, 2011]. Linux operating system is used for this implementation.

Simple Scalar functional simulator [D. Burger, 1997] is used to implement the above
organization. The Simple Scalar tool set is used for performance analysis of process in
execution and opportunity to design modeling applications on it. This tool set includes a
number of sample simulators like sim fast to evaluate energy consumption, sim-cache to
implement memory hierarchy and evaluating a number of parameters like cache miss rate
and many more. This tool provides the facility to develop your own simulation

environment.
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Figure 3.2: Architecture implemented on simulator for evaluation of locks, transactions and semaphores.

The original tool sim-fast needs to be customized to evaluate energy consumption [M.
Herlihy, 2003] by the system and sim-cache tool is used to find cache miss rate for
various benchmarks and synchronization techniques. The total energy consumption is
calculated as E= Ecachet Epeore  Where,

Ecache= Ecaccess * No. of cache access.

Epcore=Edaccess ¥ No. of D core accesses + Eqans * No. of transactions + Pigie™ Tidie

No. of D core access= No. of cache access / block size

No. of transactions= 2* No. D core accesses

Tiae= Applications execution time — time spent accessing data from DRAM core and

transitioning between power states.

35



The final value taken is the average of ten simulation runs. These benchmarks were

chosen to run longer simulations so that better and real results can be taken.

3.5 Experimental Results

This work evaluates and compares three synchronization approaches in terms of energy
consumption and cache miss rate using three benchmarks: FFT, Splash 2 and Red black
trees. FFT is Fast fourier transform and it is an algorithm to compute discrete fourier
transform and its inverse. A fourier transform converts time to frequency and vice versa.
Splash 2 is a collection of 11 multithreaded workloads. The bars labeled with locks in fig.
3.3 show the energy consumption in pJ for each of the benchmarks taken in
consideration. The bar graph displays the energy consumption for transactions as well as
for semaphores using same benchmarks. As per the results, locks are consuming
maximum energy because every time processor wants to access a data item, it has to lock
it and hence number of locks increases, energy consumption also increases. Transactions
consume less energy for these benchmarks as compared to using locks. Semaphores have

approximately analogous energy consumption as that of transactions.

The cache miss rate for each of the technique is shown in the bar graph of fig. 3.4. For all
benchmarks, transactions prove better than locks in case of cache miss rate. Transactions
have lower cache miss rate as compared to locks. And semaphore comes out best among
locks and transactions with lowest cache miss rate. For splash-2 micro-benchmark,
running transactions without semaphore generates more re-executions, which finally
resulted in more conflicts and hence high cache miss rate which eventually leads to
consumption of more CPU cycles and hence more energy consumed. Table 3.1 and table

3.2 describe the tabular representation of experimental results.
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Figure 3.3: Energy consumption by the use of locks, transactions and semaphores

Table 3.1: Energy consumption in pJ by the use of locks, transactions and semaphore

Locks Transactions Semaphore
Red Black Trees 48 5 4
Fast Fourier Transform 25 8.5 85
Splash-2 60 10 9.5
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Figure 3.4: Cache miss rate by the use of locks. transactions and semaphores
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Table 3.2: Cache miss rate obtained using locks, transactions and semaphore

Locks Transactions Semaphore
Red Black Trees 0.294 0.234 0.145
Fast Fourier Transform 0.253 0.228 0.198
Splash-2 0.456 0.347 0.223

3.6 Conclusion

Two processor synchronization techniques transactions and locks are compared to
semaphore. Semaphore outperforms locks and transactions. Number of locks attained by
the processor is directly proportional to the cost of synchronization when using locks.
Hence, more the number of locks acquired, less the performance. Similarly in case of
transactions, the cost depends on the conflict rate. And in case of semaphore, the cost of
synchronization is directly proportional to the processor waiting time. So, lesser the
processor waiting time, better the performance. The energy consumption for locks and
transactions depends upon a number of parameters like system configuration, conflict
scenarios, types of locks and also transactional memory hardware.

The results prove that semaphore outperforms with lowest cache miss rate. And in case of
energy consumption, semaphore is almost comparable to transaction however much better
than locks because the owner for calls to lock and unlock is same thread, hence
consuming more energy in switching. However calls to P and V in semaphores can be

made by different threads and consumes less energy.

Future work will improvise these results with implementing some more constraints in

semaphores so that it comes out to be best energy efficient technique.
The contribution towards this research is published and is as follows:
Shaily Mittal and Nitin, A Resolution for Shared Memory Conflict in Multiprocessor
System-on-a-Chip, International Journal of Computer Science Issues, Volume 8, Issue 4,
Number 1, ISSN: 1694-0814, July 2011, pp. 503-507. [IF: 0.242 (2011), Indexed in

DBLP]
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CHAPTER 4

REPLACEMENT POLICIES FOR SCRATCH PAD MEMORY IN
EMBEDDED SYSTEMS

4.1 Introduction

An embedded system is a computer system designed to do one or a few dedicated
functions with real-time constraints. Embedded system is part of a complete device often
counting hardware and mechanical parts. The applications of such systems are in the
fields of hard real time systems like automotive, aeronautics, electronics and industrial
automation [J. Reineke, 2006]. The major constraint in designing an embedded system is
to achieve high speed and small size. Compact systems perform better than huge and
bulky systems. Hence, in order to achieve better performance, instructions and data
caches are embedded on a single chip now a day’s. Scratch-pad memory (SPM) is a small
size on chip memory which is currently used in almost all embedded systems [R.

Banakar, 2002] [P.R. Panda, 1997].

Cache performance has major impact of cache associativity on it. Now days, systems are
designed with cache hierarchy and increased associativity. When there is no space for the
new main memory block in the cache memory i.e. all locations are full, then one of the
old block from the cache memory needs to be swapped out to make space for the new
block. The same replacement procedure is implemented for scratch pad memory in this
work. The model is designed with scratch pad memory. Currently, embedded systems
make use of various replacement policies such as LRU (Least Recently Used) [A.
Kalavade, 2000], Random [J.L. Hennessy, 2003], FIFO (First in First Out), PLRU
(Pseudo LRU) [M. A. J. Jamali, 2009] and N-HMRU [S. Roy, 2009].

In [S. Udayakumaran, 2003, 2006] authors had proposed a compile time SPM allocation
approach which was tailored at the entry point of each loop or function. As in these
papers their focus was only on stack data and global variables in the allocation of SPM,
therefore they proposed an additional approach taking into account of heap data into the

SPM allocation in [A. Dominguez, 2005]. In general words, the most significant
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conclusion made by them is that the SPM allocation should be adapted at the start point of

each loop or function.

Sheng-Wei Huang and others in [S.W. Huang, 2009] had effectively developed a new
allocation approach for the page-based SPM in embedded systems. Efficiency of the
proposed approach was evaluated by simulating and comparing the execution of a set of
programs. Performance evaluation results proved the effective enhancement in hit rate by
the use of proposed approach. Thus, the energy-delay-product (EDP) values of the test

programs were significantly improved by 60% in average.

The simulation-based performance evaluation in [M. Soryani, 2007] discussed some of
the cache design issues like unified and split cache, cache size, cache associativity and
cache replacement policies in embedded processors. Their evaluated results using SPEC
CPU 2000 benchmark prove the gain of increasing associativity more in the case of data
and unified caches than that of instruction caches. In addition, they prove random policy
performed practically better than LRU and MRU for instruction caches. They also
compared LRU to MRU policy and according to results MRU comes out with
insignificant miss rate deprivation. Experiment results illustrated that the performance of
OPT policy is near the performance of MRU of double cache size. They evaluated and
compared replacement policies in cache memory only and not in SPM. Detailed values of
the energy consumption of both architectures are important for a comparison between
scratchpad memory and cache memory. This was done by Wilton et al. in [S. J. E. Wilton,
1994, 1996] who proposed a cache model named CACTIL The algorithm in [D. Cho,
2009] places selected program parts and variables into scratchpad memory as part of a
compiler. The ILP model presented in this thesis seems to be an optimal solution and as it

saves about 22% of the electrical energy as compared to a cache memory.
The main goal is implementation and performance evaluation of the memory design

issues in embedded processors like cache associativity and replacement policies (FIFO,

LRU and Random) in SPM which is never made earlier.
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4.2 Problem Description

Cache associativity specifies how the data block of main memory is mapped to the cache
memory locations. It is classified into three categories: Fully associative cache, direct
mapped cache and n-way set associative cache. If a data block can be mapped to every
location in cache memory, then it is called as fully associative cache memory. It is
flexible, costly and has slow cache reads and writes. Direct mapped cache is also called
direct mapped cache associativity. Direct mapping is a cheap operation as a data block all
the time mapped into the same place in cache. Single association between cache and main
memory diminishes the cache hit rate and increases contention problem as additional
addresses compete for free cache lines. SRAM is an example of direct mapped cache. On
the other hand, if a main memory block can be placed into any of the n cache blocks of a
set, where n is in powers of 2, is known as an n-way set associative cache. Figure 4.1

describes the associativity in detail.

DIRECT MAPPED Z2_WAY ASSOCIATIVE
CCACHE FILL CACHE FILL
MAIMN MAIN
MEMORY MEMORY
CACHE : CACHE
INDEX MEMORY INDEX MEMORY

(8] = |INDEX O O = [INDEX O, WAY 0O
1 = |[NDEX 1 1 INDEA O, WAY 1
2 == [NDEX 2 2 INDEX 1, WAY O
3 /: INDEX 3 3 INDEX 1, WAY 1
4 <+
5 5

EACH LOCATION IM MAIM MEMORY CAM BE EACH LOCATIOMN IN MAIMN MEMORY CAM BE

CACHED BY JUST ONE CACHE LOCATION. CACHED BY ONE OF TWO CACHE LOCATIQONS

Figure 4.1: Cache associativity: Direct mapped and 2-way associative cache

Associativity is one of the issues which have been considered for work as it affects
performance a lot [D. Cho, 2009]. The focus is to evaluate and compare influence of
increase in associativity on cache miss rate. With the increase in degree of cache

associativity, selection of an efficient replacement policy becomes more important.
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Replacement policy is defined as the algorithm or way to decide the victim memory block
needs to be replaced and save back to disk when a memory block needs to be allocated.
This occurs on a cache miss and needs a free page to store the required page. If the
memory block replaced earlier is referenced by the processor again then it has to be
moved in the cache memory from disk increases waiting time of this I/O operation [A.
Shaik, 2012]. This waiting time is the main factor for determining the quality of the page
replacement algorithm. Less the waiting time, better is the algorithm. Traditionally, LRU
policy is employed as replacement policy for most processors. LRU replacement policy
works on the concept of FIFO in a different manner by maintaining a queue of length m,
where m is the associativity of the SPM [J. Reinke, 2006]. In case of cache miss, the
accessed data element is placed in the front of the queue and the last element from the
queue is then removed as it was the least recently used element present in the queue.
While in case of cache hit, the element which was earlier present anywhere in the queue
1s moved to the front in the queue. One weak point of this policy is it consumes a lot of
time and power. Random policy is used to condense the cost of LRU, however its
performance is also low [J.L. Hennessy, 2003]. In this policy, the sufferer line is chosen
randomly from all the lines in the set. Another aspirant policy is FIFO (First In First Out),
which can also be seen as a queue in which new elements are inserted at the front and

expel element from the end of the queue.

Replacement policy is another important issue which affects the speed and performance
of memory. Therefore, finding the best replacement policy for memories in embedded
systems that is cache and SPM is the main focus. For that reasons, aim is to search

suitable solutions for cache and on chip SPM memory problems.

On chip memories are fast and energy efficient for data and instruction storage when
compared to caches or external memories. Speed with low energy consumption is the
recent and important need of applications to save time and resources [I. Issenin, 2008].
There is approximately 10 times extra consumption of memory cycles in case of cache
miss rather than in case of cache hit which decreases the speed of the system. Hence
cache miss rate have huge impact on speed and performance of the system. To keep this

point in view, this chapter address the problem of reducing cache miss rate.
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4.3 Proposed Solution

To address these problems an on chip scratch pad memory with three replacement
policies in addition to cache memory is introduced. Size of SPM is taken very small as
compared to cache memory. According to proposed algorithm, processor first checks the
availability of required data in SPM and if the data is not present in SPM, it goes for
cache memory. Existence of data in cache memory leads to cache hit otherwise a miss
which further leads to retrieval of data from main memory along with replacement in
cache memory as well as in SPM according to considered replacement policy. The
applied algorithm is shown in fig. 4.2. This thesis has implemented replacement policies

in SPM for the first time.

The work stream was used to compare different benchmarks such as sorting algorithms
and some other applications stimulated from [S. Steinke, 2002]. These benchmarks
require memory with high associativity or suffering from recurring conflict misses, and
having low spatial vicinity or do good in case of extremely large caches.

Input: Address of data operand

Algorithm:
Step 1: Repeat steps until process get executed
Step 2: If required data is in SPM
go to next instruction
Step 3: Else if required data is in cache memory
Call replacement policy for SPM and go to step 4.
Step 4: Else Fetch value from main memory.

Step 5: Call replacement policy for cache memory and SPM.

Output: Final data value

Figure 4.2: Algorithm for proposed SPM replacement policy
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Figure 4.3: Two level architecture implemented for SPM replacement policy evaluation

4.4 Experimental Environment

The simulator used in this evaluation is SimpleScalar [D. Burger, 1997]. An infrastructure
for simulation and architectural modelling can easily be provided by SimpleScalar. The
toolset provide a mixture of platforms ranging from simple non pipelined processors to
detail dynamically scheduled micro architectures with multiple-level memory hierarchies
which have been used in study. Performance evaluation of FIFO, LRU and Random
cache replacement policies has been done using alpha version of Sim-cache simulator of
this toolset. For this work, two models were compared, one with a cache and the second
with a scratchpad memory as well as cache. Sim-cache engine simulates associative
caches with FIFO, Random, and LRU policies. The original simulator is modified to
support hierarchical two level memory architecture as shown in fig. 4.3 as well as three
replacement policies for newly employed SPM. The modification in simulator was to
dump all memory accesses to a trace file. Then this trace file was analyzed to see how
many memory accesses was there, what was the footprint, and how many accesses was
into the statically declared array that represented scratch pad memory in the source code.
Size of SPM was taken very small as match up to cache memory i.e. size of L1 data cache
is taken as 4KB. For each benchmark, a number of simulations have been run for various
Dldata cache organizations with 1, 2, 4, 8 and 16 way associativity and replacement

policies as random, FIFO and LRU.

In the similar manner, diverse simulations have been performed for SPM organizations of
1, 2, 4, 8 and 16 way associativity in conjunction with cache with different combination
of replacement policy and associativity. A list of 1000 elements to sort in case of all

sorting algorithms has been captured. In the analogous line of attack, Matrix
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multiplication act upon matrices of size 100 X 100 for large calculations. In signal
processing, biquad is a second order recursive linear filter, containing two poles and

zeros. In Z domain, its transfer function is the ratio of two quadratic equations.

4.5 Results

This work was used to compare cache with SPM using different benchmarks such as
sorting algorithms. Cache miss rate values for matrix multiplication benchmark in table
4.1 show that LRU bear out to be the best replacement policy among three with minimum

cache miss rate irrespective of using SPM.

To demonstrate and evaluate the best replacement policy graphs for associativity values 1
and 16 for both SPM and cache from the calculated values are shown in fig. 4.4 and fig.
4.5. Tt is well understood from the graph that least recently used (LRU) is the best policy

among three as it has minimum cache miss rate.

The table 4.1 shows the average of cache miss rate using three replacement policies
namely FIFO, LRU and Random in an embedded system using SPM and without using
SPM. As it is clear from the results that cache miss rates decrease with the increase in
associativity and moreover, effect of using scratch pad memory becomes clearer in a
system of high value of memory associativity. Figure 4.6 displays the cache miss rate in
biquad benchmark. As seen from the graph, fully associative mapped cache shows best
results with lowest miss rate as compared to other associative caches. In comparison,
cache miss rate with associativity value 2 using and without using SPM is drawn in fig.
4.7. In the similar approach, fig. 4.8 and fig. 4.9 shows the cache miss rate for
associativity values 4 and 8 using and without using SPM. It is clear from these figures

that cache miss rate decreases with the use of SPM as compared to without SPM.
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Table 4.1: Average miss rate comparison cache vs SPM using LRU, FIFO, and random replacement

policies
Av. Cache Miss | % Av. Cache Miss
Av. Cache Miss Rate Without Rate
Benchmark Associativity Rate Using SPM SPM Improvement
Matrix Multiplication 0.4654 0.7993
Insertion sort 0.4688 0.81
Biquad 0.5675 0.595
1 18.82%
quick 0.7047 0.7764
Merge sort 0.6832 0.7327
RB Tree 0.5452 0.5592
Matrix Multiplication 0.3437 0.7281
Insertion sort 0.3746 0.7731
Biquad 0.3443 0.5673
. 2 34.68%
quick 0.5477 0.7752
Merge sort 0.5947 0.6774
RB Tree 04172 0.5418
Matrix Multiplication 0.3009 0.5825
Insertion sort 0.1026 0.1772
Biquad 0.249 0.4997
4 51.14%
quick 0.0824 0.3623
Merge sort 0.3636 0.4708
RB Tree 0.1702 0.508
Matrix Multiplication 0.1353 0.5225
Insertion sort 0.0138 0.0766
Biquad 0.2191 0.4414
8 61.283%
quick 0.0128 0.0405
Merge sort 0.252 0.323
RB Tree 0.1349 0.4694
Matrix Multiplication 0.1148 0.1231
Insertion sort 0.00665 0.0665
Biquad 0.1736 0.3729
16 57.019%
quick 0.005 0.034
Merge sort 0.167 0.232
RB Tree 0.09 0.4208
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Figure 4.10, 4.11, 4.12, 4.13 and 4.14 shows the graphical results for evaluating bubble
sort algorithm on a scale of increasing data set size (100, 500, 1000, 1500 and 2000). As
it is clear from the graph that with the increase in number of elements, cache miss rate

increases however with the increase in associativity, it decreases also.
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Figure 4.10: Cache miss rate for bubble sort with increasing number of elements in direct mapped cache.
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Figure 4.11: Cache miss rate for bubble sort with increasing number of elements in 2-way associative
cache.
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Figure 4.12: Cache miss rate for bubble sort with increasing number of elements in 4-way associative cache
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4.6 Conclusion and Future Work

This chapter presented a simulation based evaluation of cache with scratch pad memory
in terms of main memory design issues like replacement policies and associativity in
embedded systems. The simulation results demonstrate the reduction in cache miss rate
up to 61% by the use of SPM. Hence, the addition of on-chip memory SPM build the
system more efficient with lesser no. of miss rates. Moreover, results maintain the status
of LRU as the best replacement policy on FIFO and Random in SPM as well as in cache
memory. With the increase in associativity, cache miss rate decreases as data can be
easily get accessed in higher associative caches. Moreover, cache miss rate decreases
when using SPM as it is smaller in size as compared to cache memory and hence fast

availability of data.

Future work will improve these results by considering dynamic moving memory data in
and out of the scratchpad that is to propose and implement a new and efficient
replacement policy in embedded systems. In addition, research can be done for the

extension of this approach to multiprocessor systems on chip (MPSoC) [I. Issenin, 2006].
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CHAPTER 5

MEMORY MAP: A MULTIPROCESSOR MULTILEVEL CACHE
SIMULATOR

5.1 Introduction

In the memory hierarchy, cache is the first memory present next to the CPU. Hence, when
CPU generates an address, it first checks in cache [L. Hennessy, 2006]. Cache memory is
costly and rather small as compared to the other memories present in the memory
hierarchy. Cache memory provides temporary storage and able to satisfy most of the data

requests generated by the CPU as the most recent used data is present in the cache.

On-chip caches with increased size diminish the speed gap between memory and
processor. According to a literature survey in [M.B. Kamble, 1997] cache consumes 25 to
50% of total chip energy, while covering only 15% to 40% of total chip area. That’s why
designers main focus is to improve the cache performance by reducing energy consumed

and high cache hit rate rather than reducing chip area.

Automotive, aeronautics, electronics and automation of industries generally have hard
real-time constraints [J. Reineke, 2006]. These are the major applications of embedded
systems also. The main concern in the designing of memory hierarchy of embedded
systems is small systems with fast speed. These two factors effect the performance of the
system a lot. In case of cache hit, one to two CPU cycles are used, while tens of cycles are
required in case of a cache miss treated as a consequence of miss handling. Hence, the
speed decreases and becomes key factor in designing memory hierarchy in the system. To
increase the speed of the system, generally instructions and data caches are taken on same
chip. To implement such on chip designing, scratch-pad memory (SPM) has become a
substitute for embedded systems memory hierarchy [R. Banakar, 2002] [P.R. Panda,
2005].

Shared caches generally act as a communication medium between multiple processors

present on a single chip [S. Pasricha, 2007]. Simultaneous execution of multiple cores

54



simultaneously is today’s requirement for embedded applications [I. Issenin, 2008]. SoCs
with tens of cores are commonplace [D. Cho, 2009] and platforms with hundreds of cores
have been proclaimed. However, performance and power benefits can only be achieved
by making use of concurrency. The main challenge faced by the programmers is to

implement this core level parallelism.

Thread is the solution for this problem in MPSoC [T. Harris, 2003]. Just because of the
ability of executing multiple threads simultaneously, implementation of multiple
processors on a single chip is possible [J.W. Chung, 2006]. However, this result in a
problem of simultaneous access of processors to same shared cache as it requires a
synchronization mechanism [I. Issenin, 2006]. Memory Map provides framework for
evaluating cache hit and miss ratio. It is a fast, flexible, open source and easy to learn and

understand.

When the processor requests a data access, it is firstly get checked in cache memory and
if data is present in cache memory then the processor reads data from cache or writes data
to the cache instantly [D.H. Albonesi, 1999], [R.I. Bahar, 1998], which is much quicker

than reading to and from main memory. Similar is the case with writing operation.

The cache memory used in systems can be divided into three types: [H. Akkary, 2003] an
instruction cache to increase the speed of fetch instruction, [R. Fromm, 1997] a data
cache which speeds up fetching and storing of data and a translation look aside buffer
(TLB) [L. Hammond, 2012] maps virtual to physical address of instructions and data
streams both. In this current study, both data and TLB cache has been implemented. In a
multiprocessor system on chip, memory can be divided into two types: Processors own

private memory and common shared memory for processors [M. Huang, 2000].
Cache stores the information in the form of cache blocks which is the smallest unit of data

storage. Cache associativity majorly affects the performance of the cache. Now a days,

systems with high associativity in multilevel caches are preferred.
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5.2 Background

Various simulators are already developed by a number of authors to evaluate the features
of multiprocessors with shared memory architecture. The advantages and disadvantages
of some of them are going to be discussed next which results in the evolution of memory

map multiprocessor simulator.

SMPCache [M.A.V. Rodriguez, 2001] is a simulator for symmetric multiprocessors only.
SMPCache has user friendly interface which can be installed on any windows operating
system. One disadvantage of this simulator is that it requires some tool to generate

memory traces.

OpenMP [W.C. Jeun, 2007] is a standard interface for the multiple processors with
address space running simultaneously. It can be programmed in C or C++. OpenMP API
implement parallelism by the use of threads. OpenMP also use compiler directives to
implement parallel programming. The main disadvantage with OpenMP is that it can’t be

able to get memory access statistics.

Simple Scalar [T.D.C. Burger, 1997] is C based set of simulation tools that provides the
feature to design your own virtual computer system with processor and different levels of
memory hierarchy. A collection of tools like sim-fast, sim-cache and many more are
present in this toolset. Simple Scalar tool set also performs statistical analysis of various
resources, performs debugging and verification of architecture designed. However, the
major problem with Simple Scalar is that it can’t able to handle a system with multiple

Processors.

M-Sim [J. Loew, 2011] is an extension of Simple Scalar 3.0d toolset. It supports multiple
processor environments. Multiple processors can be implemented by using concurrent
thread execution.

For executing the program, [S. Mittal, 2012]

/sim-outorder num cores 3 max_contexts per core 3 cache:dll dl1:1024:8:2:1 -

cache:dl2 dI2:1024:32:2:1 program.arg
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where max_contexts means number of threads and in the above example, number of cores
are taken as 3.

An executable file prog.out will be produced:

1000000000 # prog < prog.in = prog.out

M-Sim can be used to simulate multiprocessors. The problem is that it requires separate
program per core and not a single program is divided for multiple cores. The other major
disadvantage of this simulator is that it accepts only alpha-binary files which are created

by DEC compiler which is not free of cost.

SystemC is a freely available simulator through SystemC portal [T. Rissa, 2005]. It is
based on standard Linux C++. However, the major limitation is that the compiler of this
software is debugging the development software only rather than debugging the code
running on it. Hence, it lacks in finding compile time errors and results in run time errors
which are difficult to rectify. Secondly, SystemC does not have any linker available till

now.

5.3 Alternate Approach for Multiprocessor Synchronization

5.3.1 Memory Interleaving

To increase the speed of DRAM, authors have implemented the concept of memory
interleaving [C.L. Chen, 1989]. In memory interleaving, processors access simultaneously
alternate sections of the memory without caching. Memory is divided into memory banks.
If there are m banks, i" map memory block would store in a bank no. i mod m and this is

called m-way interleaved memory.
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HIGH-ORDER ARRANGEMENT

00 7 01

MO M 1 M 2
LOW-ORDER INTERLEAVED ARRANGEMENT

0 00
a4 01 Hoo|
8 00 )
11 13 11

M O M 1 M 2

12

Figure 5.1: Interleaved structure [Norman Matloff, 2003]

B m B B E B

Figure 5.2: Example of merge sort using the concept of memory interleaving [W. Stallings, 2009]
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The concept of memory interleaving makes possible the simultaneous access of memory
through multiple processors. It can access more than one word concurrently in only one
memory access cycle. This can only be possible because of dividing the complete
memory into m distinct memory modules which enables the simultaneous access to m

memory modules and hence increases the speed of DRAM.

To implement the concept of memory interleaving, merge sort algorithm is taken as
benchmark by the authors. Generally, processors have a tendency to access continuous
memory locations for executing a program rather than alternate as in case of memory
interleaving. The low order and high order interleaved arrangement is shown in fig. 5.1.
The low order arrangement have major advantage of parallel processing as continuous
words are now in alternate memory modules and hence more preferred rather than in

sequence.

In general, the list is divided into two equal parts in merge sort, however in interleaving
instead of dividing the list; it has been accessed by m processors simultaneously providing
a virtual division of memory into m blocks. Two processors are accessing alternate
memory locations using low order memory interleaving. By implementing memory
interleaving in merge sort, merging of elements now becomes simple as elements in the
same memory block are compared also shown in example drawn in fig. 5.2. All elements
will be at consecutive locations simultaneously during merging. Presence of all merging
elements simultaneously during merging increases the cache performance and cache hit
ratio. Original merge sort algorithm along with modified merge algorithm with
interleaving is shown in fig. 5.3. In the continuation of fig. 5.3, modified insertion sort is

represented using memory interleaving.
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Input: Amray A

Modified Merge sort Algorithm:

/I Ais array of size Maxsize elements, which need to be sorted from left to 1ight position. M

isthe number // of processors, which sort elements of array in parallel, inter is degree of

interleaving.

Stepl: factor = (nght —left+ 1)/ Pow (M, inter).

Step 2:if (factor > 3) then goto step 3 else goto step 4.

Step3: Fori=1toM /! for loop pattitions elements into M processor
Sortindividual elementsin the partitioned array with starting position as I and end
position till factor or factor + 1, each element placed with “inter” positi ons next to
previous elements
Merge ( A, left, right, M. inter)

Step 4: Else Insertion sort(A_ left. n, right, Pow(M. inter-1)

Modified Merge algorithm:

Stepl: pinter = Pow (M. inter)

Step2: fori =0to M

Pointer[i] = left + r* pinter / M
N=(right—left +1)

Step3:fori=0ton
For (j= 0, j<M:+j)
If ((pointer[j] I= -1) && (tmparray[i] > Alpointer[j]))
Tmparrav[i] = Alpointer[j]]
Indexj = j;
If (ponter[indexj] + pinter > n-1)
Pointer[indexj] =-1

Else pointer[indexj] + = pinter

Step4: for (1 =0;1i < M; ++1)
Ali] =tmparrayfi]

Qutput: Sorted aray A
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2)

Input: Array A

Insertion sort Algorithm

Stepl: for( p=itinter, count-1; count < n, p <= right; p= p+ inter, ++count)

Tmp = Alp]

Step 2: for() =p; ] >=1 && ) —inter >=1 && A[j —inter| > tmp: j=] — inter )
Alj] = A[j — inter]

Step 3: A[j] = tmp;

Output: Sorted array A

Figure 5.3: Modified merge sort, merge and insertion sort algorithms for memory map simulator

The main memory consists of 2" words which are further divided into 2™ independent
memory modules and each memory module consists of 2"™ words. Working of these M
modules simultaneously or using pipelining increases the speed of the program execution
by M times approximately. Hence, increases the speed of memory read and writes
operations. The complete n bit address is divided into two parts: m-bit to specify the

memory module and rest n-m bits are used to locate the word into the specified module.
In this evaluation, an array of 30 elements has been taken with least recently used

replacement policy. As far as cache configuration is concerned, L1 cache is taken as 16B

and a 64 B L2 cache. Both are 2-way set-associative.
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5.3.2 Observations

Merge sort algorithm plain and with interleaved memory have been implemented on sim-
cache and sim-fast tools of Simple Scalar functional simulator. It has been installed on
linux operating system. Cache hit and miss rate have been evaluated for comparison
between normal and interleaved memory. Hit ratio for L1 cache treated as SPM with and
without using memory interleaving in merge sort benchmark is shown in fig. 5.4. the
cache hit ratio reaches 99.87 from 99.85 after introducing the concept of memory
interleaving in merge sort which is approximately reaches 100 means a very less cache
miss. This is a good attainment. Similarly, fig.5.5 shows the L2 cache hit ratio. In the
same manner, cache hit ratio reaches 99.74 approximately 100 when interleaved rather
than 95.54 when non interleaved memory is considered. This is the highest hit ratio

achieved as acquiring hit ratio 100 is impractical.

Merge Sort

101
100
99
98
97
96
95
94
93

99.87

M Sort - Mem Interleaving

% Sort - Normal

L1 Cache Hit Ratio

Sort - Mem Sort - Normal
Interleaving

Figure 5.4: DL1 (SPM) hit ratio for normal and interleaved merge sort
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Merge Sort

101

100 99.74
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E 98 m Sort - Mem Interleaving
% 97 % Sort - Normal
'§ 9% 95.54
o AgEITY
4‘_1*' 95 ﬂ:ﬁéﬁé‘

T
: e

Sort - Mem Interleaving Sort - Normal

Figure 5.5: L2 cache hit ratio for normal and interleaved merge sort

100 - Hit Ratio is miss ratio and miss rate is miss ratio divided by 100. First two bars in
fig. 5.6 shows the SPM miss rate with normal and interleaved execution. The bars in fig.
5.6 shows decrease in miss rate from 4.45 to 0.26 in merge sort with interleaved memory.
Figure 5.7 is drawn for L2 cache miss rate which shows a decrease in value from 1.46 to
0.13 which is very close to 0 and also attaining O miss rate is impractical. DL1 cache has
been considered. The replacement rate for DL1 using merge sort normal and also
interleaved is shown by next two bars in the graph. The red colored bar is for normal
execution while textured is for interleaved execution. The miss rate for L1 cache reaches
0.15 from 2.14 when non-interleaved and also miss rate for L2 cache decreases 1.27 when
interleaved. As cache hit rate increases, replacement rate decreases which in turn leads to
lesser memory access time and hence better performance. Cache write back rate for L1
and L2 cache is shown by last two bars in graphs of fig. 5.6 and fig. 5.7. There is also
decrease in write back rate with the use of interleaved memory. For L1, it was 1.04 when
not interleaved and later on it becomes 0.06 when using interleaving in merge sort.
Similarly, write back rate for L2 cache also decreases with interleaving by 1.75. It is low
again due to decrease in cache miss rate and hence requirement for write back to memory

decreases.
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Figure 5.6: SPM cache miss rate, replacement rate and write back rate using merge sort plain and also

interleaved
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Figure 5.7 : L2 cache miss rate, replacement rate and write back rate using merge sort plain and also

interleaved
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5.3.3 Limitations

The results drawn in previous section have proved that use of memory interleaving has
significantly improves the performance by decreasing the cache miss rate. However this
approach has some limitations also. The major limitation of this concept is that the
complexity of the modified algorithms are very high, which have not been taken into
consideration till now. Hence, it increases the power consumption of the system with the
decrease in cache miss rate and further memory access time. The second limitation is that
this architecture has been implemented on Simple Scalar Simulator, which does not

support multiple processors in the way as it is required by the given problem.

|.. ; — i ; % i
1 T
i SHARED | 5 MEMORY |
| MEMORY | CONTROLLER |
; S - . | B . .

I

e
{ cCORrRE {;'mua
CACHEJ \CACHE

Figure 5.8: Architecture used in sorting algorithm evaluation on Simple Scalar

5.4 Architecture of Memory Map Simulator

The designed architecture consists of multiprocessors with shared memory as well as with
private caches [K. Hwang, 1984]. This platform used shared memory for communication
between multiple homogeneous processors. The architecture used in this evaluation is
shown on fig. 5.8. The design consists of following components:

e A number of homogeneous processors

e Processors own private cache memory
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e A shared-memory for inter processor communication

e A memory controller to manage the working of system

This memory map simulator has different features which going to be discussed next.

The physical address generated by the processor is used to map cache memory address.
One main memory block is placed into only one cache memory block i.e. used direct
mapping. This simulator enables simultaneous execution of a single program. As each
processor has its own private memory and also shared memory, so to avoid cache
coherence problem memory controller permits processors to access only to some parts of
memory. Moreover, it uses write-back strategy to synchronize cache and main memory
[D.A. Patterson, 1994].

It has been discussed in section 5.2 that although there are a lot of simulators available
still they are not fulfilling the purpose of using multiple processors in the system. This
simulator solves this issue by implementing multiple processors through threads which
can run concurrently on a single program and these processors communicate to each other
through common shared memory. Meta data is used to map variable to logical address

and it increases the speed of cache memory access [M. Farrens, 1991].

Various operations performed in memory map simulator are:

1. Memory Allocation: Memory is considered as an array of data bits. For storing a
variable, it first checks for first continuous free space in memory. It uses java API to
determine the size of different primitive types and classes [S. Mittal, 2012]. It

converts variable to bit. Different operations also modify the value of invalid flag.

2. Memory Query: Firstly physical to logical address mapping is required when any
query is generated. Then processor first checks the presence of required block in its
own cache and if it is there then it generates a cache hit with a cache read operation. If
the required data is not present then it counts it as cache miss and hence it needs to be
fetched from main memory and also to be loaded into cache memory using cache

replacement policy.
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3. Memory Update: In case of any updation in the memory, then also physical address
1s mapped to the logical address first to locate the updation point. Then processor first
checks the presence of required block in its own cache and if it is there then it
generates a cache hit and hence it updates the cache with setting dirty flag bit to 1.
And if block is not present in the cache, it is counted as cache miss. In cache miss, it
finds out a cache block that can be replaced to accommodate required data and also
reset the dirty flag bit. Hence, this operation updates the data in main memory and

also brings the same block to cache memory also for future reference.

Flowchart shown in fig. 5.10 describes the whole operation in memory map simulator

in detail.

5.5 Test bed and Experimental Setup

Figure 5.9 describes the design of memory map simulator in detail. It consists of
multiple processors with their own private caches [A. Samih, 2011] and one common
main memory for inter processor communication. L2 cache in the designed system is
treated as private caches to processors with varying block sizes of 32 B, 64 B and
128B. Each block is using direct mapping. In simulator, only LRU and FIFO
replacement policies are considered. Benchmarks executing on simulator are merge
sort, bubble sort and average calculation. Similar as earlier two ways of evaluation is
taken: one with normal memory and one with interleaved memory. An average of 10

simulations is considered to find the correct value.

Shared Main Memory
Memory Controller
Core Core Core Core

Cache Cache Cache Cache

Figure 5.9: Memory map simulator design
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Authors have used Java technology (i.e. JDK 1.6) to design simulator and
corresponding graphs are drawn in Microsoft excel. The size of data type is
determined by Java.lang.reflect class. Custom convert utility package of java is also
used to modify data into bits and vice versa [S. Mittal, 2012]. FreePool class is used
as memory controller which searches for any free space to allocate and also provides
2 level of hashing by implementing Hashmap. CMap java class is also used for direct

address mapping.

5.6 Experimental Results

Figure 5.11 displays the execution of merge sort with normal and interleaved memory on
memory map simulator. A random array of 30 elements is taken for evaluation. The
simulator evaluated total number of accesses to the memory; number of cache hits and
also the number of cache miss for normal as well as for interleaved memory in merge

sort.

_ ) No. of hits
Hit Ratio =
No.of memory accesses
. . No. of miss
Miss Ratio =

No. of memory accesses
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Figure 5.10: Data flow graph of Memory Map simulator
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C:\Program Files\Java'jdk1.6.0 25'bin>java sr¢/MMap
Arrl[0] = 1

Arrl[l] =2

Arrl[2] =3

Arrl[3] = 4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7] =8

Arrl[8] =9

Arrl[9] =10

Arrl[10] =11

Arrl[11] =12

Arrl[12] =13

Arrl[13] = 14

Arrl[14] =15

Arrl[15] =16

Arrl[16] =17

Arrl[17] =18

Arrl[18] =19

Arrl[19] = 20

Arrl[20] = 21

Arrl[21] =22

Arrl[22] =23

Arrl[23] = 24

Arrl[24] = 25

Arrl[25] =26

Arrl[26] =27

Arrl[27] = 28

Arrl[28] =29

Arrl[29] =30

Arrl[30] =31

Number of Access for process 1 is 652
Number of Hits for process 1 is 637
Number of Miss for process 1 1s 15

Figure 5.11: Snapshots of merge sort execution (non interleaved and interleaved) with 128 Byte block size
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C:\Program Files\Java'jdk1.6.0 25'bin>java src/MMap
Arrl[0]= 1

Arrl[1]=2

Arrl[2] =3

Arrl[3] = 4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7] =8

Arrl[8] =9

Arrl[9] = 10

Arrl[10] =11
Arrl[11] =12
Arrl[12] = 13
Arr1[13] = 14

Arr1[14] = 15

Arrl[15] =16

Arr1[16] = 17

Arrl[17] =18

Arrl[18] =19

Arrl[19] =20

Arrl[20] =21

Arrl[21] = 22

Arrl[22] = 23

Arrl[23] = 24

Arrl[24] =25

Arr1[25] = 26

Arrl[26] =27

Arrl[27] =28

Arrl[28] =29

Arrl[29] =30

Arr1[30] =31

Number of Access for process 1 is 209
Number of Hits for process 1 is 193
Number of Miss for process 1 is 16
Number of Access for process 2 is 189
Number of Hits for process 2 is 173
Number of Miss for process 215 16
Number of Access for process 3 is 169
Number of Hits for process 3 is 153
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Figure 5.12: Hit ratio of 2-set LRU and FIFO replacement policies using merge sort interleaving
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Figure 5.13: Hit ratio of 2-set LRU and FIFO replacement policies in merge sort without interleaved memory

LRU outperforms FIFO when interleaved memory is used as shown in fig. 5.12 while in fig.
5.13, LRU and FIFO shows almost similar behavior when memory is not interleaved and
using the merge sort as benchmark. Merge sort with 128 B block size reaches a maximum of
0.79 hit ratio when interleaved in comparison to 0.88 in case of non interleaved memory
structure. The results of all evaluations using three benchmarks with and without interleaving

are tabulated in table 5.1.
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Figure 5.14 displays the screen shot of memory map simulator executing bubble sorting of 30
elements. As seen in the figure, it evaluates number of memory accesses for a processor, no.

of hits and no. of misses for each processor.

The graph in fig. 5.15 is drawn on the basis of results obtained in fig. 5.14. Three different
block sizes 32B, 64B and 128B are considered. The first two bars in fig. 5.15 displays the hit
ratio for 32B blocks size and proves a little better performance of LRU than FIFO. With 64 B
blocks, cache hit rate increases 7% in comparison to 32 B blocks and finally touches 92.3

with 128B blocks.

C:\Program Files\Java'jdk1.6.0_25\bin>java src/MMap
Arrl[0] = 1

Arrl[1]=2

Arrl[2] =3

Arrl[3] =4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7]=8

Arrl[8] =9

Arrl[9] = 10

Arrl[10] = 11

Arrl[11] =12

Arrl[12] =13

Arrl[13] =14

Arrl[14] =15

Arrl[15] =16

Arrl[16] =17

Arrl[17] =18

Arrl[18] =19

Arrl[19] = 20

Arrl[20] = 21

Arrl[21] =22

Arrl[22] =23

Arrl[23] =24

Arrl[24] = 25

Arrl[25] =26

Arrl[26] =27

Arrl[27] = 28

Arr1[28] =29

Arrl[29] =30

Arrl[30] =31

Number of Access for process 1 1s 958
Number of Hits for process 1 is 928
Number of Miss for process 1 is 30

Figure 5.14: : Snapshots of bubble sort execution (non interleaved and interleaved) with 32 Byte block size.

72



0.93

0.91
0.89

0.87

0.85

0.83

0.81

0.79
0.77

Hit Ratio

o 2- Set LRU

0.75
0.73
0.71
0.69
0.67
0.65

W 2-Set FIFO

64 B 128B
Block Size

Figure 5.15: Hit ratio of 2-set LRU and FIFO replacement policies using bubble sort

C:\Program Files\Java\jdk1.6.0_25'bin>java src/MMap

C:\Program Files\Java\jdk1.6.0_25'bin>java sre/MMap
Number of Access for process 1 is 137

Number of Hits for process 1 is 129

Number of Miss for process 1 is 8

Average for Numbers is 14.0

Number of Access for process 1 is 48
Number of Hits for process 1 is 37
Number of Miss for process 1 is 11
Number of Access for process 2 is 47
Number of Hits for process 2 is 37
Number of Miss for process 2 is 10
Number of Access for process 2 is 50

Figure 5.16: : Snapshots of average calculation of 30 elements execution (non interleaved and interleaved) with

Number of Hits for process 2 is 40
Number of Miss for process 2 is 10
Average for Numbers is 14.0

32 Byte block size
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Figure 5.17: Hit ratio of 2-set LRU and FIFO replacement policies using interleaved average
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Figure 5.18: Hit ratio of 2-set LRU and FIFO replacement policies using average plain.

Screen shots for average calculation of 30 elements using interleaving and without
interleaving are shown clearly in fig. 5.16. Figure 5.17 displays the graphical results of
average calculation with interleaving and bars in fig. 5.18 are for non interleaved memory
execution of average calculation using 32B, 64B and 128B block sizes. LRU outperforms
FIFO when interleaved while FIFO shows little bit better performance than LRU when non

interleaved due to locality of reference.
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5.7 Conclusion and Future scope

Due to the presence of locality of reference, bubble sort outperforms than merge sort. As
average calculation does not require any track of used pages, hence, LRU replacement policy
does not performs better than FIFO as LRU has an extra cost of maintaining history of used
pages. Hit ratio increases with the increase in block size. Moreover, memory map
multiprocessor simulator evaluates comparable results as that of similar environment on
Simple Scalar simulator which proves the correctness of memory map multiprocessor

simulator.

The contribution towards this research is published and is as follows:

Shaily Mittal and Nitin, Memory Map: A Multiprocessor Cache Simulator, Journal of
Electrical and Computer Engineering, Hindawi Publishing Corporation, Volume 2012,

DOI:10.1155/2012/365091, September 2012, pp. 1-12. [Indexed in SCOPUS, DBLP]

Table 3.1: Experimental results calculating hit ratio for 2-set LRU and 2-set FIFO using block sizes 32, 64 and
128 B on different algorithms

Block Size 2- Set LRU 2-Set FIFO Algorithm

32B 0.7846 0.7689 Average-Interleaving
64 B 0.7603 0.7858 Average-Interleaving
128 B 0.8111 0.8346 Average-Interleaving
32B 0.7059 0.7117 Average-Plain

64 B 0.8367 0.8442 Average-Plain

128B 0.9092 0.9177 Average-Plain

32B 0.7539 0.7514 Bubble Sort

64 B 0.859 0.8574 Bubble Sort

128 B 0.9231 0.9222 Bubble Sort

32B 0.7628 0.7579 Merge Sort-Interleaving
64 B 0.7444 0.7393 Merge Sort-Interleaving
128 B 0.7916 0.765 Merge Sort-Interleaving
32B 0.6712 0.6717 Merge sort - Plain

64 B 0.8067 0.8114 Merge sort - Plain

128 B 0.884 0.8874 Merge sort - Plain
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CHAPTER 6

AN EFFICIENT TAG-BASED DUAL MAPPING REPLACEMENT
POLICY

6.1 Introduction

As embedded systems became more and more intricate, applications became very huge and
caches became foreseeable [E.P. Markatos, 1994]. In the last decade, cache architectures have
entered into the world of embedded processors. At present embedded processors, have cache
architectures as intricate as general-purpose processors [T.L. Johnson, 1997]. The cache
architecture of embedded processor, particularly on mobile devices, is convoluted, as all three
metrics of performance, power and area have to be contented within the given constraints.
Today in the epoch of multi-core, there is an inclination towards multi-processors embedded
systems with low area and frequency connected together with high throughput interconnect
fabric [K.S. McKinley, 1996]. Hence, there is a need to condense the complexity and power
of individual processor components like caches and other memories with small reduction in

system performance [A. Agarwal, 1993].

In computing, when the cache is full, we require cache replacement algorithms. The
algorithm must decide the items to be abandoned to make space for the new ones. Cache
replacement policies determine the data space to replace whenever there is a miss. In a set-
associative cache, a miss occurs when the accessed cache set is full. The three widely used
replacement policies are LRU (least recently used) [C. CaBcaval, 2003], FIFO (first in first
out) [A. Kalavade, 2003] and RAND (random) [J.L. Hennessy, 2003]. Among these, LRU is
the most preferred cache replacement policy. LRU replacement policy is most closely related
to the concept of temporal locality. Temporal locality assumes that when a particular memory
location is accessed by a processor for a process, then it has high probability of referencing
the same location again in the near future. In this case, it is necessary to store a copy of the
referenced data in special memory storage [Y. Yan, 2000], so that it can be accessed faster in

future reference. This is called temporal locality.

In [Q.M. Jaleel, 2007], Qureshi and other coauthors proposed a DIP replacement policy that
chooses the appropriate policy to be applied to the cache from either LRU or Bimodal
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Insertion Policy. In [Q.M. Lynch, 2006], authors proposed utilizing Memory-Level-
Parallelism (MLP) to reduce the miss penalty to the memory by producing the impression of
the MLP-aware replacement policy. Their proposal was based on the truth that cache misses
do not occur consistently across the workload that means some misses occur in parallel and
others occur in isolation. This means that different misses of the cache blocks will differ in
their exploitation of MLP. In [R. Subramanian, 2007], Subramanian proposed an adaptive
policy that dynamically chooses from one of the four well-known policies LRU, LFU, FIFO
and Random to be applied. In their simulation project, the adaptive policy is implemented for
LRU and LFU only. In this proposal, Subramanian et al. used the Sampling Based Adaptive
Replacement, which in turn employs auxiliary tag directories for one of the policies, and

contribute sets from the cache for the other policy.

6.2 Proposed Replacement Policy

In the new proposed policy, access information of each cache block is recorded and further
that information is used to select the victim block. Address of 32 bits is divided into 16 bits as
tag bits and rest 16 bits for dual mapping. Hence, total number of tags is limited to 65536
tags. Figure 6.1 shows the implementation of the proposed dual mapping replacement policy
for a IM 16-way cache with a line size of 128B. The high order 16 bits of each address is
read out as tag and stored in registers. The rest 16 bits are used to generate the effective
address of the data. Each 8 higher order bits of this 16 bit field is fed to the 8x256 decoder to
generate 256 new address blocks. Then the lower 8 bits are again fed to 8 x 256 decoder of
their respective higher order bits combination. Cache blocks with the same 16 bits of tag and
higher order 8 bits of address share the same status bits. Moreover, the information memory
contains 256 5-bit counters to record the access frequency of each cache block and 1-bit
counter to record the validity of each block ( data is present ). The proposed dual

replacement thus uses both the frequency and validity information of the blocks.

On a cache hit, the low order 8-bit of the tag is used to decode the status bits for updating the
access information of the tag. The valid bit is set to 1 and the frequency counter is
incremented by one. If the frequency counter reaches to the value with all 1’s then all the 256
frequency counters are divided by two through right shifting all the counters by one bit
position to make them at equal level. On a cache miss, all the low order 8-bit of tags in the set

is read from the tag register. These tags are used to access the status bits to determine the
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victim block using the following procedure. When there is a cache miss, first the proposed
tag based dual replacement policy uses the validity information (valid bits). All the 256 valid
bits of the 256 cache blocks in the missed set are read out. The victim block is chosen from
the cache blocks whose valid bits are zero as the bit is set in case of a hit. If all the valid bits
in the set are all ones, then the frequency counter with lowest value is chosen from the block

as victim block.

I 32 BIT INSTRUCTION I
VALID I BIT

C " REGISTER

: L.. [ 8x256 -
16 BIT TAG 8 BIT ;| 8 BIT - w‘ -

8
P .| 8x256
DECODER

i/

CO000QC Q0

Bx256
DECODER

T

<5 BIT COUNTER

Figure 6.1: Architecture of proposed tag based dual replacement policy

6.3 Experimental Methodology and Results
6.3.1 Cache Configuration and Benchmarks

Simple Scalar tool [P.R. Panda, 2004] set is used to measure cache hit ratio and CACTI 5.3
tool [P. Shivakumar, 2001] to evaluate processor performance through power of tag-based
dual mapping replacement policy. The sim-cache tool of Simple Scalar simulator is
extended to implement new proposed replacement policy. The energy consumption for the
cache memory has been obtained by isolating the data array subsystem out of the CACTI
cache model 5.3. CACTI incorporated cache access time, cycle time and power model [L
Issenin, 2008]. CACTI is planned for use by computer architects to better understand the
performance tradeoffs in different cache sizes and organizations. The number of simulated
instructions in each benchmark is 250 M instruction. In addition, a fast forward interval of 50
M instructions is included to make caches stable and to obtain correct results. The cache hit

ratio and power are the primary metrics. The L1 cache parameters were steady for all
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experiments. The L2 cache is 1IMB 16-way set associative. All L1 and L2 cache in the
baseline use a 64 B block. The extent of instruction window is 128 instructions. The
parameters are summarized in table 6.1. The address bits are 32 bits. 5 benchmarks suite
(Matrix multiplication, Heap Sort, Bubble sort, Biquad and Merge sort) are evaluated as they
are parallel applications best suited for multiprocessor environment [I. Issenin, 2006]. All the

benchmarks are precompiled for the Alpha binaries ISA.

Table 6.1: Cache configurations used in evaluating cache hit ratio and power for comparing tag based dual

replacement policy to LRU and FIFO in Simple Scalar simulator

Parameter Name Settings

L1 Instruction Cache 64KB: 64B line-size; 2-way with LRU replacement Policy.
L1 Data Cache 64KB; 64B line-size; 2-way with LRU replacement Policy.
L2 Baseline IMB; 32B, 64B, 128 B block size; 16-way, LRU

Branch Predictor Default predictor

Instruction fetch queue 4 instruction/cycle

Decode width 16

Window Size 128

Memory Latency 10 cycles

6.3.2 Experimental Evaluation

Figure 6.2 shows the cache hit ratio of 5 benchmarks of block sizes 32 B, 64B and 128 B for
LRU, FIFO and Tag based Dual replacement policy with 2- way associativity. Firstly, as it is
shown from the bars, with the increase in block size, hit ratio increases. As in the case of
Heap sort, its value rises from 69.5 to 89.8. Analogous performance is seen in case of other
benchmarks also. Secondly, the hit rate of the proposed tag based dual mapping replacement
policy is always greater than two other replacement policies namely LRU and FIFO for all
benchmarks. For example, in case of matrix multiplication, hit ratio rises from 78.9(LRU)
and 75.89(FIFO) to 84.11(TDMRP).On average, the hit ratio of dual replacement policy is
((highestquar —highestiruFiro) highestqua)) i.e. (94.39- 88.21)/94.39 = 7% and (94.39 —
82.12)/94.39 = 13% higher than the LRU and FIFO respectively.
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Figure 6.3 explains the energy estimation of same 5 benchmarks of block sizes 32 B, 64B and
128 B for LRU, FIFO and Tag based Dual replacement policy with 2- way associativity.
Firstly, increase in block size results in decline of energy consumption. Similarly, for merge
sort, energy consumption decreases from 3.2 to 2.9 as block size increases from 32B to 128
B. All benchmarks have the similar characteristics. Secondly, as clearly seen from the bars,
the energy consumption of the proposed tag based dual mapping replacement policy is
always lower for all benchmarks than two other replacement policies LRU and FIFO. For
example as seen from the bars, energy value of LRU (10.2) and FIFO (7.5) to TDMRP (6) in
matrix multiplication. On average, the power estimation of dual replacement policy is (2.9 -
1.5)/2.9 = 48% and (2.3 — 1.5)/2.3 = 35% lower than the LRU and FIFO respectively. Lowest

values have been taken to calculate the average decrease in power.

6.4 Conclusion and Future Work

A new, efficient, high performance cache replacement policy called tag based dual mapping
replacement policy (TDMRP) is proposed that raises hit ratio and diminishes the power
consumption when compared to two well-known replacement policies LRU and FIFO. Also
three replacement policies (one proposed and two existing policies) are compared on the
basis of five well-known benchmarks namely matrix multiplication, heap sort, bubble sort,
biquad and merge sort. The two parameters hit ratio and energy are measured using
SimpleScalar and CACTI tool. Results have proved that new proposed TDMRP increases hit
ratio by 7% and 13% with respect to LRU and FIFO. In the similar manner, it has proved
reduction in energy consumption in case of TDMRP as compared to LRU and FIFO by 48%
and 35% respectively showing an excellent performance. TDMRP cache replacement policy
is explored in terms of hit ratio and energy first as these two is on the priority for embedded

systems.

Hit ratio increases as this policy is taking the advantages of LRU and using the concept of
status bits. Energy consumption is less as number of memory accesses is less as compared to
the memory accesses in FIFO and LRU due to less frequent changes in data in memory and

hence lesser main memory accesses.
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The contribution towards this research is published and is as follows:

Shaily Mittal and Nitin, An Efficient 1ag-based Dual Mapping Replacement Policy,
Proceedings of the First International Conference on Information Science and Management
(ICoCSIM), Toba Lake, North Sumatera, INDONESIA, Volume 1, pp 93-97, December 3-5,
2012.
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CHAPTER 7
A NEW EFFICIENT REPLACEMENT POLICY FOR SCRATCH PAD
MEMORY

7.1 Introduction and Motivation

With the advances in time, there is increase in processor memory speed gap. Scratch-pad
memory (SPM) has been used mostly in the design of modern embedded system processors

[R. Banakar, 2002] to reduce this memory speed gap in processors.

Cache associativity has direct impact on cache performance. Cache replacement policy is
required when there is no space for the new block in cache memory. Hence, to accommodate
the new block, some of the old blocks need to be replaced. Same procedure is implemented
for Scratch pad memory. The authors have designed the proposed model with Scratch pad
memory and implemented new replacement policy on SPM. The present processors employ
various cache replacement policies such as LRU (Least Recently Used) [A. Kalavade, 2000],
Random [J.L. Hennessy, 2003], FIFO (First in First Out), PLRU (Pseudo LRU) [S. Borkar,
2007] and N-HMRU [S. Roy, 2009].

Udayakumaran and his co-authors in [S. Udayakumaran, 2003, 2006] had proposed a compile
time SPM allocation approach tailored at the entry point of each loop or function. In these
papers author’s key focal point was only on stack data and global variables in the allocation
of SPM, hence they proposed an additional approach of taking account of heap data into the
SPM allocation in [A. Dominguez, 2005]. In broad-spectrum, the most momentous
conclusion made by them is that the SPM allocation is supposed to be adapted at the start

point of each loop or function.

In [M. Soryani, 2007] authors discussed the simulation-based performance evaluation in
cache design issues such as cache size, associativity and replacement policies in embedded
processors. They evaluate results using SPEC CPU 2000 benchmark showing the gain of
increasing associativity more in the case of data and unified caches in contrast to instruction
caches. Moreover, they verify through their results that random policy performed practically

better than LRU and MRU for instruction caches. In their research, they also compared LRU
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to MRU policy and according to results MRU comes out with insignificant miss rate
deprivation. They have evaluated and compared replacement policies in cache memory only

and not in SPM.

Wilton et al. in [S. J. E. Wilton, 1994, 1996] proposed a cache model named CACTI to
evaluate energy consumed in Joules. Detailed values of energy consumption of both
memories are important for a comparison between scratchpad memory and cache memory.
This was done by the algorithm proposed in [D. Cho, 2009] that places selected program
parts and variables into scratchpad memory as part of a compiler. The ILP model presented in
this paper seems to be an optimal solution as it saves about 22% of the electrical energy as

compared to a cache memory.

In [S.W. Huang, 2009], Sheng-Wei Huang and others had effectively built up a new page-
based SPM allocation approach in embedded systems. The efficiency of the proposed
approach was evaluated by simulating a set of programs. Obtained performance evaluation
results prove the effective enrichment in hit rate by the use of proposed approach however
also reduce the cost of the SPM reallocation. Hence, as per their results, the energy-delay-

product (EDP) values of the test programs were significantly improved by 60% in average.

In [M. Qureshi, 2006], Qureshi with his co-authors proposed a new scheme for utilizing
Memory-Level-Parallelism (MLP) to reduce the miss penalty by producing the impression of
the MLP-aware replacement policy. Their proposal was based on the truth that some cache
misses occur in parallel and others occur in isolation means that cache misses do not occur
consistently across the workload. This means that different misses of the cache blocks will
differ in their exploitation of MLP. In [M. Qureshi, 2007] authors proposed a DIP
replacement policy that chooses the best suited policy to be applied to the cache from either
LRU or Bimodal Insertion Policy. In contrast, Subramanian in [R. Subramanian, 2002],
proposed an adaptive policy that also dynamically chooses from one of the four well-known
policies LRU, LFU, FIFO and Random to be applied. While in their simulation project, they
implemented adaptive policy for LRU and LFU only. In this proposal, Subramanian used the
Sampling Based Adaptive Replacement, which in turn employs auxiliary tag directories for

one of the policies, and contribute sets from the cache for the other policy.
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The goal of this chapter is to implement earlier proposed cache replacement policy [S. Mittal,
2012] named tag based dual replacement policy in SPM and compares it with architecture

designed without using SPM.

7.2 Proposed Policy

In the new proposed policy, previously recorded access information of each cache block is
used to select the victim block. Address bits of 32 is divided into two parts, in which16 bits
are treated as tag bits and rest 16 bits for dual mapping. Hence, total number of tags is limited
to 65536 tags. The implementation of the proposed dual mapping replacement policy for a
IM cache with a line size of 128B is shown in fig. 7.1. The high order 16 bits of each address
is stored in registers. The rest lower order 16 bits are used to generate the effective address of
the data. Further, each 8 higher order bits of this 16 bit lower order field is fed to the 8x256
decoder to generate 256 new address blocks. Then the remaining lower 8 bits are also fed to 8
x 256 decoder of their respective higher order bits combination. Cache blocks having same
tag bits and higher order address bits share the same status bits. Moreover, the information
memory contains 5-bit counters numbered from 0 to 255 to keep record of the access
frequency of each cache block and 1-bit counter to record the validity of each block ( data is
present ). Thus, both the frequency and validity information of the blocks are used in dual

replacement policy.

When there is a cache hit, the low order 8-bit of the tag is used to decode the status bits for
updating the access information of the tag. At the same time, corresponding valid bit is set to
1 and the frequency counter is incremented by one. If the frequency counter reaches to the
maximum value of 255 with all 1’s then all the 256 frequency counters are divided by two
through right shifting all the counters by one bit position to make them at equal level. When
there is a cache miss, all the low order 8-bit of tags in the set is read from the tag register.
These tags are used to access the status bits in order to determine the victim block. On a
cache miss, first the proposed tag based dual replacement policy uses the valid bits. All the
256 valid bits of the cache blocks in the missed set are read out. The victim block is elected
from the cache blocks whose valid bits are zero as the bit is set in case of a hit. If all the valid
bits in the set are all ones, then the frequency counter with lowest value is chosen from the

blocks as victim block.
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7.3 Experimental Setup and Evaluation

The simulator used is SimpleScalar [P.R. Panda, 1997]. SimpleScalar simulator provides an
infrastructure for simulation and architectural modelling in an easier manner. The complete
toolset provide a mixture of platforms ranging from simple processors to detail dynamically

scheduled micro architectures with multiple-level memory hierarchies as used.

{ 32 BIT INSTRUCTION I
VALID I BIT
J} \_: REGISTER

;.| 8x256
DECODER

00000000

Bu2t
DECODER

<5 BIT COUNTER

Figure 7.1: Architecture of proposed tag based dual replacement policy in SPM

Performance evaluation of different cache replacement policies FIFO, LRU and Random has
been done using Sim-cache simulator from the alpha version of this toolset and later extended
to implement proposed replacement policy. For this work, two models are compared, one
with a cache and second with a scratchpad memory as well as cache. The original simulator is
modified to support hierarchical two level memory architecture as well as four replacement
policies for newly employed SPM including new dual replacement policy. All memory
accesses were dump to a trace file and then this trace file was analyzed to get the value of
memory accesses, the footprint, and accesses into the statically declared array that
represented scratch pad memory in the source code. A very small size SPM has been taken to
match up with cache memory. Size of L1 data cache is 64KB. For each 6 benchmarks
considered, a number of simulations have been run for D1 data cache organizations with 1,
2, 4, 8 and 16 way associativity and replacement policies as random, FIFO, LRU and Dual.

Table 7.1 describes the cache configuration in detail.

In the similar manner, diverse simulations have been performed for SPM organizations of 1,

2, 4, 8 and 16 way associativity in concurrence with cache having different combination of
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replacement policies and associativity. A list of 2000 elements is captured to sort in case of
all sorting algorithms. In the similar fashion, matrix multiplication act upon matrices of size

200 X 200 for large calculations.

Table 7.1 lists the detailed cache configurations used in simulation environment. Authors run
6 benchmarks suite (Matrix multiplication, Insertion sort, Biquad, Quick sort, Merge sort and
Red black tree) as they are parallel applications best suited for multiprocessor environment [ 1.
Issenin, 2006]. All the benchmarks are precompiled for the alpha binaries ISA to be used in

Simple Scalar simulator.

7.4 Observations

This chapter compares and evaluates newly proposed replacement policy in SPM and also
without SPM. Figure 7.2 and fig. 7.3 show the cache miss rate value for 6 benchmarks using
four different replacement policies FIFO, LRU, Random and dual replacement policy using
SPM and without using SPM for direct mapped and 2-way associative cache. It is clearly
visible from the bar graphs that newly proposed dual replacement policy have lower miss rate
in comparison to FIFO, LRU and Random for both associativity values 1 and 2. Similarly,
table 7.2 lists the values of miss rate of various benchmarks using different replacement
policies for associativity value as 4. The values in the table clearly shown the best results i.e.
lowest cache miss rate in case of dual replacement policy as compared to other three well
known replacement policies while using SPM as well as without using SPM. Figure 7.4 and
fig. 7.5 displays the cache miss rates values for 4-way and 8-way associative caches. The bar
graph in fig. 7.6 describes the cache miss rate chart for fully associative mapped cache using
6 different parallel benchmarks and four replacement policies. Similar results are obtained in
this case also with lowest cache miss rate for dual replacement policy rather than others.
Likewise, results are also obtained for associativity value of 8 with best results shown by dual

replacement policy.
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Table 7.1: Cache configurations used in simple scalar tool for comparing tag based dual replacement policy to

LRU, FIFO and random in SPM.

Parameter Name Settings
L1 Instruction Cache 64KB: 64B line-size; 2-way with LRU replacement Policy.
L1 Data Cache 64KB; 64B line-size:; 2-way with LRU replacement Policy.
L2 Baseline IMB: 32B. 64B. 128 B block size; 16-way. LRU
Branch Predictor Default predictor
Instruction fetch queue 4 instruction/cycle
Decode width 16
Window Size 128
Memory Latency 10 cycles
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Figure 7.2: Cache miss rate for FIFO, LRU, random and dual replacement policies using and without using SPM

implementing 6 benchmarks for direct mapped associative cache
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Figure 7.3: Cache miss rate for FIFO, LRU, random and dual replacement policies using and without using SPM
implementing 6 benchmarks for 2-way associative cache.
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Figure 7.4: Cache miss rate for FIFO, LRU, random and dual replacement policies using and without using SPM

implementing 6 benchmarks for 4-way associative cache
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implementing 6 benchmarks for 8-way associative cache.
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Figure 7.6: Cache miss rate for FIFO, LRU, random and dual replacement policies using and without using SPM

implementing 6 benchmarks for fully associative cache.
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Table 7.2: Cache miss rate values for FIFO, LRU, random and TDMRP in SPM and cache

Using SPM Without SPM
Benchmark Associativi | FIFO | LRU RAND | Dual FIFO | LRU RAND | Dual
OM OM

Matrix Multi. 1 0.4654 | 0.4654 | 04654 | 0.4654 | 0.7993 0.7993 | 0.7993 | 0.7993
Insertion sort 0.4688 | 0.4688 | 0.4688 | 0.4688 0.81 0.81 0.81 0.81
Biquad 0.5675 | 0.5675 | 0.5675 | 0.5675 0.595 0.595 0.595 0.595
Quick 0.7047 | 0.7047 | 0.7047 | 0.7047 | 0.7764 | 0.7764 | 0.7764 | 0.7764
Merge sort 0.6832 | 0.6832 | 0.6832 | 0.6832 | 0.7827 | 0.7827 | 0.7827 | 0.7827
Red Black Tree 0.5452 | 0.5452 | 0.5452 | 0.5452 | 0.5592 | 0.5592 | 0.5592 | 0.5592
Matrix Multi. 2 0.3331 | 0.3325 | 0.3655 | 0.3301 | 0.7381 | 0.7374 | 0.7089 | 0.7009
Insertion sort 0.4058 | 0.3728 | 0.3452 | 0.3354 | 0.7931 | 0.8134 0.713 | 0.7069
Biquad 0.3493 0.328 | 0.3557 | 0.3197 | 0.5689 | 0.5702 | 0.5629 | 0.5576
Quick 0.7043 | 0.7043 | 0.2345 | 0.2341 | 0.8106 | 0.8086 | 0.7064 | 0.702
Merge sort 0.5918 | 0.5973 | 0.5952 | 0.5876 | 0.6902 | 0.6787 | 0.6635 | 0.6565
Red Black Tree 0.4318 | 0.4264 | 0.3936 | 0.3848 | 0.5418 | 0.5428 | 0.5451 | 0.5345
Matrix Multi. + 033 | 03302 | 02427 | 0.2134 | 0.5651 | 0.5642 | 0.6184 | 0.4335
Insertion sort 0.1044 | 0.0629 | 0.1406 | 0.1198 | 0.2496 0.0306 | 02516 | 0.0123
Biquad 0.2477 | 0.2289 | 0.2706 | 0.2534 | 0.4983 | 0.4893 [ 05117 | 0.3423
Quick 0.0738 0.059 | 0.1145 0.045 | 0.3173 0.3897 | 0.3799 | 0.2349
Merge sort 0.2036 | 0.4332 0.454 | 0.1034 0441 | 04586 | 05128 | 0.3345
Red Black Tree 0.1632 | 0.1422 | 0.2052 | 0.1023 | 0.5073 0.5022 | 05145 | 0.5132
Matrix Multi. 8 0.1494 | 0.1002 | 0.1564 | 0.0987 | 0.5656 | 0.5952 | 0.4096 | 0321
Insertion sort 0.0795 | 0.0619 | 0.0885 | 0.0519 | 0.0141 | 0.0088 | 0.0185 | 0.0012
Biquad 0.2188 | 0.2073 | 0.2314 | 0.2221 | 0.4371 | 0.4316 | 0.4557 | 0.3956
Quick 0.0444 | 0.0297 | 0.0474 | 0.1234 0.011 | 0.0044 [ 0.0229 | 0.0021
Merge sort 0.249 | 0.2187 0.291 0.165 0.323 | 0.3082 0.338 | 0.1289
Red Black Tree 0.132 | 0.1227 | 0.1501 | 0.1101 | 0.4711 0.464 | 04732 | 0.2198
Matrix Multi. 16 0.1201 | 0.1002 | 0.1243 | 0.0789 | 0.1561 0.061 | 0.1522 | 0.0349
Insertion sort 0.0679 | 0.0599 | 0.0718 | 0.0453 | 0.0062 | 0.0055 | 0.0079 | 0.0022
Biquad 0.1719 | 0.1622 | 0.1867 | 0.1093 | 0.3677 | 03603 | 0.3904 | 0.2265
Quick 0.0359 | 0.0297 | 0.0364 | 0.0234 | 0.0053 0.0039 | 0.0062 | 0.0019
Merge sort 0.1649 | 0.151 | 0.1851 | 0.1003 024 | 02125 | 0.2436 | 0.1986
Red Black Tree 0.0884 | 0.0791 | 0.1047 | 0.0678 | 0.4181 04151 | 04292 | 0.3675
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7.5 Conclusion and Future Work

In this chapter, a simulation based evaluation of cache with and without scratch pad memory
in terms of main memory design issues like replacement policies and associativity in
embedded systems is presented. The simulation results demonstrate the reduction in cache

miss rate up to 20% by the use of newly proposed dual replacement policy.

Hence, the addition of on-chip memory SPM and use of dual replacement policy in SPM
build the system more efficient with lesser no. of miss rates. Future work will improve these
results by considering dynamic moving memory data in and out of the scratchpad with
evaluation of more parameters for comparison. In addition, research can be done for the

extension of this approach to multiprocessor systems on chip (MPSoC).

The contribution towards this research is published and is as follows:

Shaily Mittal and Nitin, A New Efficient Replacement Policy for Scratch Pad Memory,
Proceedings of the IEEE 5™ International Conference on Computational Intelligence and

Communication Networks CICN-2013, Mathura, INDIA, pp 432-435, September 27-29,
2013.
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CHAPTER 8

A NOVEL DIRECTORY BASED SOLUTION TO CACHE
COHERENCE PROBLEM

8.1 Introduction

MPSoC with shared memory have been considered notably for research purpose. [S. A.
Hothali, 2010] The programming model used in MPSoC is not complicated and hence they
can provide better results. There is one benefit of using multiprocessors on a single chip that
an address generated by a processor enables the communication between all processors. One
major drawback of using multiple caches is the cache inconsistency. The read process doesn’t
have any problem of having same cache block in multiple private caches of processors. The
problem arises in the case of modifying the data in one cache as data in other caches becomes
invalid [J. Gomez, 2009]. Cache coherence ensures the presence of valid data in all caches.
Cache coherence occurs due to presence of multiple copies of same data in local caches of a
shared resource and one copy in the main memory. [D. Patterson, 2009] When there is a
change in one copy of the operand, the other copies of the operand present in other caches

and main memory must be changed also.

Use of multiple processors on a single chip leads to one or two levels of cache associated
with each processor as it directs to required high performance of the system. However, this
kind of organization creates cache coherence problem. The cache coherence problem is the
occurrence of multiple copies of the same data in different caches simultaneously, and if
processors are allowed to update their own copies freely, results in an inconsistent view of
memory. The two well known write policies for cache coherency are:

1. Write back: In this policy, updation is made only to the cache memory at time and
propagated to the main memory only when the related cache line is empty for any
further modification.

2. Write through: In this policy, all updations to data are made to cache memory and at
the same also communicated to the main memory. It makes data in main memory

valid always.
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Write back policy generally leads to inconsistency. If two caches contain the same line, and
the line is updated in only one cache, leads to the other cache with unknowingly an invalid
value. Consequently, the reading of that invalid line produces invalid results. Data
inconsistency can take place yet with the write through policy. The main objective of cache
coherence protocol is to have the local variables used recently into the proper cache for
numerous reads and write and to maintain consistency of shared variables that might be

present in multiple caches at the same time.

8.2 Motivation and History

Solutions to cache coherence problem are divided into two parts: software and hardware
solutions [J. Archibald, 1986]. Therefore, hardware does not cache those objects. In general
terms, the main objective is to avoid caching for any shared data variables. However this is a
conventional approach, as shared data may be read-only during some phases and read and
write for some other phases. Because the problem is only dealt with when it actually arises,
there is more effective use of caches, leading to improved performances over a software
approach. Further, cache coherence protocols can be categorized as: snoopy protocols and

directory based protocols [C. P. Thacker, 1987].

The schemes that have been or are being implemented most in multiprocessors are called
snoopy cache protocols [S. J. Frank, 1984][M. S. Papamarcos, 1985] because all coherency
transactions must be watched by system cache to determine when consistency-related actions
should take place for shared data. Snoopy protocols can use [L. Rudolph, 1985] write
invalidates and write- update approaches. In write invalidate protocol; cache line becomes
exclusive when one of the caches wants to write to the cache by invalidating all data lines in
the other caches. And in write update protocol, there can be multiple writers and readers
concurrently. When there is an updation in a shared line, the data to be updated is distributed

to all caches and the caches containing that particular line update it immediately.

Another classification of coherency protocols is directory-based protocols [R.H. Katz,
1985][C K. Tang, 1976][L.M. Censier, 1978][J. Archibald, 1985]. [A. Agarwal, 1988]
Directory-based protocols maintain a directory linked with main memory which stores the

state of each block of main memory. Corresponding to each entry in centralized directory
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there exists a dirty bit, a bit indicating the cached status of block and also pointers to the

caches storing the repective block.

Shared memory multiprocessor architectures make use of some other cache coherence
protocols such as MSI [F. Baslett, 1988], MESI [M. Papamarcos, 1985], Dragon protocol [E.
McCreight, 1984] and Berkeley protocol [J. Archibald, 1986], to guarantee data integrity and
accuracy when data is shared and cached within each processor. The MOESI protocol have
states Exclusive modified, Shared MOdified, Exclusive Clean, Shared Clean and Invalid and
it is a variation of MESI protocol. In [B. Hashemi, 2003], author evaluated and compared
three snoopy based protocols Dragon, Firefly and WTU using Limes simulator. According to
their results, WTU protocol has low performance as compared to Firefly and Dragon as
precision block sharing information in WTU protocol is low however high in Firefly and

Dragon.

8.3 Proposed Solution

To address cache coherence problem, a new protocol named Valid Directory protocol is
designed. In this scheme, a directory or table in main memory is storing data and status bit.

The directory contains only the updated and invalid data from different private caches.

When a processor updates some data in its private cache, it becomes invalid in the cache and
its updated value along with the status bit set entered in the main memory directory for future
reference of any processor. Invalid data in private caches is directly and only updated in the

directory entry in main memory.

When a processor tries to read a data present in its cache, its request has been granted
immediately if valid data is present in the cache. In case of invalid data, it goes directly to the

main memory to access the required data from the directory.

There is no concept of pointers as in case of earlier directory based protocol and hence its
complexity and execution time is less. As the size of the entries associated with each block in
the directory is directly proportional to the number of processors, the memory consumed in

directory is proportional to the size of memory © (n), where n is the number of processors

95



and multiplied by the size of each directory entry © (n). Hence, the total memory overhead

complexity in this case is the square of the number of processors i.e. © (n?).
8.4 Experimental Setup and Test bed

LIMES simulator is used for the purpose of evaluation and comparison of different protocols
(Valid directory, Dragon, Berkeley and MESI). Limes is a tool which provides environment
for simulation of multiprocessors. It runs on a computer with Linux operating system and
hence the name Linux Memory Simulator. Limes contains N processors ( N = 2™ ) connected
to each other and giving an impression of concurrent execution on a unique processor
machine. Results are evaluated using 2, 4, 6 and 8 processors. Actually processes
are lightweight threads. A lime uses the execution-driven approach, which ensures maximum
simulation speed. Existing applications do not require any kind of source code modifications
to compile and run under Limes. Simulation time is expressed in processor cycles of the
simulated target multiprocessor system, which accurately reflects the behaviour of a real
multiprocessor system at the cost of time spent for simulating references and context
switching. Table 8.1 explains complete experimental setup in detail. Simulator is extended to

implement newly proposed protocol.
8.5 Comparative Analysis of Valid Directory, DRAGON, BERKELEY AND MESI

In this section, a simulation results are discussed. For the purpose of simulations, Limes
simulator with protocols implemented in C++ is used. Figure 8.1 illustrates the simulation
effect of number of processors on the execution time using FFT application with values
tabulated in table 8.2 Valid directory protocol has the lowest execution time in comparison to
Dragon, Berkeley and MESI and among them, Berkeley is the worst performer. There is a
decrease of 23%, 23.5% and 20% in execution cycles for newly proposed protocol from
dragon, Berkeley and MESI respectively. On the other hand, fig. 8.2 presents the execution
time of different protocols with increasing number of processors with LU benchmark. Table
8.3 displays the execution time in psec for LU benchmark. Valid directory protocol performs
better than other protocols when using LU benchmark. Dragon and berkeley protocol shows
almost similar behaviour with 14% increase in execution time. Figure 8.3 presents the
execution time for Ocean application when four different cache coherence protocols are

applied. Again the proposed protocol outperforms among all with 30%, 31% and 16%
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decrease in execution time w.r.t dragon, berkeley and MESI. Dragon and berkeley perform
almost in the similar manner. MESI also have same execution time as that of proposed when
number of processors is 16. In the fig. 8.4, again proposed protocol shows best performance
with lowest execution time as compared to other protocols. Thesis evaluated these results

using radix benchmark. Here, dragon shows the worst result with highest execution time.

Table 8.1: Simulation environment for evaluating execution time for Dragon, Berkeley, MESI and Valid

directory cache coherence protocol in LIMES simulator

Simulator LIMES
Processors 24816
Test Block Size 32B
Protocols Dragon, Berkeley, MESI, Valid Directory
Applications FFT. LU, Ocean, Radix
50
45
’g 40
=35
.E 30 =&=Dragon
— 25
_5 20 =i—Berkeley
g 15 e MES|
2 10
fn 5 =é=\/alid directory
0
2 4 8 16
No of Processors

Figure 8.1: Execution cycles in FFT with Dragon. Berkeley, MESI and Valid directory cache coherence

protocols
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Table 8.2: Execution time (psec) of Dragon, Berkeley, MESI and Valid directory cache coherence protocols

using FFT benchmark in LIMES simulator

Benchmarks No. of processors
2 4 8 16
Dragon 33.272412 22.134532 16.78543 14.424321
Berkeley 32.745612 27.453975 16.32342 14.873291
MESI 32.214567 26.789302 15.23901 13.26792
Valid directory 27.005672 20.534251 12.00234 10.379043
50
45
Q40
(7]
=35
E 30 =§=—Dragon
= 25
5 20 —li—Berkeley
3 15 el MESI
X 10
b 5 =é=\/alid directory
0
2 4 8 16
No. Of Processors

Figure 8.2: Execution cycles in LU with Dragon, Berkeley, MESI and Valid directory cache coherence

protocols

Table 8.3: Execution time (psec) of Dragon, Berkeley, MESI and Valid directory cache coherence protocols

using LU benchmark in LIMES simulator

Benchmarks No. of processors

2 4 8 16
Dragon 39.453211 23.456788 15.55341 9.907185
Berkeley 39.223876 23.129063 15.28349 9.987654
MESI 38.414164 21.879023 14.17654 9.856321
Valid directory 33.556532 19.325678 11.97653 9.023457
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Figure 8.3: Execution cycles in OCEAN with Dragon, Berkeley, MESI and Valid directory cache coherence

protocols

Table 8.4: Execution time (psec) of Dragon, Berkeley, MESI and Valid directory cache coherence protocols
using OCEAN benchmark in LIMES simulator

Benchmarks No. of processors

2 4 8 16
Dragon 46.532987 34.6598706 28.86544 27.986543
Berkeley 4556321 35.190432 29.03462 26.984531
MESI 39.864521 30.563211 22.89899 19.876932
Valid directory 30.562109 25.789342 19.22212 18.989763
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Figure 8.4: Execution cycles in RADIX with Dragon, Berkeley, MESI and Valid directory cache coherence

protocols

Table 8.5: Execution time (usec) of Dragon, Berkeley, MESI and Valid directory cache coherence protocols

using RADIX benchmark in LIMES simulator

Benchmarks No. of processors

2 4 8 16
Dragon 44976321 25.643892 16.900972 13.5354
Berkeley 44231768 23.632131 16.873421 13.35538
MESI 42251621 22.897654 15.324716 12.34568
Valid directory 39.987651 20.358765 12.879764 8.567543

8.6 Experimental Setup

Simulations were performed with the micro bench programs using seamless CVE simulator.

Table 8.6: Simulation environment in seamless CVE to evaluate ratio of execution time

Simulator Seamless CVE
Instruction Cache Enabled
Data Cache e  Private cache enabled.
¢  Shared Cache partly enabled
Memory access time s 6 cycles for the 1st word
e 1 cycle foreach subsequent word
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The micro bench program was implemented with each task by acquiring the lock
alternatively. The simulation environment is summarized in table 8.6. If all the caches lines
were become invalid in the critical section and after that processor exits the critical section,

then it is called as software solution.

Figure 8.5 shows ratio of the execution time on x axis and the number of cached lines on y
axis and the corresponding values are tabulated in table 8.7, The proposed solution shows a
decrease in execution time of 67.66% than of software solution when execution time is 1. It
also proves better than the software solution by 72.3% when the execution time is increases

from 1 to 2.

1.0
0.9 exec time=2

0.8 PROPOSED

0'7 SOLU":ON /
0.6
0.5
0.4

0.3 *
0.2 exec time=1

S/W SOLUTION

Pt
L=

lORY]

]

RATIO OF EXECUTION TIME

0.1
0.0

5 10 15 20 25 30 35
No. OF ACCESSED CACHE LINE

Figure 8.5: Ratio of execution times for proposed valid directory vs s/w based cache coherence solution
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Table 8.7: Experimental values for ratio of execution time for directory protocol vs proposed solution

No. of accessed cache lines ratio of execution time
Directory Protocol exec time =1 1 0.84
2 0.78
4 0.71
8 0.7
16 0.68
32 0.66
exec time =2 1 0.7
2 0.63
4 0.6
8 0.58
16 0.581
32 0.562
proposed Solution exec time =1 1 0.7
2 0.54
4 0.51
8 0.48
16 0.46
32 0.43
exec time =2 1 0.52
2 0.46
4 0.45
8 0.43
16 0.41
32 0.4

8.7 Conclusion

In this chapter, a directory based protocol to solve the cache coherence problem in
heterogeneous systems is presented. The simulation results show an average of 22% speedup
for execution time in FFT application and 12% speedup for LU in proposed solution at the
expense of simple hardware, compared to a pure software solution. In the similar manner,
valid directory protocol shows 25% and 16% faster than others while using Ocean and Radix

benchmark. Moreover, simulation results showed a increase of 68% in ratio of execution time
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for execution time 1 and a 72% speedup for execution time 2 in proposed solution as

compared to a software solution.

The contribution toward this research is published and is as follows:

1. Shaily Mittal and Nitin, 4 Novel Directory Based Solution to Cache Coherence
Problem, in 7" international conference on Advanced Computing & Communication
Technologies, ICACCT 2013, APIIT, Panipat, November 16, 2013 sponsored by
IETE and Inderscience publishers.

The contribution toward this research is communicated and is as follows:
2. Shaily Mittal and Nitin, A New approach to Directory Based Solution for Cache
Coherence Problem, Proceedings of IEEE sponsored 3rd International Conference on

Computing of Power ,Energy & Communication, ICCPEIC -2014, Adhiparasakthi
Engineering College, Melmaruvathur, kanchipuram dt, April 16 — 17, 2014.
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CHAPTER 9
FRACTIONAL ASSOCIATIVE MEMORY: A SOLUTION TO
CONFLICT MISSES

9.1 Introduction and Motivation

Cache memory is located nearest to the processor and used to decrease the average memory
access time. The cache is comparatively small and fast in processing than main memory as it
keeps only the frequently used data items. When processor generates an address, it first

checks in the cache memory.

Presence of requested data in the cache memory results in cache hit while the non existence
of data in cache is called cache miss. Cache hit results in the immediate read or write from or
to the cache line. And in case of a cache miss, a new entry is allocated in the cache to copy
the requested data from main memory so that the request is satisfied from the contents of the
cache itself.

Cache miss results in delay in execution as it requires extra time to transfer data from
memory to cache itself.

1. Replacement policies: The technique used for deciding the victim entry to expel in
case of cache miss is called the replacement policy. The three broadly used
replacement policies are LRU (least recently used) [C. Calin, 2003], FIFO (first in
first out) [A. Kalavade, 2000] and RAND (random) [J.L. Hennessy, 2003]. LRU is the
most preferred cache replacement policy among all. LRU replacement policy is most
close to the concept of temporal locality. It is good practice to store a copy of the
referenced data in special memory storage for future reference due to property of
locality of reference [Y. Yan, 2000], so that it can be accessed faster.

2. Associativity: If the main memory block can be placed to any location in the cache
memory, then cache is called fully associative [Q. Zhu, 2012]. While in direct mapped
cache each main memory block can be mapped to only one location in the cache
memory. If the cache memory is divided into sets and each set contains n blocks and
each main memory block can be placed to any one of n blocks in corresponding set of
the cache memory, it is called as N-way set associative. Authors have used direct

mapped cache memory. Direct-mapped caches implementation have the advantage of
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requiring significantly less chip space than fully associative caches because they only
require one comparator to determine if a hit has occurred, while in fully associative
caches, one comparator for each line in the cache is required.

3. Locality of reference: Generally, instructions and data are stored collectively; this is
termed to as locality of reference. Locality of reference assumes that the same data
value or the storage location is accessed regularly. There are two different kinds
of locality of reference: Temporal locality and spatial locality. Temporal locality says
the currently used data will be accessed again in near future with high probability. In
contrast, spatial locality says that there is high probability of referencing the value
stored nearby to a certain location that is referenced earlier.

4. Types of Cache miss: There are four different types of cache miss [M.D. Hill, 1987]:

e Compulsory: When the cache block is first accessed; it is moved into the
cache.

e Capacity: When there is not a sufficient space to contain all the required
blocks for the program execution in cache memory at the same time, then
some blocks are being discarded from cache.

e Conflict: When more than one blocks are mapped to the same set or block in
set associative or direct mapped block placement strategies, this is called
conflict miss [C.Zhang, 2006].

e (oherence: Misses that occur as a result of invalidation to maintain

multiprocessor cache consistency.

9.2 Related Work

Due to lack of associativity, direct-mapped caches have more conflict misses rather than
caches with higher associativity. Inspite of higher conflict miss rate, access time of direct
mapped is lower than set-associative caches. [A. Aggarwal, 1988], [J.R. Goodman, 1998], [S.
Przybylski, 1990], these authors proposed a very simple method to decrease the cache misses
for uni-processors by enlarging the cache line size. Because of the presence of unnecessary
data into the cache due to large cache line sizes, the capacity misses increases. Torrellas et al.
in [J. Torrellas, 1994] showed that increase in cache lines in multiprocessors do not have any
impact on cache misses as proficiently it is in uni-processors due to the property of poor

spatial locality in shared data. The proposed prefetching schemes are divided into software-
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based [F. Dahlgren, 1996], [T. Mowry, 1991], [T. Mowry, 1998] or hardware-based [J.L.
Baer, 1991], [E.H. Gornish, 1995], [E. Hagersten, 1992], [D.M. Koppelman, 2000] and [M.K.
Tcheun, 1997]. Software approaches introduced instruction overhead and increased memory
traffic is due to hardware approaches. Therefore, in [T.F. Chen, 1994] Chen and Baer propose
the use of a blend of hardware and software prefetching to utilize the advantages of both.
Qureshi and other coauthors in [Q.M. Jaleel, 2007] proposed a DIP replacement policy which
selects the appropriate policy to be applied to the cache among LRU and Bimodal Insertion
Policy. Also, in [Q.M. Lynch, 2006], Qureshi proposed Memory-Level-Parallelism (MLP) to
reduce the miss penalty to the memory by producing the impression of the MLP-aware

replacement policy.

9.3 Fraction associative memory

The proposed approach is simple variation of direct mapping approach where a fraction of
memory is kept reserved for resolving conflict misses [N. Jain, 2012]. The total number of
cache blocks are divided into two parts, Blocks in primary cache memory represented by D
and Blocks in conflict cache memory represented by C. Address mapping in primary cache

memory is used as direct mapped memory using modulo D function as below:-

1=Mmod D
Where
1 = cache block no.
M = main memory block number
D = number of blocks in primary cache memory
When conflict occurs, primary mapped block i1 is mapped to conflict memory block j using

farmula explained below:-

j=(1moduloC)+D
Where
1 = primary mapped cache block
1 = primary mapped cache block
C = number of blocks in conflict cache memory

D = number of blocks in primary cache memory
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Figure 9.1 shows how conflict miss corresponding to memory block 11 has been mapped to
cache block 11. In this example, fraction size is considered as . Hence, 3 cache conflict
blocks are taken. One point to be taken care of number of cache blocks (C+D) should be
divisible by fraction size f such that

C=(C+D)*f

D =(C+D) * (1-1)
Subjected to (C+D) modulo 1/f=0

Fractional ratio can be adapted as per load conditions statically; however cache memory

needs to be relocated as per new cache size available for direct mapping scheme.

A. Handling Conflict miss: In case of conflict miss, it first checks whether conflict cache
memory block j mapped to primary cache memory block 1 is occupied or not by
referring to hashing entries for conflicted blocks. If occupied, it checks for primary
cache memory block k corresponding to it and identifies victim block as per the Least
Recently Used (LRU) block out of two k and j block for replacement. It moves the
MRU block in primary cache memory k block and old conflict block j (corresponding
to primary cache memory k) is replaced by new conflict block j corresponding to
primary cache memory M block. It clears the conflict flag for primary cache memory
k block. Moreover, it sets a flag in primary cache memory block i to indicate conflict
block mapped to it. A two way hashing entry is maintained for new conflict cache
memory block j and memory block M. Thus, it only causes two memory accesses
only at time of conflict. It avoids two level memory accesses by maintaining a
hashing of all occupied conflict cache blocks.

B. Features of Fraction Associative Memory: Fraction Associative approach takes
advantage of irregular memory access pattern and does not cause under-utilization of
memory reserved for resolving conflict misses unlike set associative memory. At the
same time, it does not cause spatial locality to be hindered due to temporal locality
pattern. It is simple in implementation. It conserves space for resolving conflicts by
reserving only fraction of cache. It achieves excellent hit access time as it does not
require two level memory accesses for checking presence in conflict memory and this
approach uses hashing to maintain memory blocks present in conflict memory. It is

efficient as it does not use associative cache to store conflict references.
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Figure 9.1: Fraction associative mapping explanation [N. Jain, 2012]
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Figure 9.2: Analysis of energy conversion using different benchmarks for, 2-set FIFO, 2-set LRU and fraction

associative mapping
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Table 9.1: Experimental values for energy consumption using fraction associative mapping

#

ey

g

# Fraction associative

Block Size Algorithm 2-set LRU 2-set FIFO Fraction
associative
4B Merge sort 52.5 48.9 432
8B Merge sort 63.45 61.43 60.89
16 B Merge sort 78.75 79.54 72.31
4B Average 36.87 3534 34.53
8B Average 37.86 36.09 35.55
16 B Average 38.89 39.12 37.53
4B Bubble sort 49 87 4998 48.76
8B Bubble sort 51.23 51.01 50.72
16 B Bubble sort 51.93 50.74 49.98
4B Matrix Multiplication 4532 44,87 4321
8B Matrix Multiplication 48.67 46.09 44.23
16 B Matrix Multiplication 50.04 48.75 46.53
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Figure 9.3: Analysis of access time using different benchmarks for, 2-set FIFO, 2-set LRU and fraction

associative mapping
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Table 9.2: Experimental values for access time using fraction associative mapping

Block Size Algorithm 2-set LRU 2-set FIFO Fraction
associative

4B Merge sort 11.43 10.32 8.45

8B Merge sort 12.2 11.54 9.21

16 B Merge sort 16.09 14.76 11.1

4B Average 3.87 3.18 2.34

8B Average 4.23 3.56 3.05

16 B Average 5.22 432 4.06

4B Bubble sort 5.38 6.05 423

8B Bubble sort 6.29 5.21 4.97

16 B Bubble sort 7.9 6.37 522

4B Matrix Multiplication | 10.39 9.29 7.18

8B Matrix Multiplication | 11.98 10.17 9

16 B Matrix Multiplication 13.02 12.3 10.26

9.4 Test bed and Experimental Setup

This mapping scheme is implemented on shared memory and multiprocessor based
architecture. Different processors may execute independently having mutually exclusive
access to shared memory at a time. Array based computation is used to select algorithms for
studying data locality. Cache size is taken as 64 bytes and utilizes block size of 4 bytes, 8
bytes and 16 bytes. For the purpose of implementation and simulation of whole architecture,
CACTI 2.0 [P. Shivakumar, 2001/2] timing and power model is used. CACTI 2.0 model can
evaluate three parameters: cache access time, cycle time, and power of the system. Cache
access time and power consumption are the two parameters on the basis of which different
replacement policies are compared. Different benchmarks used are: merge sort, average,
bubble sort and matrix multiplication. Such benchmarks are chosen as they require parallel

and long calculations temporally. Tables 9.1 and 9.2 show the experimental values.

9.5 Results and Discussions
From fig. 9.2, in case of energy consumption, the bar graph clearly shows the lowest energy
consumed (uJ) in case of fraction associative mapping than 2-set LRU and FIFO policies.

Merge sort shows highest energy consumption due to complexity. Because of simplicity in
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average calculation, it shows best results. Figure 9.3 illustrates the cache access time in ns for
three different replacement policies namely 2-set LRU,2-set FIFO and fraction associative
mapping using block sizes 4,8 and 16 B on four different benchmarks. Again, proposed

policy outperforms LRU and FIFO with lowest cache access time.

9.6 Conclusion

Fraction associative cache conserves space and cost because only fraction of cache is
reserved for resolving conflict misses. Moreover, run or compile time data transformation
techniques used to exploit data locality involves additional runtime overhead, whereas
fraction associative scheme does not include runtime overhead and does not involve any data
transformations. Increased block size, increased energy consumption and cache access time;
however fraction associative cache provides midway to achieve both factors in optimal way.
Fraction associative mapping takes benefits of direct mapping of being cost optimal, simple

and having less access time and power consumption.

In essence, fraction associative mapping is simple, elegant, cost effective and low-overhead

high performing scheme which outperforms set associative mapping.

The contribution towards this research is communicated and is as follows:

Shaily Mittal and Nitin, Fractional Associative Memory: A Solution to Conflict Misses,
Proceedings of 4th IEEE International Advance Computing Conference (IACC) February 21-
22, 2014. IEEE sponsored 3rd International Conference on Computing of Power ,Energy &
Communication, ICCPEIC -2014, Adhiparasakthi Engineering College, Melmaruvathur,
kanchipuram dt, April 16 — 17, 2014.
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CHAPTER 11
CONCLUSION AND FUTURE DISCUSSIONS

This chapter sums up the entire study and list out further scope of works along with the open

problems concern with multiple processor synchronization and shared memory conflicts.

11.1 Conclusion

The cost of processor synchronization when using locks is totally determined by the number
of locks acquired in the application. The cost of synchronization for transactions depends on
the conflict rate. The overall waiting time for a processor determines the performance of the
system when using semaphores. Hence, semaphores outperforms with lowest cache miss rate
and best performance. And in case of energy consumption, semaphore is almost comparable
to transaction however much better than locks because the owner for calls to lock and unlock
is same thread, hence consuming more energy in switching. However, Signal and wait calls

can be made by different threads.

A simulation based evaluation of cache with scratch pad memory in terms of main memory
design issues like replacement policies and associativity in embedded systems is presented.
Moreover, results maintain the status of LRU as the best replacement policy on FIFO and
Random in SPM as well as in cache memory. With the increase in associativity, cache miss
rate decreases as data can be easily get accessed in higher associative caches. Moreover,
cache miss rate decreases when using SPM as it is smaller in size as compared to cache

memory and hence fast availability of data.

Bubble sort benefits more from the property of locality of reference and hence performs
better than merge sort. Moreover, LRU comes out as the best replacement policy in merge
sort with interleaved memory, while FIFO performs best in the case of finding average of 30
elements. The reason of lacking LRU may be the overhead of maintaining the record of
recently used pages which is not functional in average calculation. All simulations are
performed on Simple Scalar as well as Memory map simulator and similar results prove
authenticity of the simulator. This simulator was designed keeping in mind the architectures

where more than one processor is not accessing the shared memory concurrently.
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A new, efficient, high performance cache replacement policy called tag based dual mapping
replacement policy (TDMRP) is proposed that raises hit ratio and diminishes the power
consumption when compared to two well-known replacement policies LRU and FIFO. A
simulation based evaluation of cache with and without scratch pad memory in terms of main
memory design issues like replacement policies and associativity in embedded systems is
presented. The simulation results demonstrate the reduction in cache miss rate up to 20% by
the use of newly proposed dual replacement policy. Hit ratio increases as this policy is taking
the advantages of LRU and use of status bits. Energy consumption is less as memory access
1s less as compared to the memory accesses in FIFO and LRU due to less frequent changes in

data in memory and hence lesser main memory accesses.

Fraction associative cache conserves space and cost because only fraction of cache is
reserved for resolving conflict misses. Fraction associative scheme does not include runtime
overhead and does not involve any data transformations. Fraction associative mapping takes
benefits of direct mapping of being cost optimal, simple and having less access time and
power consumption. In essence, Fraction associative mapping is simple, elegant, cost

effective and low-overhead high performing scheme which outperforms set associative

mapping.

To address the coherence of data caches in heterogeneous processor platforms, a
methodology is presented. Berkeley protocol has low execution time because exclusive
ownership is required before the line can be modified. In Dragon protocol, exclusive
ownership of the line is not required to modify the line however the protocol does require the
special sharing line. In MESI, when a block is in the valid state and a store is issued to that
block, a Bus Write, instead of a Bus Invalidate occurs, and a transfer from memory is
initiated even though it is unnecessary. This difference will definitely hurt performance since
the writing processor will have to wait for the entire cache block to be transferred before it
can proceed. In addition, unnecessary bus traffic is created. All three protocols have high
complexity due to the use of different states and state transitions. Valid directory based

protocols have low complexity and hence better execution time.

Due to regular updation in routing tables based on changing topologies, dynamic routing

algorithm have better performance than static routing algorithms. Throughput decreases and
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packet delay increases with the increase in traffic load. Due to the increase in traffic in the
network, packet loss increases and hence throughput decreases and congestion leads to
increased packet delay. Among four different network topologies, mesh topology shows best
results with highest throughput and EBFT with lowest throughput as mesh is the simplest
topology and EBFT is the complex among all. While EBFT shows best results with lowest
latency because routes can easily be determined in this topology and BFT with highest

latency. With the increase in network size, throughput declines and latency increases.

11.2 Future Work

Future work will consider some more issues in multiprocessor systems like designing an

efficient routing algorithm for NoC, improved NoC topology.

In this dissertation, TDMRP cache replacement policy is explored in terms of hit ratio and
energy only as these two is on the priority for embedded systems. In future, it can be
evaluated and compared with some other replacement policies on the basis of some other

parameters.

Future work will improve results obtained for scratch pad memory by considering dynamic
moving memory data in and out of the scratchpad with evaluation of more parameters for
comparison. In addition, research can be done for the extension of this approach to

multiprocessor systems on chip (MPSoC).
As heterogeneous processor SoC’s become more ubiquitous in future system design,

directory based protocol for solving cache coherence will be very useful and effective for

integrating heterogeneous coherence protocols in the same system processors.
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