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1.1 Vaccine: origin and evolution 

Infectious diseases are one of the leading causes of mortality. Prevention is always better 

than cure and the vaccines are still the most successful preventive measures against infectious 

diseases (Ehreth, 2003). Although the first use of vaccine was much ancient and many of 

them were started independently in Africa, China and India (Gross and Sepkowitz, 1998). 

Vaccine was formally introduced in medical practice by Edward Jenner through his landmark 

experiment in which he had shown that infected material from cow containing ‘cowpox’ can 

be used to protect human from smallpox (Riedel, 2005). A century after Edward Jenner’s 

smallpox vaccine, Louis Pasteur proposed basic rules of vaccinology based on germ theory of 

disease and developed the first vaccines against anthrax and rabies (Geison, 1978). Pasteur 

proposed that vaccine can be developed through isolation, inactivation and injection of 

pathogenic microorganism.  

After the advances in tissue culture techniques of viruses which were introduced by Hugh 

and Mary Maitland in 1937, Max Theiler used different types of tissue cultures for the 

cultivation of yellow fever virus. These tissue culture techniques helped in attenuation of 

viral growth in human and produced 17D attenuated virus strain for live attenuated vaccines 

(Theiler and Smith, 1937).  Later in 1951, Max Theiler got Noble prize for the development 

of yellow fever virus vaccine. Similarly, cultivation of viruses in embryonated hens' eggs by 

Ernest William Goodpasture and his colleagues at Vanderbilt University was the basis for 

development of first influenza vaccine. Ernest Goodpasture found that several (more than 30) 

viruses could be propagated in the chorioallantoic membrane which surrounded the chick 

embryo. Subsequent researchers used hen’s eggs to cultivate influenza viruses which were 

later used successfully to develop influenza vaccine (Plotkin and Plotkin, 2004).  

In a breakthrough in cell culture technique, John Enders and his colleagues at the 

Children's Hospital, Boston successfully cultivated the poliovirus in human embyonic cell 

culture in 1948 (Enders et al., 1949). This cultivation of poliovirus greatly facilitated the 

development of first polio vaccine in 1952 by Jonas Salk. Later, John Enders and his 

colleagues were awarded with the Noble prize in 1954 for their work on cultivation of 

poliovirus in human embryonic cell culture. In 1963, the Ender also developed measles 

vaccine which was the live attenuated strain (edmonston strain) of measles virus (Hilleman, 

1992). In last two centuries, after the formal discovery of vaccine by Edward Jenner, the 

revolution in invention of vaccines against different pathogenic organism was driven mainly 

by new findings and advancement in cultivation techniques. The germ theory of disease was 
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the basis of principle proposed by Louis Pasteur for preparing vaccines. Further, 

advancement in culture techniques such as tissue culture, cell culture, virus culture in eggs, 

etc. had revolutionized the vaccine design, research and production in 20th century.  

At the end of twentieth century, the most successful ways of making vaccines which were 

based on Pasteur’s principle: isolation, inactivation and injection of disease causing pathogen. 

New techniques were the need of the hour to discover/invent vaccines against the diseases 

which were not feasible through above simple principle. New approaches such as 

recombinant DNA technology (RDT), protein engineering, chemical conjugation of protein 

and polysaccharides, and use of novel adjutants have opened the new era of vaccines 

research. Before discovery of the RDT, the manufacturing of hepatitis B virus vaccine was 

limited, as antigen required for the production of vaccine could only be recovered from 

patients infected with hepatitis B virus.  But RDT assisted to produce recombinant proteins of 

hepatitis B virus on a large scale (Rappuoli, 2007). Chemical conjugation of proteins and 

polysaccharides in vaccine provided both cellular and humoral immune responses to prevent 

infection. The conjugation methods have opened the way to development of several effective 

vaccines against pathogens such as Haemophilus influenzae (Morris et al., 2008), Neisseria 

meningitidis (serogroup A, C, Y and W135), Streptococcus pneumonia (Sinha et al., 2007), 

etc. Furthermore the prevailing resource for vaccine design, the availability of genomes (host 

and pathogens), came out when genome of H. influenza was published in late twentieth 

century (Fleischmann et al., 1995). With the accessibility of genome, virtually all possible 

proteins of an organism were available for evaluation of their potential as vaccine candidates. 

Vaccine development has been coupled with advancement of new techniques and associated 

discoveries. The milestone breakthroughs associated with events in vaccine research and 

developments are summarized in Table 1.1. Overall new technologies such as computational 

based methods (like reverse vaccinology), synthesis of customized DNA sequences, 

expression of antigen in a selected host, reconstruction of viral genomes, generation of 

recombinant vectors (viral or bacterial) and codon optimization for expression of antigens 

formulate the section of synthetic biology which used in vaccine design and development 

(Kindsmülle and Wagner, 2011). De novo synthesis of DNA and RNA through synthetic 

biology eliminates time and efforts required for pathogen cultivation and will be leap forward 

towards production. Synthetic Genomics Vaccines Inc. (SGVI) focusing in synthetic biology 

for fast production of influenza vaccines which are required to be updated in every season 

and up-gradation of vaccine must done in minimum time (Kindsmülle and Wagner, 2011).  
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Table 1.1: Major breakthroughs that influenced vaccine development  

Events Year Outcome Reference 

Formal discovery of vaccine 1796 Small-pox vaccine (Riedel, 2005) 

Pasteur principle of vaccinology 
(Isolation, inactivation and 
injection of pathogenic 
microorganism) 

 
1880 

First vaccines against the 
diseases anthrax and 
rabies 

(Pasteur, 1880) 

Culture of viruses in hens egg 1931 Influenza vaccine 
(Plotkin and 
Plotkin, 2004) 

Advancement in tissue culture 
of viruses 

1937 Yellow fever virus vaccine 
(Theiler and 
Smith, 1937) 

Cell culture of viruses in human 
embryonic cells 

1948 Polio vaccine 
(Enders et al., 
1949) 

Recombinant DNA technology 1972 
Production of recombinant 
Hepatitis B vaccine 
(Subunit vaccine) 

(Jackson et al., 
1972) 

Reverse vaccinology 2000 
Neisseria meningitidis 
serogroup B vaccine 

(Rappuoli, 2000) 

 

1.2 Importance of vaccines 

Since more than 200 years, vaccines are the most successful and cost effective preventive 

measures against infectious diseases (Ehreth, 2003). These are instrumental in preventing 

humans and animals from microbial infections. Vaccines were also the main weapons in 

eradication of smallpox and rinderpest diseases (Normile, 2008). Vaccines also set the 

disease poliomyelitis near to eradication and an array of other diseases partly under control 

due to vaccination. According to the UNICEF, vaccines worldwide save approximately nine 

million lives annually (http://www.unicef.org/pon96/hevaccin.htm). In terms of annual life 

year saved (ALYS) and disability-adjusted life years saved (DALYs), the vaccines 

contributed huge benefit through eradication of smallpox, and control of polio, measles and 

tetanus as shown in Table 1.2 (Ehreth, 2003).  

Potential threat of bioweapons also increases the role for vaccines in protection against 

deadly infectious disease caused by bioweapons. Now vaccines are available for some 

bacterial bioweapons such as Bacillus anthracis, Francisella tularensis and Yesinia pestis. 

But these vaccines are not highly effective and are having side-effects. However, these 

vaccines are administered to frontlines workers such as military, doctors and other people in 

an eminent war like situation. The major global viral diseases prevented through vaccines are 

adenovirus-based diseases, hepatitis A, hepatitis B, human papillomavirus, influenza, 
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Japanese encephalitis, measles, mumps, polio, rabies, rotavirus diarrhea, rubella, smallpox, 

tick-borne encephalitis, Varicella zoster, yellow fever. Similarly, important global bacterial 

diseases prevented or partly mitigated through vaccines are cholera, diphtheria, 

meningococcal meningitis, pneumococcal pneumonia, typhoid fever, tuberculosis, tetanus, 

Haemophilus influenzae and plague (Koff et al., 2013). Currently, more than two thousand 

(2162) licensed vaccines are available against 124 diseases. These vaccines are against 9 

Gram-positive bacteria, 35 Gram-negative bacteria, 72 viruses, 8 parasites and cancer 

(http://www.violinet.org) (Xiang et al., 2008).  

  

Table 1.2: Benefits disease eradication or control by vaccination in terms of annual life years 

saved (LYS) and disability-adjusted life years saved (DALYs) (Ehreth, 2003) 

S. No. Disease LYS DALY 

1. Smallpox 5,000,000 NA 

2. Polio 35,750,000 1,725,000 

3. Measles 71,500,000 29,838,000 

4. Tetanus 56,030,000 12,020,000 

 

1.3 Types of vaccines 

First successful vaccine was the live smallpox vaccine and currently various types of 

vaccines are used against different infectious diseases. Vaccines in use are categorized as live 

attenuated-, inactivated-, subunit-, conjugate- and toxoid-vaccines but a few types of vaccines 

are still in research or evaluation stages, like DNA vaccines, recombinant vector based 

vaccines, peptide-based (epitope) vaccines, etc. These distinctive types of vaccines also differ 

in terms of their diverse potential for protections and safety issues. 

 

1.3.1 Live attenuated vaccines (LAVs) 

A live-attenuated vaccine (LAV) is produced by reducing the virulence of a microbe, but 

still keeping it live. In attenuation process, the microbe (the infectious agent) is altered in a 

manner so that it becomes less or non-virulent, thereby not causing any diseases in host but 

still it preserves the antigenic elements to produce immune response.  LAV is the closest 

thing to a natural infection as compare to other types of vaccines.  This kind of vaccine elicits 

strong humoral as well as cellular immune responses and generally provides lifelong 

immunity with only few vaccinations. Although LAV has advantages over other types of 
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vaccines as it is more natural but safety issues are associated with it. These LAVs are not 

administered to immune-compromised individuals. Sometime emergence of novel pathogenic 

strains through mutation or any other means that has risk to regain virulence of microbe 

makes the LAV ineffective. Other limitations with LAVs are storage and transportation that 

generally require refrigerated condition to retain potency of vaccine. Overseas shipping and 

storage especially to developing countries where health system lacks refrigeration facility is 

still the issues associated with use of this kind of vaccine. The LAVs against several viruses 

are developed through cultivation of viruses in different types of cultures, and continuous 

development of new cultures resulted in decrease of the virulence of the viruses. Small 

genome size makes virus the simpler microbe so researcher can easily control the 

characteristic of viruses for LAVs as compared to bacteria. Currently, LAVs are available 

against diseases such as measles, mumps, rubella, influenza, chicken pox, polio, diarrhea 

caused by rotavirus, yellow fever, rabies, varicella, etc.  

 

1.3.2 Inactivated vaccines 

Inactivated vaccine is produced by killing of the disease causing organism through 

chemical, temperature, or radiations. These vaccines are safer than live attenuated vaccines 

(LAVs). These vaccines are killed microbes therefore reversion of virulence is not possible. 

Killed vaccines generally do not require refrigeration so these types of vaccines can be stored 

and transported in freezed/dried form. Drawback with these inactivated vaccines is that they 

produce weaker immune response as compared to LAVs and require booster doses time to 

time.  

 

1.3.3 Subunit vaccines  

Subunit vaccines contain only the part of microbe (antigen) which can provide immune 

response in host. Sometime subunit vaccine contains only epitopes (only part of antigens 

which recognized by antibodies or T-cell receptors). Adverse reactions against subunit 

vaccine are low because it contains only part of pathogen important for immunity instead of 

all constituents of microbe. Finding antigen from microbe which can be used as subunit 

vaccine requires several expertise (microbiology and immunology) and resources (cost and 

time). If antigen is known for subunit vaccine then manufacturing of antigen may be done 

through recombinant DNA technology (RDT), and the developed vaccine is known as 

recombinant subunit vaccine. This method has been used to develop vaccine against Hepatitis 
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B virus (Rappuoli, 2007). Conventional methods used for finding antigens had its limitation, 

and these methods also required huge resources and time. Computational methods have been 

assisting subunit vaccine development by increasing its effectiveness as well as reducing 

required resources and time. Still more accurate computational methods are required to boost 

subunit vaccine development (Rappuoli, 2000).  

 

1.3.4 Conjugate vaccines  

Conjugate vaccines have both polysaccharide and protein as their constituents which are 

covalently attached. Conjugate vaccine is special type of subunit vaccine which has potential 

to provide both T-cell and antibody mediated immune responses. Several pathogenic bacteria 

have outer coating formed by polysaccharides which are immunogenic. These 

polysaccharides in conjugation with protein are used to develop such vaccines which are 

expected to provide better immune responses. Vaccines that protect against Haemophilus 

influenzae type B (Hib) and meningococcal disease (MCV4) are conjugate vaccines (Einhorn 

et al., 1986).  

 

1.3.5 Toxoid vaccines 

Toxoid vaccines are the inactivated toxins of microbes. In case of some microbes, secreted 

toxins or harmful chemical are the major factors for illness, therefore, toxoid vaccines are 

used to get protection from these toxins which are secreted by microbes. These vaccines are 

generally prepared through inactivation of toxins using formalin or any other means. 

Generally, toxoid vaccines stimulate antibodies as their immunogenic units are similar to 

natural toxins. Since the structural part of toxin important for immunogenic response is 

preserved during toxoid preparation, administration of toxoid vaccines assists immune system 

in learning how to handle the natural toxin. Vaccine used against diphtheria and tetanus are 

toxoid vaccines (http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ 

ucm094012.htm).  

 

1.3.6 DNA vaccines 

DNA vaccines are genetically engineered DNA to produce protective immunological 

response. A small and circular DNA (like plasmid) is genetically engineered to produce 

specific antigenic proteins from a particular pathogen. When DNA vaccines are introduced to 

host, some of the host cells take up that DNA vaccine and use host cell machinery to 
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synthesize the pathogen's proteins which are subsequently secreted and/or displayed on the 

surface of host cell for immune recognition and responses. DNA vaccines can provide strong 

antibody response to secreted pathogen’s proteins (antigens) as well as strong cellular 

immune response to antigen displayed on cell surface. There is no risk of disease with DNA 

vaccines because these types of vaccines contain only few proteins of pathogen in their DNA. 

 

1.3.7 Recombinant vector vaccines 

These are DNA vaccines which use bacterial or viral vector to introduce microbe’s DNA 

(codes for antigen) to host. In nature, viruses are known to inject their DNA into the host cell 

so the virus DNA containing gene(s) (other than the virus genes) of microbe’s protein(s) 

which can be used as vector. Bacteria can also be used as vector and in that case the 

attenuated or harmless bacteria are inserted with DNA from pathogenic microbes. Bacterial 

vector displays pathogenic microbe’s proteins from inserted DNA on their surface which 

induce immune responses. Both viral and bacterial recombinant vector vaccines such as 

recombinant attenuated Salmonella vaccine vectors (Curtiss III et al., 2010), recombinant 

poxviruses as mucosal vaccine vectors (Gherardi and Esteban, 2005) and recombinant vectors 

as influenza vaccines (Kopecky-Bromberg and Palese, 2009) are in research stages of vaccine 

development. Similarly, this method is under process for the development of vaccines against 

several challenging diseases including AIDS, rabies and influenza (Chapman et al., 2010; 

Chen et al., 2013; Sedova et al., 2012). These recombinant vector vaccines are similar to 

DNA vaccines except for use of recombinant virus or bacteria as vector. Although these 

vaccines are still in different stages of evaluation (clinical trials), but current researches have 

highlighted their potential in inducing both humoral and cellular immune responses (Barouch 

et al., 2013). 

 

1.3.8 Virus-like particles (VLPs) vaccines 

Virus-like particles (VLPs) are multi-proteins which contain organization and 

conformation like native viruses without viral genome. VLPs contain repetitive viral surface 

proteins which exhibit conformational viral epitopes that can produce both T-cell and B-cell 

immune responses (Roldão et al., 2010; Jeong et al., 2004). VLPs are helpful means for the 

development of safer vaccines alternative to attenuated viruses because they lack genetic 

material. Hepatitis B virus surface antigen (HBsAg) VLP was the first licensed VLP vaccine 

(Michel et al., 2010). Currently, several other virus pathogens including hepatitis C virus, 
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chikungunya virus, influenza virus, ebola virus (EBOV), marburg virus (MARV) and HIV 

being targeted through VLPs vaccines are in research stages (Akahata et al., 2010; Jeong et 

al., 2004; Doan et al., 2005; Quan et al., 2007; Warfield et al., 2011). 

 

1.4 Gaps and bridges in vaccine design 

Although vaccines are available against diseases caused by sizeable number of pathogenic 

organisms but preventive measures (vaccines) are not available or ineffective against 

infection caused by large numbers of pathogenic microorganisms. Major global diseases for 

which vaccines are neither effective nor available include bacterial diseases (tuberculosis, 

urinary tract infections, campylobacter, chlamydia, gastrointestinal ulcers (Helicobacter 

pylori), shigella, streptococcus group A and streptococcus group B), viral diseases (dengue, 

influenza (universal influenza vaccine not available), cytomegalovirus, epstein-Barr 

(mononucleosis), hepatitis C, herpes Simplex, HIV, respiratory syncytial virus and 

rhinovirus) and parasite diseases (leishmaniasis, malaria, and schistosomiasis) (Koff et al., 

2013). These diseases exert great challenge for healthcare researcher to design effective 

vaccines against them. Potential use of infectious diseases in bioweapon (BW) attack also 

raises the concern for effective vaccines against the bioweapons. Intelligence estimated that 

BW threat is greater than the nuclear attack because of the ease in dissemination of deadly 

pathogens (D'Agostino and Martin, 2009). On other hand, there are no vaccines against BWs 

such as Brucella, Salmonella and Burkholderia infections. Although vaccines are available 

for some bioweapon bacteria (BWB) but they have their limitations. Anthrax vaccines have 

serious side effects and those vaccines required yearly boosters (Weiss et al., 2007). Vaccine 

against Francisella tularensis is not fully licensed and data about efficacy of plague vaccine 

is not available (Jefferson et al., 1998).  

Emergence of new and old virulent pathogenic organisms and acquisition of drug 

resistance by pathogens along with the threat on potential use of bioweapon (BW) calls for 

new and effective vaccines to prevent life-threatening diseases. But there were two major 

gaps in knowledge related to vaccine design: antigen variability and T cell immunity (types 

of immune response) (Figure 1.1). The role of these gaps in vaccine design can be delineated 

from graph between antigenic variability and types of immune response (Rappuoli, 2007). 

These gaps hindered the development of effective vaccines against the challenging diseases 

(Rappuoli, 2007). Different colours in graph indicated the vaccine status of pathogen: red 

colour portion of graph designates the pathogens for which licensed vaccines are available; 
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the orange area in the graph represents the pathogens for which vaccine is not available but 

discovery of vaccine against these pathogens is not challenging and RV technique can used to 

discover vaccines; and yellow colour segment covers the pathogen against which vaccine 

design is challenging, and structural vaccinology and immune-modeling are essential to 

develop vaccines against such diseases. Till date, the licensed vaccines either have no or less 

antigenic variability and they are also controlled mainly through antibody-mediated immune 

responses of host (Figure 1.1 (red region)). While pathogen against which vaccine design is 

challenging and no vaccines (Figure 1.1 (yellow region)) are available having high antigenic 

variability and they also require T-cell immune response for protection. Considering the 

graph, though antigenic variability can be addressed through the search in whole repertoire of 

protective antigenic proteins from a genomes but knowledge gap in T-cell immunity is 

difficult to measure. Discovery of antigen providing appropriate T-cell immune response 

could bridge the second knowledge gap in vaccine design (Rappuoli, 2007).  

Finding protective antigens through whole genomes is termed as reverse vaccinology (RV) 

which is considered as first bridge for the knowledge gap in vaccine design. RV has provided 

great flexibility to explore whole proteome of pathogens without even culturing them. This 

technique had justified its importance in very first occasion when attempts to develop 

vaccines against Neisseria meningitidis serogroup B were failed due cross reactivity of 

capsular polysaccharide based vaccine with human tissues (Häyrinen et al., 1995) and the 

variability of outer membrane proteins (Poolman, 1995). The immense potential of RV 

method was widely recognized and through this techniques dozens of human and animal 

pathogens including Neisseria meningitidis (Pizza et al., 2000), Helicobacter pylori 

(Chakravarti et al., 2000), Streptococcus pneumoniae (Wizemann et al., 2001), 

Porphyromonas gingivalis (Ross et al., 2001), Chlamydia pneumoniae (Montigiani et al., 

2002), Bacillus anthracis (Ariel et al., 2002), Leptospira interrogans (Yang et al., 2006), 

Streptococcus suis (Liu et al., 2009), extraintestinal pathogenic Escherichia coli (Moriel et 

al., 2010), Echinococcus granulosus (Gan et al., 2010), Brachyspira hyodysenteriae (Gan et 

al., 2010), Cryptosporidium species (Manque et al., 2011), Haemophilus parasuis (Hong et 

al., 2011), Leptospira borgpetersenii (Murray et al., 2012), Pasteurella multocida (Hatfaludi 

et al., 2012), Edwardsiella tarda (Zhang et al., 2012a), Leishmania spp (John et al., 2012), 

Leptospira serovars (Umamaheswari et al., 2012), Ehrlichia ruminantium (Liebenberg et al., 

2012), Vibrio cholera (Barh et al., 2013), Staphylococcus aureus (Oprea and Antohe, 2013) 

and Brucella melitensis (Gomez et al., 2013) were targeted. 



14 

 

The second bridge in vaccine design is the antigenic variability which is more prominent 

in case of viruses. The variability of antigen can be addressed through using conserved 

vaccine candidates which can be determined from genome sequences of different strains of a 

pathogen (Figure 1.1) (Rappuoli, 2007). As emanated from Figure 1.1, immunoinformatics 

and comparative genomics are essential to develop vaccines against highly variable 

pathogenic microbes. In case of viruses, the variation in sequences and structures of surface 

proteins is the main stumbling block in vaccine design. High variability is one of the most 

important reasons behind non-availability or less effective universal vaccines for several 

viruses such as influenza A virus, HIV, rotavirus, etc. (Fiore et al., 2009; Johnston and Fauci, 

2008; Kirkwood, 2010). The challenge before scientific community is to develop universal 

influenza vaccine (UIV) which overcomes the problems of global influenza strains 

information collection in each season for vaccine formulation. Sometime the virus uses 

genetic shift and drift to produce novel pandemic or endemic strains which results in 

significant number of deaths despite seasonal updated vaccines. Use of functionally important 

conserved antigenic peptides (B-cell and T-cell epitopes) is expected to ameliorate the impact 

of pandemic and endemic strains. Computational resources assist to bridge the gaps involved 

in vaccine design. 
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Figure 1.1: Graphical representation of antigen variability and immune response against 

pathogens. Current vaccines are mostly in the upper right red quadrant. Reverse 

vaccinology, which finds antigens able to induce protective antibodies, may 

extend considerably the area covered by vaccines (orange segment). The most 

difficult challenges are in the lower and left part of the graph, where antigens 

are extremely variable and protection relies only on T cells (Rappuoli, 2007). 

 

Vaccines are developed mainly against those pathogens which are entirely prevented 

through suitable amounts of immunoglobulin antibodies in the serum. Protection of vaccine 

through T-cell response has strong theoretical background but there is no method to quantify 

protection of vaccine other than antibodies. For example, Sabin oral polio vaccine induces 

concentrations of serum antibodies that are lower than those induced by the killed Salk 

vaccine (Rappuoli, 2007). Effectiveness of Sabin vaccine is also attributed to protection 

beyond antibodies but we do not know how to measure that extra protection. There are other 

examples where T cells are likely to contribute to immune protection. Therefore, 

understanding of T-cell immunity may lead to the eradication of or protection from the most 

difficult diseases such as HIV, cancer and TB as presented in quadrant with yellow in Figure 

1.1 (Rappuoli, 2007). 
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1.5 Web resources for vaccine design 

High throughput experiments in molecular biology and immunology have been producing 

escalating quantity of data. Computational resources are necessary to store and analyze these 

huge amounts of biological data. To consider breadth and importance of topics in 

immunology, a new branch ‘immunoinformatics’ has evolved to assist vaccine design and 

development (Cohen et al., 2010). This branch uses genomics, proteomics, immunological 

methods, mathematics, information technology and computer science to bridge immunology 

and informatics (Petrovsky et al., 2003). Several databases primarily related to immunology 

and pathogen, web servers, and tools were developed to facilitate vaccine design. Immune 

epitope database (IEDB), The International ImMunoGeneTics Information System (IMGT) 

and Immuno Polymorphism Database (IPD) are the few most important and highly integrated 

immunoinformatics resources used for immunology and vaccine design research.  

 

1.5.1 Immune epitope Database (IEDB) 

IEDB is the web portal containing data related to antibodies and epitopes for humans, non-

human primates, rodents, and other animal species. It also has workbench and tools for 

analysis. The main classes of information within IEDB and their association which used in 

implementation of web resources are represented in Figure 1.2. Currently IEDB stores 

104443 peptidic epitopes, 1931 non-peptidic epitopes, 208773 T-Cell Assays data, 161148 B- 

Cell Assays data, 8106 MHC ligand elution assays, 247807 MHC binding assays, 653 

restricting MHC alleles, epitopes are form 3054 source organisms and 15196 references are 

associated with the existing data. 

IEDB also has collections of several computational tools which assist vaccine design. 

These tools are available in three broad categories: T-cell tools, B-cell tools and analysis 

tools.  T-cell prediction tools include peptide binding to MHC class I molecules: These tools 

take an amino acid sequence or set of sequences as input and determine each subsequence's 

ability for binding to specific MHC class I molecule. Similarly, T-cell prediction tools bind to 

MHC class II molecules: These types of tools employ different computational methods to 

predict MHC Class II epitopes, including a consensus approach which combines NN-align, 

SMM-align and combinatorial library methods. T cell epitopes - processing prediction tools: 

These tools predict epitope candidates based upon the processing of peptides in cell and the 

used processing techniques are proteosomal cleavage, TAP transport, MHC binding. T cell 

Epitopes - immunogenicity prediction tools: This tool predicts the relative ability of a 
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peptide/MHC complex to elicit an immune response. B-cell tools include linear B-cell 

epitope prediction tools, discontinuous B-cell epitope prediction tools and epitope prediction 

based upon structural protrusion tools. Analysis tools include population coverage, epitope 

conservancy analysis, epitope cluster analysis and homology mapping tools. All these tools 

are available at: (http://tools.immuneepitope.org/main/) (Vita et al., 2010). 

 

Figure 1.2: The main classes and their association implemented in IEDB web resource (Vita 

et al., 2010). 

 

1.5.2 International ImMunoGeneTics Information System (IMGT) 

IMGT resource is the global reference in immunogenetics and immunoinformatics with a 

high-quality integrated knowledge resource specialized in the immunoglobulins (IGs) 

antibodies, T cell receptors (TR), major histocompatibility complex (MHC) of human and 

other vertebrate species, immunoglobulin superfamily (IgSF), MH superfamily (MhSF) and 

related proteins of the immune system (RPI) of vertebrates and invertebrates. This resource 

also provides a common access to sequence, genome and structure of Immunogenetics data. 

This organization works in collaboration with EBI DDBJ and NCBI, and has sequence 

databases, genome database, structure database, monoclonal antibodies database, web 
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resources and interactive tools. The complete overview of IMGT is provided in Figure 1.3. 

Currently the IMGT consists of seven databases: IMGT/LIGM-DB contains nucleotide 

sequences of IG and TR from 335 species (172,350 entries); IMGT/MH-DB contains 

sequences of the human MHC (HLA); IMGT/PRIMER-DB contains oligonucleotides 

(primers) of IG and TR from 11 species (1,864 entries); IMGT/CLL-DB contains IG 

sequences from chronic lymphocytic leukemia; IMGT/GENE-DB contains international 

nomenclature for IG and TR genes from human, mouse, rat and rabbit (3,107 genes, 4,722 

alleles); IMGT/3Dstructure-DB and IMGT/2Dstructure-DB contains 3D structures of IG 

antibodies, TR, MH and RPI (2,802 entries); and IMGT/mAb-DB contains monoclonal 

antibodies (IG, mAb) and fusion proteins for immune applications (FPIA) (456 entries). 

IMGT resource also hosts tools for analysis in stored or user given data.  

The IMGT contains tools for analysis: IMGT/V-QUEST software performs sequence 

alignment for IG and TR; IMGT/HighV-QUEST is used for high-throughput analysis on next 

generation sequencing (NGS) data of IG and TR; IMGT/JunctionAnalysis is used for human 

and mouse IG and TR junction analysis; IMGT/Allele-Align is used for alignment two 

sequences; IMGT/PhyloGene is used for phylogenetic analysis of IMGT standardized 

reference sequences; IMGT/DomainDisplay is used for the display of amino acid sequences 

from the IMGT domain directory; IMGT/GeneInfo provides information on data resulting 

from the mechanisms of V-J and V-D-J gene rearrangements in the T cell receptor (TR) loci 

of Homo sapiens and Mus musculus; IMGT/GeneFrequency provides a graphical 

representation of the numbers of cDNA and genomic IMGT/LIGMDB sequences containing 

the rearranged immunoglobulin (IG) and T cell receptor (TR) genes; and 

MGT/DomainGapAlign is used to create gaps in user provided amino acid sequence 

according to the IMGT unique numbering, for V-REGION or C-DOMAIN.  IMGT/Collier-

de-Perles is used to draw four types of domains: variable (V) domain, constant (C) domain, 

scavenger (S) domain of the immunoglobulin (IG), T cell receptor (TR) and other members 

of the immunoglobulin superfamily (IgSF), and groove (G) domain of the major 

histocompatibility complex (MHC) and other members of the MHC superfamily (MhcSF). 

IMGT/DomainSuperimpose is used for superimposing two IMGT domain 3D structures, and 

IMGT/StructuralQuery is used for three-dimensional structure analysis including chain 

details and contact analysis at different levels. 
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Figure 1.3: Overview of IMGT information system (Lefranc et al., 2005). 

 

1.5.3 Immuno Polymorphism Database (IPD) 

IPD is a set of databases and tools related to immunology which are compiled to study 

polymorphic genes in the immune system (Robinson et al., 2013). IPD currently consists of 

four databases: IPD-KIR contains the allelic sequences of killer-cell immunoglobulin-like 

receptors; IPD-MHC contains sequences of the major histocompatibility complex of different 

species; IPD-HPA contains alloantigens expressed only on platelets; and IPD-ESTDAB 

provides access to the European Searchable Tumour Cell-Line Database which is a cell bank 

of immunologically characterized melanoma cell lines. 



Figure 1.4: Front page of IPD database

 

Other web resources composed of mainly data

design are discussed in sub-sections.

 

1.5.4 Databases for vaccine design

Databases accessible for vaccine design

antigen databases, epitope database

and miscellaneous databases. Antigen databases having information about different types of  

antigens such as peptide antigen (Peptide Antigen Database), 

(PolysachDB), human platelet ant

TANTIGEN), variation in antigens (varDB)

antigens databases are provided in 

information of epitopes such as 

the antibodies that interact with them (Epitome),

SEDB), all B-cell and T-cell epitopes (Immune Epitope Database) and 3D structure of 

epitopes (IEDB-3D). Details of 

databases contain information about MHC molecules such as 

different species (IPD-MHC), sequences of the human major

nomenclature (IMGT/HLA), clinical data related to M

non-binding peptides and MHCPEP
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Front page of IPD database (Robinson et al., 2013) 

Other web resources composed of mainly databases and computational tools for vaccines 

sections. 

Databases for vaccine design 

accessible for vaccine design can be grouped under different categories such as 

antigen databases, epitope databases, hapten databases, MHC databases, interaction databases

. Antigen databases having information about different types of  

antigens such as peptide antigen (Peptide Antigen Database), polysaccharide

(PolysachDB), human platelet antigen (IPD-HPA), tumor related antigen (HPTAA and 

TANTIGEN), variation in antigens (varDB) and protective antigen (Protegen). Details of 

abases are provided in Table 1.3. Epitope databases are categorized as 

 B-cell epitopes (BCIpep), all known antigenic residues and 

the antibodies that interact with them (Epitome), discontinuous or structural epitopes (CED 

cell epitopes (Immune Epitope Database) and 3D structure of 

). Details of such epitope databases are provided in Table 1.4

information about MHC molecules such as sequences of the 

sequences of the human major histocompatibility complex and 

clinical data related to MHC (dbMHC), and MHC binding and 

binding peptides and MHCPEP (MHCBN). Details of MHC databases are provided in 

 

bases and computational tools for vaccines 

can be grouped under different categories such as 

interaction databases 

. Antigen databases having information about different types of  

polysaccharide antigen 

HPA), tumor related antigen (HPTAA and 

protective antigen (Protegen). Details of 

databases are categorized as under 

all known antigenic residues and 

discontinuous or structural epitopes (CED or 

cell epitopes (Immune Epitope Database) and 3D structure of 

ble 1.4. MHC 

sequences of the MHC from 

histocompatibility complex and 

MHC binding and 

. Details of MHC databases are provided in 
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Table 1.5. Hapten databases are having comprehensive information about the hapten 

molecule, ways to raise antibodies (HaptenDB) and 2D/3D structure of hapten 

(SuperHapten). Details of hapten databases are provided in Table 1.6. Interaction databases 

possess information related to interactions of immunological molecules such as MHC-peptide 

interaction database (MPID-T2), interactions and signaling pathways involved in the innate 

immune response (InnateDB) and the B-cell epitope interaction database (BEID). Details of 

interaction databases are provided in Table 1.7. Miscellaneous (other relevant) databases 

having information such as expression in macrophages (GPX-Macrophage Expression Atlas), 

X-linked severe combined immunodeficiency mutations (IL2Rgbase), information of genes 

(VirmugenDB) that encode for a virulent factor of a pathogen and knocking of these genes 

can be used to make a live attenuated vaccines, etc. Details of miscellaneous databases are 

provided in Table 1.8. 

 

Table 1.3: Web resources for antigens 

Name URL Description 

AntiJen 

http://www.ddg-

pharmfac.net/antijen/AntiJen/ant

ijenhomepage.htm 

AntiJen v2.0, is a database containing 

quantitative binding data for peptides 

binding to MHC Ligand, TCR-MHC 

complexes, T cell epitope molecules, TAP, B 

cell epitope molecules and immunological 

Protein-Protein interactions. Most recently, 

AntiJen has included Peptide Library, Copy 

Numbers and Diffusion Coefficient data. All 

entries are from published experimentally 

determined data. The database currently 

holds over 24,000 entries (McSparron et al., 

2003). 

AntigenDB 
http://www.imtech.res.in/raghav

a/antigendb/ 

Database 'AntigenDB' provides 

comprehensive information about a wide 

range of experimentally validated antigens 

(Ansari et al., 2010). 
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Protegen http://www.violinet.org/protegen 

This database stores experimentally validated 

protective antigens from archaea, 

prokaryotes, eukaryotes and mammals 

including humans. This database also 

contains analysis tools (Yang et al., 2011). 

Peptide 

Antigen 

Database 

http://www.proteinlounge.com/b

iosyn/peptide_overview.asp 

Protein Lounge has created the first complete 

peptide-antigen database. The database has 

also been subdivided into folders for peptide 

regions for kinases, phosphatases, 

transcription factors and disease genes. 

PolysacDB 

 

http://crdd.osdd.net/raghava/poly

sacdb/ 

A comprehensive database of microbial 

polysaccharide antigens and their antibodies 

(Aithal et al., 2012). 

TANTIGEN http://cvc.dfci.harvard.edu/tadb/ 

Tumor T cell antigen database is a data 

source and analysis platform for cancer 

vaccine target discovery focusing on human 

tumor antigens that contain HLA ligands and 

T cell epitopes (Van den Eynde and van der 

Bruggen, 1997). 

HPTAA http://www.bioinfo.org.cn/hptaa/ 

HPTAA is a database of potential tumor-

associated antigens that uses expression data 

from various expression platforms, including 

carefully chosen publicly available 

microarray expression data, GEO, SAGE and 

Unigene expression data (Wang et al., 2006). 

varDB http://www.vardb.org/vardb/ 

varDB was developed to serve as centralized 

database of antigenically variable protein 

families from a range of pathogenic 

organisms (Hayes et al., 2008). 
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IPD-HPA http://www.ebi.ac.uk/ipd/hpa/ 

This database provides a centralized 

repository for the data which define the 

human platelet antigens (HPA). 

Alloantibodies against human platelet 

antigens are involved in neonatal alloimmune 

thrombocytopenia, post-transfusion purpura 

and refractoriness to random donor platelets 

(Robinson et al., 2005). 

 

Table 1.4: Web resources for epitopes 

Name URL Description 

The Immune 

Epitope 

Database 

(IEDB) 

http://www.iedb.org/ 

The immune epitope database (IEDB, 

www.iedb.org), provides a catalog of 

experimentally characterized B- and T-cell 

epitopes, as well as data on MHC binding 

and MHC ligand elution experiments. The 

database represents the molecular structures 

recognized by adaptive immune receptors 

and the experimental contexts in which 

these molecules were determined to be 

immune epitopes. Epitopes recognized in 

humans, non-human primates, rodents, pigs, 

cats and all other tested species are included. 

Both positive and negative experimental 

results are captured. 

IEDB-3D 
http://www.iedb.org/bb_struc

ture.php 

Structural data within the Immune Epitope 

Database. The B Cell, T Cell, and MHC 

Binding peptides are organized by the 

organism that is the source of the antibody, 

T Cell, and MHC molecule, respectively. 

Currently it has more than 1000 distinct 

molecular structures (Vita et al., 2010). 
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SEDB http://sedb.bicpu.edu.in/ 

The SEDB (structural epitope database) is 

an open-access database for describing the 

three-dimensional structure of epitope 

containing proteins and its intermolecular 

contact information between antigen and 

antibody. It also summarizes the source 

information, experimental details used to 

determine immune responseand information 

on epitope such as sequence and 

visualization of epitope (Premendu, 2012). 

Bcipep 
http://bioinformatics.uams.ed

u/mirror/bcipep/ 

A database of immunodominant B cell 

epitopes (Saha et al., 2005). 

Epitome 
https://rostlab.org/services/ep

itome/ 

This is a database of all known antigenic 

residues and the antibodies that interact with 

those residues, including a detailed 

description of residues involved in the 

interactions and their sequence / structure 

environments. Additionally, interactions can 

be visualized using a visualization interface, 

Jmol. 

CED  http://immunet.cn/ced/ 

Conformational epitope database (CED) 

provides a collection of conformational 

epitopes producing antibody immune 

response and related information including 

the immunological property of the epitope, 

the residue make up and location of the 

epitope, and the source antigen and 

corresponding antibody of the epitope 

(Huang and Honda, 2006). 
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Table 1.5: Web resources for major histocompatibility complex (MHC) 

Name URL Description 

dbMHC 
http://www.ncbi.nlm.nih.gov

/gv/mhc/main.fcgi?cmd=init 

This database provides an open and publicly 

accessible platform for DNA and clinical 

data related to the human major 

histocompatibility complex (MHC). 

MHCBN 
http://www.imtech.res.in/rag

hava/mhcbn/ 

This is a curated database consisting of 

detailed information about major 

histocompatibility complex (MHC) binding, 

non-binding peptides and T-cell epitopes. 

The version 4.0 of database also provides 

information about peptides interacting with 

TAP and possibility of peptide binding 

(Bhasin et al., 2003). 

MHCPEP 
http://wehih.wehi.edu.au/mh

cpep/ 

It is a curated database comprising over 

4000 peptide sequences known to bind 

MHC molecules. Entries are compiled from 

published reports as well as from direct 

submissions of experimental data (Brusic et 

al., 1998). 

IMGT/HLA 
http://www.ebi.ac.uk/ipd/img

t/hla/ 

This is a specialist database for providing 

sequences of the human major 

histocompatibility complex (hMHC) and 

includes the official sequences for the WHO 

Nomenclature Committee for Factors of the 

HLA System. This database is part of the 

international ImMunoGeneTics project 

(IMGT) (Robinson et al., 2003). 

IPD-MHC 
http://www.ebi.ac.uk/ipd/mh

c/ 

This database provides a centralized 

repository for sequences of the major 

histocompatibility complex (MHC) from a 

number of different species. Through a 



26 

 

number of international collaborations, the 

IPD is able to provide the MHC sequences 

from different species. The sequences 

provided by each group are curated by 

experts in the field and then submitted to the 

central database (Robinson et al., 2005). 

 

Table 1.6: Web resources for hapten 

Name URL Description 

SuperHapten 
http://bioinformatics.charit

e.de/superhapten/ 

SuperHapten is a manually curated hapten 

database integrating information from 

literature and web resources. The current 

version of the database compiles 2D/3D 

structures, physicochemical properties and 

references for about 7,500 haptens and 25,000 

synonyms (Günther et al., 2007). 

HaptenDB 
http://www.imtech.res.in/r

aghava/haptendb/ 

This is a database of haptens which provides 

comprehensive information about the hapten 

molecule (ways to raise antibodies against 

particular group of haptens), specificity and 

cross reactivity of raised antibody with related 

haptens) (Singh et al., 2006). 

 

Table 1.7: Web resources for Interactions in immunological molecules 

Name URL Description 

InnateDB http://www.innatedb.com/ 

InnateDB is a publicly available database of 

the genes, proteins, experimentally-verified 

interactions and signaling pathways involved 

in the innate immune response of humans, 

mice and bovines to microbial infection (Lynn 

et al., 2008). 

MPID-T2 http://biolinfo.org/mpid-t2/ The MHC-Peptide Interaction Database-TR 
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version 2 (MPID-T2) is a new generation 

database for sequence-structure-function 

information on T cell receptor/peptide/MHC 

interactions.  It contains all known crystal 

structures of TR/pMHC and pMHC complexes 

with emphasis on the structural 

characterization of these complexes (Khan et 

al., 2011). 

The B-Cell 

Epitope 

Interaction 

Database 

(BEID) 

http://datam.i2r.a-

star.edu.sg/BEID/ 

This is a new generation database for structure-

function information on B-cell epitope 

interactions. It contains structures of 

immunoglobulin (Ig)-antigen complexes with 

emphasis on the structural characterization of 

these complexes (Tong et al., 2008). 

 

Table 1.8: Miscellaneous databases in immunology 

Name URL Description 

IL2Rgbase 

http://www.ncbi.nlm.nih.g

ov/lovd/home.php?select_

db=IL2RG 

A database of human X-SCID mutations 

(IL2RGbase) has been assembled, and this 

article summarizes the first 136 entries from 

unrelated patients (Puck et al., 1996). 

VBASE2 http://www.vbase2.org/ 

It is an integrative database of germ-line V 

genes from the immunoglobulin loci of human 

and mouse. It presents V gene sequences from 

both EMBL database and Ensembl with the 

corresponding links to the source data (Retter et 

al., 2005). 

GPX-

Macrophage 

Expression 

Atlas 

http://gpxmea.gti.ed.ac.uk/ 

This macrophage expression atlas (database) 

provides expression profiles of macrophages 

challenged with a variety of pro-inflammatory, 

anti-inflammatory, benign and pathogen insults 

(Grimes et al., 2005). 



28 

 

DIGIT 
http://www.biocomputing.

it/digit4/ (not working) 

Database of ImmunoGlobulin sequences and 

Integrated Tools. It is an integrated resource 

storing sequences of annotated immunoglobulin 

variable domains and enriched with tools for 

searching and analyzing them. (Chailyan et al., 

2012). 

MUGEN 

Mouse 

Database 

(MMdb) 

http://www.mugen-

noe.org/database/ (not 

working) 

Murine models of immune processes and 

immunological diseases. MMdb's basic 

classification of models is based on three major 

research application categories: Models of 

Human Disease, Models of Immune Processes 

and Transgenic Tools. (Aidinis et al., 2008). 

VirmugenDB 
http://www.violinet.org/vir

mugendb/index.php4 

"Virmugen" is coined here to represent a gene 

that encodes for a virulent factor of a pathogen. 

It has already been proven regarding feasibility 

of making a live attenuated vaccine by 

knocking out this gene. Not all virulence 

factors can be used for vaccine development. 

Currently, VIOLIN includes 225 Virmugens 

that were verified to be valuable for vaccine 

development against 57 pathogens (Racz et al., 

2012).  

 

1.5.5 Computational tools for vaccine design 

The computational tools (implemented as web servers or standalone softwares) are 

required for analysis and predictions in immunological studies which is generally useful in 

vaccine design. Especially, computational tools used for vaccine candidate predictions are 

instrumental for design of efficient bench experiments which sometime assists to develop 

vaccine design pipelines (Wee et al., 2012). These tools are not only reducing time and cost 

associated with research experiments, but these computational methods are also helping to 

cross the obvious limitations of experimental research. According to applications, the 

immunoinformatics tools can be clustered into different categories such as antigen prediction, 

allergen prediction, T-cell epitopes prediction and B-cell epitopes predictions.  
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1.5.5.1 Antigen prediction tools 

Antigen prediction tools are ANTIGENpro, VaxiJen, new enhanced reverse vaccinology 

environment (NERVE) and Vaxign. ANTIGENpro predicts antigenic proteins while NERVE 

and VaxiJen predict protective antigenic proteins. Both VaxiJen and ANTIGENpro were 

based on machine leaning techniques: VaxiJen uses alignment independent method; 

discriminant analysis and partial least square (DA-PLS), for prediction of antigen 

(Doytchinova and Flower, 2007) whereas ANTIGENpro uses support vector machine 

classifier for prediction (Magnan et al., 2010). NERVE and Vaxign use reverse vaccinology 

(RV) principle for the prediction (He et al., 2010; Vivona et al., 2006). Details of antigen 

prediction tools are provided in Table 1.9.  

 

Table 1.9: Tools for antigenic protein prediction 

Name URL Description 

ANTIGENpro 
http://scratch.proteomics.i

cs.uci.edu/ 

This tool Predicts antigenicity through 

machine learning technique (Magnan et al., 

2010). 

NERVE 

 

http://www.bio.unipd.it/m

olbinfo/ 

This software predicts protein vaccine 

candidates through localization, number of 

transmembrane helices and adhesion likeliness 

(Vivona et al., 2006). 

VaxiJen 

http://www.ddg-

pharmfac.net/vaxijen/Vax

iJen/VaxiJen.html 

This web server predicts protective antigens 

and subunit vaccine candidates using 

discriminant analysis and partial least square 

(DA-PLS) methods (Doytchinova and Flower, 

2007). 

Vaxign 
http://www.violinet.org/v

axign/ 

This web resource is a vaccine target 

prediction and analysis system based on the 

principle of reverse vaccinology. Two 

programs exist in Vaxign: 1. ‘Vaxign Query’ 

provides pre-computed Vaxign results for user 

to explore and 2. ‘Dynamic Vaxign Analysis’ 
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can take input sequences from user and 

perform dynamic Vaxign execution, and have 

provision for result visualization (He et al., 

2010). 

 

1.5.5.2 Allergen prediction tools 

An allergen is a type of antigen which can produces an unusual vigorous immune 

response. Allergen stimulate type-I hypersensitivity reaction through Immunoglobulin E 

(IgE) responses and can causes allergy. World Health Organization (WHO) and the Food and 

Agriculture Organization (FAO) proposed guidelines to assess the potential allergencity of 

proteins (Saha and Raghava, 2006a). 

Allergen prediction tools are AllerHunter, AlgPred and EVALLER. The AllerHunter is 

available as web based application, and it predicts allergenicity and allergic cross-reactivity 

of proteins through SVM classifier (Muh et al., 2009). AlgPred uses different approaches 

such as presence of IgE epitopes, similarity with allergen peptides, motif search and machine 

learning technique for allergen prediction (Saha and Raghava, 2006a). EVALLER 

incorporates filtered length-adjusted allergen peptides (DFLAP) algorithm for allergen 

prediction (Barrio et al., 2007). Details of tools for allergen prediction are provided in Table 

1.10.  

 

Table 1.10: Tools for allergen prediction 

Name URL Description 

AllerHunter 
http://tiger.dbs.nus.edu.sg/

AllerHunter/ 

This web server predicts allergenicity and allergic 

cross-reactivity of proteins. It combines an 

iterative pairwise sequence similarity encoding 

scheme with SVM as the classification engine 

(Muh et al., 2009). 

AlgPred 
http://www.imtech.res.in/r

aghava/algpred/ 

This tool uses combination of approaches such as 

presence of IgE epitopes, similarity with allergen 

peptides, motif search and machine learning based 

classification for allergen prediction (Saha and 

Raghava, 2006a). 
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EVALLER 
http://bioinformatics.bmc.

uu.se/evaller.html 

This web server uses filtered length-adjusted 

allergen peptides (DFLAP) algorithm for allergen 

prediction (Barrio et al., 2007). 

 

1.5.5.3 Discontinuous B-cell epitopes prediction tools  

B-cell epitopes (BCEs) predictions are grouped into linear and discontinuous or structural 

epitopes prediction methods. Majority (90%) of the reported BCEs is discontinuous epitopes. 

Therefore, the most of the developed BCE prediction tools are discontinuous or structural B-

cell epitopes, and the name of such prediction tools are Ellipro, BEpro, DiscoTope 2.0, 

SEPPA, EPSVR, EPMeta, Bpredictor, EPITORIA, EPCES and CBTOPE. These tools 

generally require three dimensional structure of protein usually in PDB format as input. 

These tools are based on different methods. Machine learning techniques, like naive Bayes 

classifier (tool EPITORIA), random forests with a distance-based feature (Zhang et al., 

2011), and support vector machine classification (CBTOPE) (Ansari and Raghava, 2010) and 

SVM regression (EPSVR) (Liang et al., 2010) are used for prediction. Surface accessibility 

(estimated in terms of contact numbers) and a novel epitope propensity amino acid score used 

in DiscoTope 2.0 (Kringelum et al., 2012)., Thornton's method with a residue clustering 

algorithm used in Ellipro (Ponomarenko et al., 2008), Concept of ‘unit patch of residue 

triangle’ to describe the local spatial context in protein surface and clustering coefficient to 

describe the spatial compactness of surface residues were used in SEPPA (Sun et al., 2009) 

are implemented for predictions. Details of the tools for discontinuous B-cell epitopes 

prediction are provided in Table 1.11.  

 

Table 1.11: Tools for discontinuous or conformational B-cell epitope prediction 

Name URL Description 

Ellipro 

http://tools.immuneepi

tope.org/tools/ElliPro/i

edb_input 

This tool predicts linear and discontinuous antibody 

epitopes based on a protein antigen's 3D structure. It 

associates each predicted epitope with a score, defined 

as a PI (Protrusion Index) value averaged over epitope 

residues (Ponomarenko et al., 2008). 

 

BEpro 

 

http://pepito.proteomic

This web server (formerly known as PEPITO) is a 

predictor of discontinuous B-cell epitopes (BCEs). All 
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s.ics.uci.edu/ that is required is the tertiary structure of the antigen in 

the PDB format (Sweredoski and Baldi, 2008). 

CPC-BCE 
http://bcell.whu.edu.cn

/sequence_input.html 

Computational prediction of conformational B-cell 

epitopes from antigen primary structures by using 

ensemble learning (Zhang et al., 2012b) 

DiscoTope 

2.0 

http://www.cbs.dtu.dk/

services/DiscoTope/ 

This web server predicts discontinuous BCEs from 

protein three dimensional structures. The method 

utilizes calculation of surface accessibility (estimated 

in terms of contact numbers) and a novel epitope 

propensity amino acid score. The final scores are 

calculated by combining the propensity scores of 

residues in spatial proximity and the contact numbers 

(Kringelum et al., 2012). 

SEPPA 
http://lifecenter.sgst.cn

/seppa/ 

The SEPPA (Spatial Epitope Prediction of Protein 

Antigens) server is used as a tool for conformational 

B-cell epitope prediction. With 3D protein structure as 

input, each residue in the query protein will be given a 

score according to its neighborhood residues' 

information. Higher score corresponds to higher 

probability of the residue to be part of an epitope (Sun 

et al., 2009). 

EPSVR 
 

http://sysbio.unl.edu/E

PSVR/ 

Discontinuous antigenic epitopes prediction using 

support vector regression (Liang et al., 2010) 

EPMeta 
http://sysbio.unl.edu/E

PMeta/ 

A meta server for prediction of discontinuous 

antigenic epitopes. It combined EPSVR with five 

existing epitope prediction servers to construct 

EPMeta (Liang et al., 2010). 

Bpredictor 
 

http://code.google.com

/p/my-project-

bpredictor/downloads/

list 

A new method to identify the B-cell conformational 
epitopes from 3D structures by combining 
conventional and the proposed features. The random 
forest (RF) algorithm is used as the classification 
engine (Zhang et al., 2011).  

Epitopia http://epitopia.tau.ac.il This server implements a machine-learning algorithm 
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which was trained to discern antigenic features within 

a given protein. A special emphasis was put on the 

development of a user-friendly graphical interface for 

displaying the results (Rubinstein et al., 2009). 

EPCES 
http://sysbio.unl.edu/E

PCES/ 

Prediction of antigenic epitopes on protein surfaces by 

consensus scoring approach (Liang et al., 2009). 

CBTOPE 
http://www.imtech.res.

in/raghava/cbtope/ 

First method which can predict conformational B cell 

epitope without using structure or structure of 

homolog. It uses amino acid composition for SVM 

based prediction (Ansari and Raghava, 2010). 

 

1.5.5.4 Continuous B-cell epitope prediction tools 

Continuous or linear B-cell epitope predictions tools are Antibody Epitope Prediction, 

BCPREDS, BcePred, ABCpred, LBtope, BepiPred 1.0 Server, BayesB (version 1.0), 

COBEpro, and BEST. These prediction tools were based on different techniques: Artificial 

neural network (ANN) is used in ABCpred server (Saha and Raghava, 2006b); “Antibody 

Epitope Prediction” server in IEDB provides option to use different methods (Chou & 

Fasman beta-turn prediction, Emini surface accessibility prediction, Karplus & Schulz 

flexibility prediction, Kolaskar & Tongaonkar antigenicity, Parker hydrophilicity prediction 

and Bepipred linear epitope prediction); amino acid pair (AAP) immunogenicity scale is used 

in Bcepred (Saha and Raghava, 2004); BayesB methods uses Bayes feature extraction for 

encoding the feature vectors in the support vector machines algorithm to predict linear 

epitopes (Wee et al., 2010); COBEpro uses support vector machine initially and then 

calculates an epitopic propensity score for each residue based on the fragment predictions 

(Sweredoski and Baldi, 2009); BepiPred predicts linear B-cell epitopes using a combination 

of a hidden Markov model and a propensity scale method (Larsen et al., 2006); and BEST 

method is based on support vector machine (Gao et al., 2012). Details of tools for continuous 

or linear B-cell epitopes prediction are provided in Table 1.12.  
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Table 1.12: Tools for linear B-cell epitope prediction 

Name URL Description 

Antibody 

Epitope 

Prediction 

http://tools.immuneepitope.or

g/tools/bcell/iedb_input 

The following methods are provided for B-cell 

epitope predictions: 

1. Chou & Fasman beta-turn prediction 

2. Emini surface accessibility prediction 

3. Karplus & Schulz flexibility prediction 

4. Kolaskar & Tongaonkar antigenicity 

5. Parker hydrophilicity prediction 

6. Bepipred linear epitope prediction 

BCPREDS 
http://ailab.cs.iastate.edu/bcpr

eds/ 

BCPREDS (B-cell epitope prediction server) 

allows users to choose the method for predicting 

B-cell epitopes. The current implementation of 

BCPREDS allows the user to select among 

three prediction methods including our 

implementation of amino acid pair (AAP) 

method (EL‐Manzalawy et al., 2008). 

Bcepred 
www.imtech.res.in/raghava/b

cepred 

The aim of this server is to predict B cell 

epitope regions in an antigen sequence, using 

physico-chemical properties. This server has 

been tested on B cell epitope database, BCIPEP 

(www.imtech.res.in/raghava/bcipep).  It can 

also predict continuous B cell epitopes. 

Identified properties of B cell epitope include 

hydrophilicity, flexibility/mobility, 

accessibility, polarity, exposed surface and 

turns. Quantification of these properties is 

determined by assigning a value to each of the 

20 natural amino acids (Saha and Raghava, 

2004).  

ABCpred     
http://www.imtech.res.in/ragh

ava/abcpred/ 

The aim of ABCpred server is to predict B cell 

epitope(s) in an antigen sequence, using 
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artificial neural network. This is the first server 

developed based on recurrent neural network 

(machine learning technique) using fixed length 

patterns (Saha and Raghava, 2006b). 

LBtope 
http://crdd.osdd.net/raghava/l

btope/ 

This web server (LBtop) is used for predicting 

linear B-cell epitopes and experimentally 

validated non B-cell epitopes were used first 

time for developing prediction model. Several 

models were developed using various 

techniques (e.g. SVM, IBk) on a large dataset of 

B-cell epitopes (12063) and non-epitopes 

(20589) from IEDB database (Singh et al., 

2013). 

BepiPred 

1.0  

http://www.cbs.dtu.dk/service

s/BepiPred/ 

This server predicts the location of linear B-cell 

epitopes using a combination of a hidden 

Markov model and a propensity scale method 

(Larsen et al., 2006). 

BayesB 

 (V 1.0) 

http://immunopred.org/bayes

b/index.html 

This web server predicts linear B-cell epitopes 

on protein sequence. It employs the use of 

Bayes feature extraction for encoding the 

feature vectors in the support vector machines 

algorithm. The best prediction model was 

attained on 20-mer window (Wee et al., 2010). 

COBEpro 
http://scratch.proteomics.ics.u

ci.edu/ 

It is a novel two-step system for predicting 

continuous B-cell epitopes. Epitopic propensity 

scores are assigned to both standalone peptide 

fragments and residues within an antigen 

sequence. The support vector machine is used 

first to make predictions on short peptide 

fragments within the query antigen sequence 

and then epitopic propensity score is calculated 

for each residue based on the fragment 
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predictions (Sweredoski and Baldi, 2009). 

BEST 
http://biomine.ece.ualberta.ca

/BEST/ 

This method combines information derived 

from the chain, sequence conservation, 

similarity to known (training) epitopes, and 

predicted secondary structure and relative 

solvent accessibility to predict B-Cell epitopes 

from antigen sequences (BEST) (Gao et al., 

2012). 

 

1.5.5.5 T-cell epitope prediction tools 

T-cell epitopes prediction can be divided into MHC class I and MHC class II types and 

prediction accuracy of the former is better than the latter. Currently, different methods and 

algorithms are available for T-cell epitope predictions. The MHC binding prediction methods 

are mainly based on support vector machine (SVM). MHC2Pred is a SVM method to predict 

HLA-DRB1(*)0401 binding peptides in an antigen sequence (Bhasin and Raghava, 2004b). 

MHC class I binding and proteosomal cleavage is performed using artificial neural networks 

(ANNs), and TAP transport efficiency is predicted using weight matrix in NetCTL (Larsen et 

al., 2007). NetMHC, NetMHCpan and NetMHCII use the ANNs to predict binding of 

peptides with number of different HLA alleles (Hoof et al., 2009; Larsen et al., 2006; 

Lundegaard et al., 2008; Nielsen and Lund, 2009). NetMHCIIpan uses pan-specific method 

capable of predicting peptide binding to any HLA class II molecule with a defined protein 

sequence (Karosiene et al., 2013). SVMHC has MHC class I prediction which are based on 

support vector machines (SVMs) and known MHC-binding peptide (Dönnes and Elofsson, 

2002). SVRMHC utilizes quantitative method of modeling, the interaction between a peptide 

and a MHC molecule, based on the support vector machine regression (SVR) method (Wan 

et al., 2006). Physicochemical properties from known MHC class I binding peptides were 

used to design a support vector machine (SVM) based system in POPI (Tung and Ho, 2007). 

CTLpred method is based on elegant machine learning techniques like ANN and SVM 

(Bhasin and Raghava, 2004a). A neural network based MHC Class I binding peptide 

prediction method used in nHLAPred (Bhasin and Raghava, 2007). Linear programming 

method is employed for predicting HLA-A2 binding peptides in SMM. (Peters et al., 2003). 

Position specific scoring matrices (PSSMs) and proteosomal cleavage is used in RANKPEP 

(Reche et al., 2002) method. ProPred incorporates matrix based prediction algorithm, using 
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amino-acid/position coefficient table deduced from literature, for prediction of MHC Class I 

epitopes (Singh and Raghava, 2003). Details of tools for T-cell epitopes prediction are 

provided in Table 1.13. 

 

Table 1.13: Tools for T-cell epitope prediction 

Name URL Description 

NetMHC 

3.4 Server 

http://www.cbs.dtu.dk/s

ervices/NetMHC/ 

This web server is based on accurate approximation 

method for prediction of Class I MHC affinities for 

peptides of length 8, 10 and 11 using prediction 

tools trained on 9mers (Lundegaard et al., 2008). 

RANKPEP 
http://bio.dfci.harvard.e

du/RANKPEP/ 

This server predicts MHC I and MHC II peptide 

binders from protein sequence or sequence 

alignments using position specific scoring matrices 

(PSSMs). In addition, it predicts those MHC I 

ligands with a C-terminal end that is likely to be the 

result of proteasomal cleavage (Reche et al., 2002). 

NetCTL-1.2 
http://www.cbs.dtu.dk/s

ervices/NetCTL/ 

This server uses method that integrates prediction 

of peptide MHC class I binding, proteasomal C 

terminal cleavage and TAP transport efficiency. 

MHC class I binding and proteasomal cleavage is 

performed using artificial neural networks whereas 

TAP transport efficiency is predicted using weight 

matrix (Larsen et al., 2007). 

MHC2Pred 
http://www.imtech.res.i

n/raghava/mhc2pred/ 

SVM based method for predicting HLA-

DRB1(*)0401 binding peptides in an antigen 

sequence (Bhasin and Raghava, 2004b). 

PREDNOD 
http://antigen.i2r.a-

star.edu.sg/Ag7 

A prediction server for peptide binding to the H-

2g7 haplotype of the non-obese diabetic mouse 

(Rajapakse et al., 2006). 

SYFPEITHI 

http://www.syfpeithi.de

/bin/MHCServer.dll/Ep

itopePrediction.htm 

This web server predicts T-cell epitopes based on 

probability of being processed and presented 

(Rammensee et al., 1999). 
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NetMHCII 

2.2 Server  

http://www.cbs.dtu.dk/s

ervices/NetMHCII/ 

This web server predicts binding of peptides to 

HLA-DR, HLA-DQ, HLA-DP and mouse MHC 

class II alleles using artificial neural networks 

(Nielsen and Lund, 2009). 

NetMHCpa

n 2.8 Server 

http://www.cbs.dtu.dk/s

ervices/NetMHCpan/ 

This web server predicts binding of peptides to any 

known MHC molecule using ANNs. The method is 

trained on more than 150,000 quantitative binding 

data covering more than 150 different MHC 

molecules. Predictions can be made for HLA-A, B, 

C, E and G alleles, as well as for non-human 

primates, mouse, cattle and pig (Hoof et al., 2009). 

NetMHCIIp

an 3.0 

Server 

http://www.cbs.dtu.dk/s

ervices/NetMHCIIpan/ 

The NetMHCIIpan 3.0 server predicts binding of 

peptides to MHC Class II molecules. The 

predictions are available for all three human MHC 

class II isotypes, HLA-DR, HLA-DP and HLA-DQ, 

as well as mouse molecules (Karosiene et al., 

2013). 

ProPred 
http://www.imtech.res.i

n/raghava/propred/ 

The aim of this server is to predict MHC Class II 

binding regions in an antigen sequence using 

quantitative matrices (Singh and Raghava, 2001). 

ProPred-I 
www.imtech.res.in/rag

hava/propred1/ 

This web server is used for identifying the MHC 

Class I binding regions in antigens. It implements 

matrices for 47 MHC Class I alleles, proteosomal 

and immuneproteosomal models (Singh and 

Raghava, 2003). 

SVMHC 

http://abi.inf.uni-

tuebingen.de/Services/

SVMHC/information 

This web server is capable of predicting both MHC 

class I and MHC class II binding peptides. The 

graphical output also allows for simple 

identification of promiscuous epitopes (Dönnes and 

Elofsson, 2002). 

SVRMHC 
http://svrmhc.biolead.o

rg/ 

This web server predicts peptide-MHC binding 

affinities using SVRMHC models. Currently, 36 
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class I SVRMHC models and 6 class II SVRMHC 

models are hosted here (Wan et al., 2006). 

POPI2.0 
http://iclab.life.nctu.edu

.tw/POPI/ 

A web server for predicting immunogenicity of 

MHC class I and II binding peptides through 

mining of informative physicochemical properties 

(Tung and Ho, 2007). 

CTLpred 
http://www.imtech.res.i

n/raghava/ctlpred/ 

This server uses two methods for prediction. In 

direct method, the information or patterns of T cell 

epitopes instead of MHC binders were used 

whereas the consensus method combined the 

prediction of both ANNs and SVM for the 

prediction (Bhasin and Raghava, 2004a). 

nHLAPred   
http://www.imtech.res.i

n/raghava/nhlapred/ 

A neural network server based on MHC Class I 

binding peptide prediction (Bhasin and Raghava, 

2007). 

SMM 
http://cagt.bu.edu/page/

SMM_submit 

This server uses linear programming method for 

predicting HLA-A2 binding peptides (Peters et al., 

2003). 

 

1.6 Broad specific vaccine design 

Conventional vaccines based on outer surface antigens are generally sero-dependent as 

sero-specific polysaccharide antigens are used for formulation of such vaccines. In such 

cases, serotypes not covered by the vaccines become more frequently colonize due to 

selective pressure and turn out to be an important factor for infection. For example, conjugate 

vaccines for Neisseria meningitidis were administered against serogroup C and B in Europe 

and the United States respectively. But a decade later, serogroup Y became prevalent in the 

United States and vaccines containing both C- and Y-serotypes can only provide protective 

immunity in the US. As pathogens are evolving to novel serotypes and strains, broad-specific 

vaccines are essential for getting protection against particular organisms (Rappuoli, 2007). 

Earlier there was a general perceived notion that sero-specific outer surface proteins only 

provide protective immunity. In post-genomics era, immunomics revealed that protective 

immunity is not only confined to virulence determinant. Antigenic elements may involve 
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range of other different proteins such as housekeeping, structural and functional proteins, and 

even proteins with unknown function (De Groot and Moise, 2007). Housekeeping proteins 

are conserved and can be mined through pan genomic approaches. Any vaccine candidates 

identified from such conserved class of proteins can provide protection against a range of 

pathogens or strains. 

Several strategies have been proposed to design broad specific vaccines in literature 

(Figure 1.5). Polyvalent vaccine contained the combination of all different serotypes (Figure 

1.5 (A)) or purified serotype-determining antigens from a given pathogen or set of pathogens 

(B). This type of vaccine development is feasible in case of those pathogens which have few 

serotypes/variants i.e. Haemophilus influenzae and polio vaccine (Nagy and Pál 2008). But in 

case of highly variable viruses (such as influenza A virus and HIV) which have several 

serotypes or subtypes, the practical feasibility is not yet possible through polyvalent vaccines, 

and highly conserved as well as immunogenic antigens are required for broad-specific 

vaccine development. Abolishment (Figure 1.5 (C)) or down-regulation (Figure 1.5 (D)) of 

sero-specific immunogenic antigens generally results in increase of the immunogenicity of 

low immunogenic but conserved antigen. In general, the over-expression of conserved 

antigen also provides broad specific immune responses (Figure 1.5 (E)). Over-expression of 

protective antigen can be used to improve the efficacy of vaccines (Vemulapalli et al., 2000). 

Finally use of purified conserved antigens as subunit vaccine has potential to be used as 

broad protective vaccines (Figure 1.5 (F)).  

In several pathogens, these purified conserved antigens based vaccines are being explored 

for vaccines development: Porins are explored as broad spectrum vaccines against 

Salmonella and outer membrane proteins (OMPs) are explored vaccine candidates against 

several pathogens including pathogenic Leptospira and Haemophilus influenza (El-Adhami et 

al., 1999; Gebriel et al., 2006). Over-expression of protective antigen has been used as new 

way to modulate immune response to increase efficacy of Brucella and Mycobacterium 

tuberculosis vaccines (Rao et al., 2003; Vemulapalli et al., 2000). In highly variable viruses, 

like influenza, highly conserved among strains as well as immunogenic epitopes were 

combined to develop a broad-specific vaccine, Multimeric-001, which is in Phase-II clinical 

trial . Any of the proposed method for broad-spectrum vaccine development such as 

polyvalent vaccine or conserved antigenic vaccine or any new approach against highly 

variable pathogens including viruses can be possible through computational support. 



41 

 

 

(A)  Multiple serovariants of a given organism are combined into polyvalent vaccines. 

(B) Purified serotype-specific antigens thereof are combined into polyvalent vaccines.  

(C) Expression of the multiform surface antigens responsible for serotype-variability can be 

abolished. 

(D) Expression of the multiform surface antigens responsible for serotype-variability can be 

down-regulated. 

(E) Conserved antigens may be over-expressed in an attenuated parental strain or a suitable 

heterologous vector strain. 

(F) Purified conserved antigens shared by all serotypes could be used as subunit vaccines. 

 

Figure 1.5: Strategies to design broad protective vaccines (Nagy and Pál, 2008). 

 

1.7 Limitation of current Immunoinformatics tools 

Though the reverse vaccinology (RV) method was instrumental in providing better 

vaccine candidates against dozens of human and animal pathogens including Neisseria 

meningitidis (Pizza et al., 2000), Helicobacter pylori (Chakravarti et al., 2000), 

Streptococcus pneumoniae (Wizemann et al., 2001), Porphyromonas gingivalis (Ross et al., 

2001), Chlamydia pneumoniae (Montigiani et al., 2002), Bacillus anthracis (Ariel et al., 

2002), Leptospira interrogans (Yang et al., 2006), etc. but this method needs huge number of 

experiments which are time consuming and costly for identification of vaccine candidates. 
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Current tools based on RV did not provide explicit analysis on possible immunogenic 

potential in terms of immunogenic region(s) (Doytchinova and Flower, 2007; He et al., 2010; 

Vivona et al., 2006). This method also did not provide conservancy of vaccine candidates 

across different strains in terms of pathogenic and non-pathogenic. Therefore, the RV 

techniques focused to develop better antigen prediction and analyses of antigens are required. 

The role of computational methods has become a decisive factor in vaccine design. 

Dependency on computational tools demands high accuracy and applicability to encounter 

challenging diseases through vaccines. Current antigen prediction methods such as 

ANTIGENpro, NERVE, VaxiJen and Vaxign are either based on machine learning 

techniques or prediction of adhesion likeliness for identifying antigen (Doytchinova and 

Flower, 2007; He et al., 2010; Magnan et al., 2010; Vivona et al., 2006). These methods do 

not consider all biological aspect for antigen prediction. Accuracy of antigen prediction can 

be enhanced through considering different biological aspect such host pathogen interaction 

and pathogenesis.  

Initially epitope prediction was considered as important factor for vaccine design research 

but low prediction accuracy limits the application of these methods. Over-prediction, inability 

in exact position prediction of epitopes and absence of success in identifying known epitopes 

in proteins are major concerns in vaccine candidate identification. B-cell epitopes are mainly 

discontinuous epitopes and computational tools used for prediction discontinuous B-cell 

epitopes are not accurate (Blythe and Flower, 2005; Zhang et al., 2011). T-cell epitopes 

prediction tools mainly MHC II binding prediction are also suffering from low prediction 

accuracy (Gowthaman and Agrewala, 2007). Currently, there are many computational 

resources i.e. IEDB, IGMT, IPD, etc. which are maintaining high throughput data on 

experimentally known immunogenic epitopes and other information. Instead of using epitope 

prediction methods such types data can be used for identifying immunogenic regions in an 

antigen.  

In viruses, antigen and epitope predictions are not the major concerns as they have very 

few numbers if proteins. But lack of effectiveness of vaccines against viruses is mainly due to 

antigenic variability which arises mostly due to antigenic shifts and drifts. There is no 

computational tool which directly provides conservation of antigens or epitopes to directly 

address antigenic variability. The conservation data of epitope is crucial for vaccine design 

for highly variable viruses and bacteria. Multimeric-001 developed by BiondVax Company, 

vaccine against influenza which is currently in clinical trials, is a vaccine based on conserved 
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epitopes has again heaved the opportunity of conserved epitopes based vaccine as universal 

influenza vaccines (Atsmon et al., 2012). 

These limitations associated with current computational tools, and availability of validated 

web resources on antigenic elements and their experimental data demands the development of 

new and accurate prediction methods, and web resources based on biological aspects. 
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OBJECTIVES: 

1. To develop a new method for bacterial protein vaccine candidate (PVC) prediction 

using information critical to host-pathogen interaction and/or pathogenesis. 

2. To develop a knowledge-based resource for influenza virus and combining it with 

new algorithm (forward selection algorithm (FSA)) to assist design of universal 

epitope based vaccine against influenza. 

3. Design and Implementation of web resources of the above new methods to create 

cybertools. 

 

OUTLINE OF THESIS 

The above objectives were successfully accomplished by developing appropriate 

methodologies, and implementing those methods to develop web resources and servers which 

predict protein vaccine candidates Jenner-Predict (http://14.139.240.55/vaccine/home.html) 

discussed in Chapter 2 and design of potential universal influenza vaccine candidates through 

EpiCombFlu web resource (http://14.139.240.55/influenza/home.html) discussed in Chapter 

3. 
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CHAPTER 2 

 

JENNER-PREDICT SERVER: PREDICTION OF PROTEIN VACCINE 

CANDIDATES (PVCS) IN BACTERIA BASED ON HOST-PATHOGEN 

INTERACTIONS 

___________________________________________________________________________ 
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ABSTRACT 

Subunit vaccines based on recombinant proteins have been effective in preventing 

infectious diseases and are expected to meet the demands of future vaccine development. 

Computational approach, especially reverse vaccinology (RV) method has enormous 

potential for identification of protein vaccine candidates (PVCs) from a proteome of a 

pathogenic organism. The existing protective antigen prediction software and web servers 

have low prediction accuracy leading to limited applications in vaccine development. Besides 

machine learning techniques, existing softwares and web servers have considered only 

protein's adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin 

functional classes of proteins involved in host-pathogen interactions and pathogenesis are 

known to provide protection against bacterial infections.  Therefore, knowledge of bacterial 

pathogenesis has potential to identify PVCs. 

A web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes 

of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by 

considering known functional domains from protein functional classes such as adhesin, 

virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, 

transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic 

proteins containing above mentioned domains as PVCs. It also provides vaccine potential of 

predicted PVCs in terms of their possible immunogenicity by comparing with experimentally 

known IEDB epitopes, absence of autoimmunity and their conservation in different strains. 

Predicted PVCs are prioritized so that only few prospective PVCs could be validated 

experimentally. 

The performance of web server was evaluated against known protective antigens from 

diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server 

development. The web server efficiently predicted known vaccine candidates reported from 

Streptococcus pneumoniae and Escherichia coli proteomes. The Jenner-Predict server has 

outperformed other comparative (NERVE, Vaxign and VaxiJen) methods. It has sensitivity 

of 0.774 and 0.711 for Protegen and VaxiJen dataset, respectively while specificity of 0.940 

has been obtained for the latter dataset. Better prediction accuracy of Jenner-Predict web 

server signifies that domains involved in host-pathogen interactions and pathogenesis are 

better criteria for prediction of PVCs. The web server has successfully predicted maximum 

known PVCs belonging to different functional classes. Jenner-Predict server is freely 

accessible at http://14.139.240.55/vaccine/home.html.  
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(The content of this chapter has already been published: V. Jaiswal, et al., (2013). “Jenner-

Predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on 

host-pathogen interactions.” BMC Bioinformatics 14: 211) 
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Figure 2.1: Graphical abstract of Jenner-Predict web server 
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2.1 Introduction 

In silico prediction has been proved to be of great importance among various disciplines of 

life sciences including biomedical research (Tarca et al., 2007). The conventional vaccine 

development methods are time consuming as they require cultivation of pathogenic 

microorganisms in laboratory conditions and their dissection using microbiological, 

biochemical and immunological methods in order to identify the components important for 

immunogenecity. These methods are ineffective in circumstances where the cultivation of 

bacteria is difficult or impossible. The other limitations arise when the expression of 

protective antigens is less or absent in in vitro conditions compared to in vivo diseased 

conditions (Rappuoli, 2000). With comparison to conventional live attenuated vaccines, 

subunit vaccines are more reliable as far as safety is concerned (Kimman, 1992). The 

integration of genomics in vaccine research (vaccinogenomics) is expected to revolutionize 

novel vaccine candidate identification (Gay et al., 2007) which is an essential and important 

component in subunit vaccine development. Computational approach, especially reverse 

vaccinology (RV) method assists the identification of vaccine candidates from genomes 

without culturing microorganisms and thus facilitates the subunit vaccine development. 

These methods are useful in reducing time, cost and number of wet lab experiments 

(Rappuoli, 2000). 

The RV is a computational pipeline for identification of vaccine candidates against 

microorganisms from their genome sequences. Thus, all proteins of an organism can be 

screened computationally for their vaccine potential. Significant success of this principle for 

vaccine development had already been demonstrated in several pathogens, including 

Neisseria meningitidis (Pizza et al., 2000), Helicobacter pylori (Chakravarti et al., 2000), 

Streptococcus pneumoniae (Wizemann et al., 2001), Porphyromonas gingivalis (Ross et al., 

2001), Chlamydia pneumoniae (Montigiani et al., 2002) and Bacillus anthracis (Ariel et al., 

2002). The relevance of this method was recognized when vaccines developed from capsular 

polysaccharides of N. meningitidis B had failed due to cross reactivity against human tissue 

(Pizza et al., 2000). Application of RV techniques for PVC identification and then in vivo 

testing led to the development of licensed broad specificity protein vaccine, 5CVMB, against 

N. meningitidis. This vaccine contains 5 protein antigen components, GNA2132, GNA1870, 

GNA1030, GNA2091 and NadA, which were primarily discovered by RV methods (Giuliani 

et al., 2006). However in earlier RV techniques, protein localization (secretory, outer-
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membrane, transporter or others) was used as the main criterion for identification of PVCs. 

As a result, large number of proteins was required to be expressed, purified and tested to 

obtain few vaccine candidates leading to enormous loss of cost and time. 

On the other hand, identification of immunogenic proteins (PVCs) by using epitope 

prediction software and web servers has several limitations. Comparative studies have shown 

that B-cell epitopes (BCEs) and class II MHC-binding T-cell epitopes (TCEs) prediction 

methods are not accurate (Blythe and Flower, 2005; Gowthaman and Agrewala, 2007; 

Ponomarenko and Bourne, 2007; Zhang et al., 2010). Over-prediction, inability in exact 

position prediction of epitopes and absence of success in identifying known epitopes in 

proteins are major concerns in vaccine candidate identification. Until now the available PVCs 

prediction software and web servers have not been much effective for identification of 

vaccine candidates from genomes for vaccine design. VaxiJen server, based on discriminant 

analysis and partial least square (DA-PLS) methods, was developed by using datasets of 

known (positive) protective antigenic and non-antigenic (negative) proteins to predict PVCs 

(Doytchinova and Flower, 2007). Surprisingly, it predicted more than half of proteins from a 

given bacterial proteome as protective antigens with default parameters making its usage 

almost impractical. Further, existing software and web servers predict different proteins as 

vaccine candidates from same proteome sequences. For example, different proteins were 

predicted from S. pneumoniae proteome by VaxiJen server (Doytchinova and Flower, 2007) 

and new enhanced reverse vaccinology environment (NERVE) (Vivona et al., 2006) 

software. From 2202 proteins of S. pneumoniae, VaxiJen (with cut-off of 0.6) and NERVE 

predicted 313 and 58 as PVCs, respectively while only 20 proteins were common between 

them. None of the common PVCs matched with 18 known vaccine candidates in S. 

pneumoniae (Table 2.1). This outcome complicates decision process regarding which tool's 

output should be taken for experimental testing to identify vaccine candidates. The method 

used in NERVE (Vivona et al., 2006) and Vaxign (He et al., 2010) tools presumed that 

extracellular proteins having adhesin-likeliness are potential vaccine candidates. Although 

adhesin-likeliness of a protein is an important criterion, it should not be considered as the 

only one because several non-adhesin functional classes of proteins (i.e. invasin, porin, 

flagellin, etc.) are also involved in host-pathogen interactions or pathogenesis and many of 

them are known to be antigenic (Cao et al., 2011; Chen et al., 2006; Easton et al., 2005; Ko 

and Splitter, 2003; Potter et al., 1999; Rappuoli et al., 1996; Schorey et al., 1996; Tang and 

Holden, 1999; Tong et al., 2005; Turbyfill et al., 2008; Wizemann et al., 1999; Zarantonelli 



51 

 

et al., 2006; Zou et al., 2010). It has been suggested that targeting host-pathogen interactions 

and disease processes at molecular level can be used for novel vaccine discovery (Gay et al., 

2007). In several cases, the immune responses against these non-adhesins were known to 

provide protection against microbial infection (Cao et al., 2011; Chen et al., 2006; Easton et 

al., 2005; Ko and Splitter, 2003; Potter et al., 1999; Rappuoli et al., 1996; Schorey et al., 

1996; Tang and Holden, 1999; Tong et al., 2005; Turbyfill et al., 2008; Wizemann et al., 

1999; Zarantonelli et al., 2006; Zou et al., 2010). Invasin, porin, flagellin and toxin have roles 

in host cell invasion (Palumbo and Wang, 2006); transportation activity associated with 

pathogenesis and virulence (Achouak and Heulin, 2001); chemotaxis, adhesion and 

colonization making pathogenic bacteria to be virulent (Ramos et al., 2004); and host cell 

death (Galán, 2005), respectively. Bacterial fibronectin-binding proteins (FBPs) target host 

fibronectin for adhesion and colonization (Henderson et al., 2011); transferrin-binding 

proteins (TBP) are used by bacteria to obtain iron directly from host transferrins (Ratledge 

and Dover, 2000); and penicillin-binding proteins (PBPs) are involved in peptidoglycan 

biosynthesis to maintain cell wall structure and protection (Sauvage et al., 2008). The solute 

binding proteins (SBPs) are used to capture nutrients like iron to overcome the environment 

devoid of free nutrients within the host (Zou et al., 2010). Choline-binding proteins (CBPs) in 

some bacteria perform adhesin-like function (Rosenow et al., 1997). Functional classes of 

proteins involved in virulence (Tang and Holden, 1999), invasion (Turbyfill et al., 2008) and 

colonization (Tong et al., 2005); porins (Easton et al., 2005) and flagellin (Chen et al., 2006); 

and binding proteins of choline (Cao et al., 2011), penicillin (Zarantonelli et al., 2006), 

transferrin (Potter et al., 1999), fibronectin (Schorey et al., 1996) and solute (Zou et al., 

2010) are important in host-pathogen interactions and pathogenesis. Since many proteins 

from these functional classes provide protective immune responses against microbial 

infection (Cao et al., 2011; Chen et al., 2006; Easton et al., 2005; Ko and Splitter, 2003; 

Potter et al., 1999; Rappuoli et al., 1996; Schorey et al., 1996; Tang and Holden, 1999; Tong 

et al., 2005; Turbyfill et al., 2008; Wizemann et al., 1999; Zarantonelli et al., 2006; Zou et 

al., 2010), the knowledge of host-pathogen interactions related to bacterial pathogenesis 

could be used to rationalize and improve vaccine candidate prediction. 

A web server, Jenner-Predict, has been developed which is capable of predicting PVCs 

from proteome/protein sequences. It is based on the principle that non-cytosolic proteins 

having functions (domains) important in host-pathogen interactions and/or pathogenesis are 

potential vaccine candidates (Figure 2.1). It has two broad components: PVCs prediction and 
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analysis of their vaccine potential. The PVCs prediction is performed in three sequential 

steps: prediction of subcellular localization, expressibility in laboratory and presence of 

domains critical in host-pathogen interactions and pathogenesis. Software PSORTb 3.0 is 

used for protein subcellular localization prediction (Nancy et al., 2010). A protein has high 

probability of failure to express in experiment (Pizza et al., 2000) when it has more trans-

membrane helices. HMMTOP 2.0 (Tusnady and Simon, 2001) software is used for topology 

prediction and proteins with more than two trans-membrane helices are discarded. Proteins 

pass through above two filters and having domains involved in host-pathogen interactions 

and pathogenesis from functional classes of adhesin, invasin, toxin, porins, colonization, 

virulence, flagellin, penicillin-binding, choline-binding transferring-binding, fibronectin-

binding and solute-binding proteins are selected as vaccine candidates.  Standalone Pfam 

sequence search is used for prediction of domains (Punta et al., 2012). Vaccine potential of 

PVCs is predicted on the basis of their possible immunogenicity, absence of autoimmunity, 

and conservation across different pathogenic and non-pathogenic strains of same bacteria. 

Known BCEs and TCEs from immune epitope database (IEDB) (Vita et al., 2010) are 

mapped separately on predicted PVCs to know their possible immunogenic region and 

immunogenic potential. This mapping of antigenic determinant (epitope) is instrumental in 

predicting humoral (BCE) or cellular (TCE) or both immune responses of PVC. Since PVCs 

specific to pathogenic strains are expected to be involved in virulence (Tang and Holden, 

1999), therefore conservation of PVCs in different pathogenic strains of same organism is 

determined to provide more robust vaccine candidates. The PVCs having homolog(s) in host 

(human) are provided by the web server. Such PVCs may produce autoimmunity (Iwai et al., 

2005) or less immune response (Grossman and Paul, 2001). Taking into account above 

criteria, output of the web server is provided as prioritized PVCs in the result table. 

Comparison among PVC prediction methods has shown that Jenner-Predict server's 

performance is better. 

 

2.2 Methods 

2.2.1 Data collection and generation 

Proteomes of all pathogenic and non-pathogenic bacteria were taken from NCBI ftp 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.faa.tar.gz). The proteomes of S. pneumoniae 

strain 70585 and Escherichia coli uropathogenic strain CFT073 were collected from above 
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proteomes. Human proteome sequences were also downloaded from the EBI ftp site 

(ftp://ftp.ebi.ac.uk/pub/databases/integr8/fasta/proteomes) for prediction of human homologs 

in predicted PVCs. For the development of web server, standalone version of four softwares 

(Figure 2.1), NCBI BLAST (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/), 

PSORTb 3 (http://www.psort.org/psortb/), HMMTOP 2.0 (http://www.enzim.hu/hmmtop/) 

and HMMER 3.0 (http://hmmer.janelia.org/) were downloaded from their respective 

websites. PSORTb 3 predicts subcellular localization of a given protein sequence based on its 

amino acid composition, similarity to proteins of known localization, and presence of 

different motifs and signal peptides (Nancy et al., 2010). HMMTOP software uses hidden 

Markov model to predict transmembrane helices based on the difference in the amino acid 

distributions in various structural parts of proteins (Tusnady and Simon, 2001). For prediction 

of domains in protein sequences, Perl program, pfam_scan.pl and Pfam library of hidden 

Markov models (HMMs) for protein families were downloaded from Pfam website 

(http://pfam.janelia.org/).  

For prediction of immunogenic regions in PVCs, experimentally known immunogenic 

epitope sequences of all TCE and BCE assays were downloaded from IEDB in CSV format. 

Peptide epitope with literature reference, epitope ID, GI of source protein, and source and 

host organism's information were extracted from these TCEs and BCEs assays. In case of 

TCEs, MHCs allele names were also extracted. For discontinuous BCEs, corresponding 

protein sequences were downloaded from database, and stretch of continuous sub-part protein 

containing all the residues of discontinuous epitope positions was extracted. These 

subsequences were stored in 'fasta' format for comparison against predicted PVCs.  

2.2.2 Collection of data for web server validation 

Experimentally known protective antigens were collected from four diverse sources to 

evaluate the performance of Jenner-Predict server against existing methods. Known non-

cytosolic protective PVCs from the two pathogenic bacteria, S. pneumoniae (gram-positive) 

and E. coli (gram-negative) were collected from literature (Table 2.1 and 2.2). Different 

experiments had identified 18 and 28 non-cytosolic proteins to be protective antigens in S. 

pneumoniae and E. coli, respectively (Table 2.1 and 2.2). To demonstrate the effectiveness of 

web server in predicting vaccine candidates across bacteria, non-cytosolic protective antigens 

sequences reported in 'Protegen' database (Yang et al., 2011) were retrieved for evaluation as 

well. Out of the 257 reported bacterial protective PVCs, 211 were predicted to be non-
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cytosolic by PSORTb. After removing 11 antigens having more than 2 trans-membrane 

helices and sequences which are 90 percent identical among themselves by using CD-HIT 

(http://weizhong-lab.ucsd.edu/cd-hit/ref.php), 177 bacterial protective PVCs from Protegen 

database were selected for evaluation. In addition to above, non-cytosolic proteins from 

datasets used for VaxiJen (Doytchinova and Flower, 2007) server development were also 

taken for evaluation. Positive and negative training and test datasets containing 100 

sequences of each in the form of Swiss-Prot IDs were collected and then their sequences were 

retrieved. PSORTb was used to predict their localization and only non-cytosolic proteins 

were retained.  Finally, 83 and 33 non-cytosolic positive (protective antigen) and negative 

(non-antigen) sequences were selected for comparison of performances. The sequences used 

for validation in both Protegen and VaxiJen datasets are highly diverse and more than 90% 

sequences are less than 40% identical. 

 

 

Table 2.1: Protein vaccine candidates (PVCs) reported in S.pneumoniae 

S.No. Name of gene/protein Gene ID Localization Ref. 

1. 
Pneumolysin (Thiol-
activated cytolysin) 

225859688 Extracellular (Alexander et al., 1994) 

2. 
Pneumococcal choline 
binding protein A 
(PcpA) 

225859909 
Unknown 
 

(Glover et al., 2008) 

3. 
BVH-3 
PhpA protein 

225858797 Unknown (Hamel et al., 2004) 

4. Autolysin lytA 225859701 Extracellular (Berry et al., 1989) 

5. 
Endo-beta-N-
acetylglucosaminidase 
(SP046) 

225858758 Extracellular (Wizemann et al., 2001) 

6. 
1,4-beta-N-
acetylmuramidase 
(SP091) 

225859330 Extracellular (Wizemann et al., 2001) 

7. PspA 225857997 Extracellular (Yamamoto et al., 1997) 

8. 
ABC transporter 
permease (Pit) 

225858856 
Cytoplasmic 
Membrane 

(Brown et al., 2001) 

9. 
Histidine triad protein B 
(SP036) 

225858962 
Non-
Cytoplasmic 

(Wizemann et al., 2001) 

10. 
Putative protease 
maturation protein A 

225858774 
Cytoplasmic 
Membrane 

(Overweg et al., 2000) 
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Table 2.2: Protein vaccine candidates (PVCs) reported in E. coli 

S.No. Locus 
Gene 

Name 

Gene ID 

(GI) 
Cellular Localization Ref. 

1. c0185 FhuA 26246096 OuterMembrane (Hagan and Mobley, 2007) 

2. c0214 YaeT 26246123 OuterMembrane (Hagan and Mobley, 2007) 

3. c0652 OmpT 26246544 OuterMembrane (Hagan and Mobley, 2007) 

4. c0900 OmpX 26246790 OuterMembrane (Hagan and Mobley, 2007) 

5. c1071 OmpF 26246956 OuterMembrane (Hagan and Mobley, 2007) 

6. c1093 OmpA 26246978 OuterMembrane (Hagan and Mobley, 2007) 

7. c1250 IroN 26247124 OuterMembrane (Hagan and Mobley, 2007) 

8. c3655 Ag43 26249490 OuterMembrane (Hagan and Mobley, 2007) 

9. c1560 NmpC 26247429 OuterMembrane (Hagan and Mobley, 2007) 

10. c1722 OmpW 26247587 OuterMembrane (Hagan and Mobley, 2007) 

11. c2187 YeaF 26248041 OuterMembrane (Hagan and Mobley, 2007) 

12. c2338 FliC 26248190 Extracellular (Hagan and Mobley, 2007) 

13. c2482 colicin 26248334 OuterMembrane (Hagan and Mobley, 2007) 

14. c2758 OmpC 26248604 OuterMembrane (Hagan and Mobley, 2007) 

15. c3610 Iha 26249445 OuterMembrane (Hagan and Mobley, 2007) 

16. c3623 IutA 26249458 OuterMembrane (Hagan and Mobley, 2007) 

17. c3781 TolC 16148612 OuterMembrane (Hagan and Mobley, 2007) 

(PpmA)  

11. PsaA 225859406 
Cytoplasmic 
Membrane 

(Briles et al., 2000) 

12. 
Pneumococcal vaccine 
antigen A (SP101) 

225858817 
Cytoplasmic 
Membrane 

(Wizemann et al., 2001) 

13. 
Serine/threonine protein 
kinase (StkP) 

225859485 
Cytoplasmic 
Membrane 

(Giefing et al., 2008) 

14. 
Pneumoniae 
neuraminidase (NanA) 

225859446 Cell wall (Tong et al., 2005) 

15. 
CbpA or PspC or Hic  
or SpsA 

225858707 
Cytoplasmic 
Membrane 

(Ogunniyi et al., 2001) 

16. 
Zinc metalloprotease 
(ZmpB) 

225858492 Cell wall (Gong et al., 2011) 

17. 
Endo-alpha-N-
acetylgalactosaminidase 

225858223 Cell wall (Caines et al., 2008) 

18. Pullulanase 225858118 Cell wall (Bongaerts et al., 2000) 
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1 

18. c4095 YheE 26249919 
Cytoplasmic 
Membrane 

(Hagan and Mobley, 2007) 

19. c4308 ChuA 26250130 OuterMembrane (Hagan and Mobley, 2007) 

20. c4894 Tsx 26250708 OuterMembrane (Hagan and Mobley, 2007) 

21. c4929 BtuB 
22910636

2 
OuterMembrane (Hagan and Mobley, 2007) 

22. c5006 LamB 26250818 OuterMembrane (Hagan and Mobley, 2007) 

23. c5174 IreA 26250982 OuterMembrane (Hagan and Mobley, 2007) 

24. c5400 FimH 26251208 Unknown (Denich et al., 1991) 

25. c5188 PapA 26250996 Extracellular (Langermann et al., 2000) 

26. c3389 _ 26249224 
Cytoplasmic 
Membrane 

(Durant et al., 2007) 

27. c0393 _ 26246291 Unknown (Durant et al., 2007) 

28. c4424 _ 26250246 OuterMembrane (Durant et al., 2007) 

 

2.2.3 Server architecture 

The web server comprised of a client interface and a main application program. The client 

interface was developed using HTML language which takes input either in the form of 

protein sequence(s) in fasta format or a proteome of listed bacteria. The submitted fasta 

sequence(s)/proteome are processed by the in-house backend Perl-CGI script which posts 

information provided by the user to the main application program in a queue format. This 

Perl-CGI script generates an URL link where the status information or output of a given job 

will be available. The self developed programs and other available standalone software 

(Figure 2.1) are used by 'main application' program for the analysis of protein sequences one 

after another to predict PVCs. The main application program also provides the output table in 

the form of prioritized PVCs. 

2.2.4 Pfam domain selection 

Domains are basic building blocks of proteins. Searching of a protein sequence against 

Pfam library of HMMs enables to find domain architecture present in that protein (Punta et 

al., 2012). The Pfam has been used in several genome projects including human for large 

scale functional annotation of genomic data (Lander et al., 2001). A list called, 'Master list', 

was prepared which contains Pfam IDs (domain) from the functional classes of proteins 
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involved in host-pathogen interactions and pathogenesis (Cao et al., 2011; Chen et al., 2006; 

Easton et al., 2005; Ko and Splitter, 2003; Potter et al., 1999; Rappuoli et al., 1996; Schorey 

et al., 1996; Tang and Holden, 1999; Tong et al., 2005; Turbyfill et al., 2008; Wizemann et 

al., 1999; Zarantonelli et al., 2006; Zou et al., 2010). For preparing the list, Pfam database 

was subjected to text search with individual key words 'invasin', 'adhesin', 'porin', 

'colonization', 'virulence', 'toxin', 'bacterial extracellular solute binding protein', 'choline 

binding protein', 'penicillin binding protein', 'transferrin binding protein' and 'fibronectin 

binding protein' to identify domains from each classes of proteins. Then all hits of domains 

from each keyword were manually checked for their possible role in host-pathogen 

interactions. Only those families/domains were included in the 'Master list' which have 

significant functional role in host-pathogen interactions and/or pathogenesis (Table 2.3). This 

'Master list' of domains was used for the prediction of PVCs from non-cytosolic proteins 

(Figure 2.1).  

 

 

Table 2.3: Key words used and selection of Pfam domains for protein vaccine candidate 

prediction 

 S. No. Key word used for PFam 
domain search 

No. of 
domain hits 

No. of 
selected 
domains* 

Reference 

 1. Adhesin  166 96 (Wizemann et al., 1999) 

 2. Choline binding protein 29 12 (Cao et al., 2011) 

 3. 
Bacterial extracellular 
solute-binding protein 

36 8 (Zou et al., 2010) 

 4. Porin 66 46 (Easton et al., 2005) 

 5. Invasin 30 25 (Turbyfill et al., 2008) 

 6. Fibronectin-binding protein 50 25 (Schorey et al., 1996) 

 7. Transferrin-binding protein 24 6 (Potter et al., 1999) 

 8. Virulence 402 145 (Tang and Holden, 1999) 

 9. Penicillin-binding Protein 14 8 (Zarantonelli et al., 2006) 

 10. Flagellin 22 12 (Chen et al., 2006) 

 11. Colonization 23 14 (Tong et al., 2005) 

 12. Host-pathogen  interaction 9 4 (Ko and Splitter, 2003) 
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 13. Toxin 542 110 (Rappuoli et al., 1996) 

*Only those families/domains were included which are involved in host-pathogen 
interactions and/or pathogenesis 
 

2.2.5 Implementation 

The server, Jenner-Predict, has two major components: PVCs prediction and analysis of 

their vaccine potential (Figure 2.1). Software PSORTb 3.0 (Nancy et al., 2010) and 

HMMTOP 2.0 (Tusnady and Simon, 2001) are used to predict subcellular localization and 

number of transmembrane helices, respectively. The former discards cytoplasmic proteins 

whereas the latter rejects proteins having more than two transmembrane helices (Pizza et al., 

2000). Proteins passing through the above two filters are then subjected to Pfam 

domain/family search to determine their domains. Finally, proteins matching with Pfam 

domains/families listed in the 'Master list' (Table 2.3) are selected as PVCs. 
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Figure 2.2: Flow chart depicting methodology of Jenner-Predict web server 

 

Vaccine potential of the predicted PVCs' is performed by taking three different measures 

into account: immunogenicity, autoimmunity and conservation (Figure 2.1).  Immunogenic 

potential (putative immunogenic regions) of PVCs is predicted by matching of IEDB epitopes 

against the PVCs by using standalone BLAST with minimum matching length of 9 (Del Val 

et al., 1991) and 80% identity cut-off. For autoimmunity prediction, the BLAST is used to 
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find similarity between PVCs and human proteins by two different methods: i) cut-off of 35% 

identity in at least 80 amino acids length of PVC (Fiers et al., 2004), and ii) continuous 

identical matching of 9 or more positions in the alignment (Del Val et al., 1991). BLAST is 

also used to identify conservation of PVCs in different pathogenic strains of a given 

organism. The PVC is compared against different strains of the same organism with a cut-off 

greater than 85 percent sequence identity with minimum of 90% query coverage. To 

determine conservation of PVC in pathogenic and non-pathogenic strains separately, names 

of pathogenic and non-pathogenic strains of each organism are stored in two separate flat 

files under each category. Information on pathogenic or non-pathogenic strains of each 

individual organism is extracted from the respective files.  

2.3 Results  

The web server, Jenner-Predict, has been developed to predict PVCs from proteome or 

protein(s) sequences for subunit vaccine development on the basis of domains critical to host-

pathogen interactions and pathogenesis. Besides predicting PVCs, it also furnishes 

information crucial to determine their vaccine capability in terms of immunogenic potential 

by matching PVCs against IEDB epitopes, autoimmunity through matching PVCs with 

human proteome, and their conservation across different pathogenic and non-pathogenic 

strains of the organism. A tutorial explaining how to submit a job as well as user-friendly 

interpretation of results is available at the web server's home page. The web server gives 

higher priority to PVCs containing more IEDB epitope matches as they increase their 

possibility to be immunogenic. The PVCs containing identical IEDB epitopes match are 

shown in white background. The web server also decreases priority of PVCs having human 

homologs as such PVCs should be discouraged from further vaccine development process. 

This prioritization is instrumental in selecting few PVCs for further vaccine development 

experiments. The performance of the web server was evaluated against reported vaccine 

candidates in S. pneumoniae (gram positive) and E. coli (gram negative), proteins (both 

positive and negative) used for development of VaxiJen server (Doytchinova and Flower, 

2007) and protective antigens from more than 40 bacteria reported in Protegen database 

(Yang et al., 2011).  
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Figure 2.3: Job submission web page of Jenner-Predict depicting three different methods for 

submission of a job 

2.3.1 PVCs prediction in S. pneumoniae and E. coli 

In S. pneumoniae proteome, Jenner-Predict server predicted 69 proteins as vaccine 

candidates (Figure2.4 and http://14.139.240.55/vaccine/results_data/98%5C98_58892. 

txt.pri.html). As VaxiJen server predicts more than half of a proteome as vaccine candidates 

in any bacteria with default VaxiJen probability score, 0.4, a cut-off of 0.6 was considered to 

restrict the number of PVCs so that the performance of this approach can be compared 

against all other methods. From S. pneumoniae proteome, our web server predicted 10 out of 

18 known non-cytoplasmic PVCs whereas the software, NERVE, and servers, Vaxign and 

VaxiJen, predicted only 7, 6 and 3 PVCs, respectively (Figure 2.4 and Table 2.4). As 

compared to other methods, the PVCs predicted exclusively by Jenner-Predict server were 

STK (Giefing et al., 2008), NanA (Turbyfill et al., 2008), and PsaA (Talkington et al., 1996) 

which are having PASTA, BNR, and SBP domains, respectively. Other than 10 reported 

vaccine candidates from 69 PVCs (Figure 2.4), our web server predicted 18 ABC-transporters 

and solute-binding, 6 choline-binding, 4 penicillin-binding, 2 LysM-containing domain, 3 cell 

wall anchors, etc. ABC-transporter (Garmory and Titball, 2004), choline-binding (Cao et al., 

2011), and penicillin-binding (Zarantonelli et al., 2006) proteins are known to be potential 

PVCs in different bacteria including S. pneumoniae.  



In E. coli proteome, Jenner-Predict server predicted 253 proteins as vaccine candidates 

(Figure 2.5) whereas the NERVE and Vaxi

respectively (Figure 2.5). Our web server predicted 23 out of 28 known PVCs whereas 

software, NERVE and servers, Vaxign and VaxiJen, predicted 21, 18 and 21 PVCs, 

respectively. The PVCs missed out by other methods due to being non

(outer-membrane protein A), BtuB (cobalamin outer

protein) and IreA (putative iron

Besides 23 known protective antigens, the majority of predicted PVCs by our web server 

were 51 BPD transporter proteins, 32 solute

fimbrial proteins (Sadilkova et al
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Predict server predicted 253 proteins as vaccine candidates 

) whereas the NERVE and Vaxign predicted more than 500 and 280 proteins, 

. Our web server predicted 23 out of 28 known PVCs whereas 

oftware, NERVE and servers, Vaxign and VaxiJen, predicted 21, 18 and 21 PVCs, 

respectively. The PVCs missed out by other methods due to being non-adhesins were OmpA 

membrane protein A), BtuB (cobalamin outer-membrane transporter), TolC (channel 

ein) and IreA (putative iron-regulated outer membrane virulence proteins) (Table 2.5

Besides 23 known protective antigens, the majority of predicted PVCs by our web server 

were 51 BPD transporter proteins, 32 solute-binding proteins (Zou et al., 2010)

et al., 2012).  

results of predicted PVCs in Streptococcus pneumoniae
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methods. 

 

Table 2.4: Detailed comparison 

software, NERVE, and web servers, Vaxign, VaxiJen and Jenner

Streptococcus pneumoniae

protective antigens*  

#
S. 

No. 
Name of gene/protein Gene ID

1. Pneumolysin (Thiol-
activated cytolysin) 

225859688

2. 
Pneumococcal choline 
binding protein A 
(PcpA) 

225859909

3. BVH-3 
PhpA protein 

225858797

4. Autolysin lytA 225859701

5. 
Endo-beta-N-
acetylglucosaminidase 
(SP046) 

225858758
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results of predicted PVCs in Escherichia coli through different 

 of results for predicted protein vaccine candidate (PVC) by 

software, NERVE, and web servers, Vaxign, VaxiJen and Jenner-

Streptococcus pneumoniae 70585 (gram-positive) against experimentally known 

 

Gene ID Localization Nerve Vaxign VaxiJen

225859688 Extracellular YES NO NO 

225859909 
Unknown 
 

YES YES NO 

225858797 Unknown YES NO NO 

225859701 Extracellular YES YES NO 

225858758 Extracellular YES YES NO 

NERVE Vaxign VaxiJen Jenner

28 28

18 21

286 955 253

Comparison result in Escherichia coli

 

through different 

results for predicted protein vaccine candidate (PVC) by 

-Predict from 

positive) against experimentally known 

VaxiJen 
Jenner-

Predict 

YES 

YES 

NO 

YES 

YES 

Jenner-Predict

28

23

253
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6. 1,4-beta-N-
acetylmuramidase  

225859330 Extracellular YES YES NO YES 

7. PspA 225857997 Extracellular NO YES NO YES 

8. 
ABC transporter 
permease (Pit) 

225858856 
Cytoplasmic 
Membrane 

NO 
 

NO NO NO 

9. Histidine triad protein 
B (SP036) 

225858962 
Non-
Cytoplasmic 

NO 
 

NO NO NO 

10. 
Putative protease 
maturation protein A 
(PpmA) 

225858774 
Cytoplasmic 
Membrane 
 

NO 
 

NO YES NO 

11. PsaA 225859406 
Cytoplasmic 
Membrane 

NO NO NO YES 

12. Pneumococcal vaccine 
antigen A (SP101) 

225858817 
Cytoplasmic 
Membrane 

NO NO NO NO 

13. Serine/threonine protein 
kinase (StkP) 

225859485 Cytoplasmic 
Membrane 

NO NO NO YES 

14. Pneumoniae 
neuraminidase (NanA) 

225859446 Cell wall NO NO YES YES 

15. CbpA or PspC or Hic  
or SpsA 

225858707 
Cytoplasmic 
Membrane 

NO NO YES NO 

16. Zinc metalloprotease 
(ZmpB) 

225858492 Cell wall NO NO NO NO 

17. Endo-alpha-N-
acetylgalactosaminidase 

225858223 Cell wall YES YES NO YES 

18. Pullulanase 225858118 Cell wall NO NO NO NO 

* See details in methods section. Jenner-Predict server is based on domains involved in host-
pathogen interactions which are important in pathogenesis and disease establishment. For 
comparison with VaxiJen, a cut-off of 0.6 was used instead of default parameter 0.4 as it 
predicts almost half of proteome as vaccine candidates with default parameter. 

# S. No. indicates Serial Number; YES or NO denotes the corresponding protein is predicted 
or not, respectively by the corresponding software or web server. 

 

 

 

 

 

 

 



65 

 

Table 2.5: Detailed comparison of results for predicted protein vaccine candidate (PVC) by 

software, NERVE, and web servers, Vaxign, VaxiJen and Jenner-Predict from 

Escherichia coli Uropathogenic strain CFT073 (gram-negative) against 

experimentally known protective antigens
*
 

#
S. 

No. 
Locus 

Gene 

Name 

Gene ID 

(GI) 

Cellular 

Localization 
NERVE Vaxign VaxiJen 

Jenner-

Predict 

1. c0185 FhuA 26246096 OuterMembrane YES YES NO YES 

2. c0214 YaeT 26246123 OuterMembrane YES NO NO YES 

3. c0652 OmpT 26246544 OuterMembrane NO NO NO NO 

4. c0900 OmpX 26246790 OuterMembrane YES YES YES YES 

5. c1071 OmpF 26246956 OuterMembrane YES NO YES YES 

6. c1093 OmpA 26246978 OuterMembrane NO NO YES YES 

7. c1250 IroN 26247124 OuterMembrane YES YES YES YES 

8. c3655 Ag43 26249490 OuterMembrane YES YES YES YES 

9. c1560 NmpC 26247429 OuterMembrane YES YES YES YES 

10. c1722 OmpW 26247587 OuterMembrane YES YES YES YES 

11. c2187 YeaF 26248041 OuterMembrane YES YES NO NO 

12. c2338 FliC 26248190 Extracellular YES YES YES YES 

13. c2482 colicin 26248334 OuterMembrane YES YES YES YES 

14. c2758 OmpC 26248604 OuterMembrane YES YES YES YES 

15. c3610 Iha 26249445 OuterMembrane YES YES YES YES 

16. c3623 IutA 26249458 OuterMembrane YES YES YES YES 

17. c3781 TolC 161486121 OuterMembrane NO NO NO YES 

18. c4095 YheE 26249919 
Cytoplasmic 
Membrane 

NO NO YES NO 

19. c4308 ChuA 26250130 OuterMembrane YES YES YES YES 

20. c4894 Tsx 26250708 OuterMembrane YES YES YES NO 
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21. c4929 BtuB 229106362 OuterMembrane NO NO NO YES 

22. c5006 LamB 26250818 OuterMembrane YES YES YES YES 

23. c5174 IreA 26250982 OuterMembrane NO NO YES YES 

24. c5400 FimH 26251208 Unknown YES YES YES YES 

25. c5188 PapA 26250996 Extracellular YES YES YES YES 

26. c3389 __ 26249224 
Cytoplasmic 
Membrane 

NO NO NO NO 

27. c0393 __ 26246291 Unknown YES YES YES YES 

28. c4424 __ 26250246 OuterMembrane YES YES YES YES 

* See details in methods section. Jenner-Predict server has been developed by us and is 
based on domains involved in host-pathogen interactions which are important in 
pathogenesis and disease establishment. For comparison with VaxiJen, a cut-off of 0.6 
was used instead of default parameter 0.4 as it predicts almost half of proteome as vaccine 
candidates with default parameter. 

# S. No. indicates Serial Number; YES or NO denotes the corresponding protein is 
predicted or not, respectively by the corresponding software or web server. 

 

2.3.2 Prediction of PVCs against protegen database and datasets used in VaxiJen server 

development 

The results of our web server for prediction of known protective vaccine candidates from 

more than 40 diverse bacteria reported in Protegen database and its comparison against other 

similar methods has been presented in Figure 2.6. Our web server predicted 137 out of 177 

protective antigens (PAs) from Protegen database whereas software, NERVE, and servers, 

Vaxign and VaxiJen, predicted 121, 89 and 97, respectively. The PAs which were only 

predicted by our method and skipped by others (NERVE, Vaxign and VaxiJen) belong to 

functional classes of solute binding, toxin, invasin, etc (Table 2.6). The Jenner-Predict server 

was found to be efficient in discriminating between antigens and non-antigens. From the 83 

Pas (positive dataset) used in VaxiJen server development, NERVE, Vaxign and VaxiJen 

predicted 53, 47 and 46 proteins, respectively whereas our web server predicted 59 PVCs 

(Figure 2.7 and Table 2.7).  From negative dataset (considered as non-antigens) of 33 

proteins, the NERVE, Vaxign and VaxiJen methods predicted 8, 5 and 3 proteins to be 

vaccine candidates, respectively compared to 2 proteins (Q48919 and Q53247) by our web 
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server  (Figure 2.7 and Table 2.8). Negative dataset proteins were considered as non-antigens. 

But one out of two PVCs predicted by our web server has already been known to be 

antigenic: fibronectin-attachment protein (Q48919) provides protective immunity against 

Mycobacterium avium infection (Lee et al., 2009). 

 

2.3.3 Validation of Jenner-Predict 

Sensitivity and specificity indices of different PVC prediction methods have been 

presented in Figure 2.7. Jenner-Predict server's PVCs prediction accuracy is better at all 

levels: bacterial proteomes, Protegen database and datasets used for VaxiJen server 

development. Unavailability of total number of known vaccine candidates in a proteome 

prevented us to calculate sensitivity and specificity values for proteome sequences. The 

results of PVC prediction from two proteomes by different methods have been provided in 

Figure 2.4 and Figure 2.5. Detailed comparison of results w.r.t known vaccine candidates of 

S. pneumoniae and E. coli by different methods has been provided in Table 2.4 and Table 2.5, 

respectively. On dataset used in development of VaxiJen server, sensitivity and specificity of 

our tool were 0.711 and 0.940, respectively whereas comparable methods NERVE, Vaxign 

and VaxiJen have corresponding values 0.639 and 0.765; 0.494 and 0.853 and 0.554 and 

0.909, respectively. For the Protegen database, only sensitivity was calculated as specificity 

calculation was not feasible due to lack of negative dataset. The sensitivities of NERVE, 

Vaxign and VaxiJen were 0.684, 0.491 and 0.548, respectively as compared to 0.774 for 

Jenner-Predict server (Table 2.6A). Further to access the significance of result, the 

performance of different comparative methods was also carried out on randomly generated 

datasets of 25%, 50%, and 75% of validated Protegen database PVCs with five replicates for 

each set. Performance of each comparative method is provided in Table 2.6B. Performance of 

Jenner-Predict method was the best and consistent as the sensitivity of each randomized data 

is close to the result whole dataset (0.772 (randomized data) vs. 0.774 (whole Protegen 

dataset)). The randomized results of other methods are not consistent as Jenner-Predict. 

Standard deviation values again corroborate the consistent performance of Jenner-Predict 

(Table 2.6B).  
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Table 2.6B: Sensitivity of random datasets from vaccine candidate reported in Protegen 

database by software, NERVE, and web servers, Vaxign, VaxiJen and Jenner-

Predict.  

Sr no. Dataset 

Details 
NERVE Vaxign VaxiJen  Jenner-Predict 

1 25% 0.622 0.422 0.511 0.733 

2 25% 0.733 0.511 0.533 0.800 

3 25% 0.577 0.444 0.488 0.733 

4 25% 0.711 0.488 0.644 0.755 

5 25% 0.600 0.444 0.577 0.800 

Mean of 25% random 

data 
0.649 0.462 0.551 0.764 

6 50% 0.696 0.505 0.505 0.786 

7 50% 0.696 0.494 0.550 0.797 

8 50% 0.685 0.494 0.550 0.758 

9 50% 0.617 0.426 0.606 0.797 

10 50% 0.662 0.505 0.573 0.752 

Mean of 50% random 

data 
0.671 0.485 0.557 0.778 

11 75% 0.669 0.503 0.533 0.789 

12 75% 0.699 0.488 0.518 0.751 

13 75% 0.699 0.518 0.526 0.774 

14 75% 0.661 0.481 0.496 0.796 

15 75% 0.654 0.458 0.556 0.759 

Mean of 75% random 

data 
0.676 0.490 0.526 0.773 

Overall mean and 
standard deviation for 
three different random 
datasets* 

0.665 (0.014) 0.479 (0.015) 0.545 (0.016) 0.772 (0.007) 

* Standard deviation values are in parentheses. 



Figure 2.6: Comparative result

methods. 

Table 2.6A: Results of protein vaccine candidate (PVC) prediction from vaccine candidate 

reported in Protegen database by software, NERVE, and web servers, Vaxign, 

VaxiJen and Jenner-Predict

#
S. 

No. 

Protegen 

Database 

ID 

Gene ID Organism

1. VO_0011020 52630374 

Actinobacillus 

pleuropneumon

iae

2. VO_0011022 190150285 

Actinobacillus 

pleuropneumon

iae

3. VO_0010873 47566484 

Bacillus 

anthracis

'Ames 
Ancestor

4. VO_0010872 47566476 

Bacillus 

anthracis

'Ames 
Ancestor' 

5. VO_0011030 3980256 
Bordetella 

pertussis

6. VO_0011031 580668 
Bordetella 

pertussis

7. VO_0011032 225311181 
Bordetella 

pertussis
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results of predicted PVCs in Protegen dataset through different 

Results of protein vaccine candidate (PVC) prediction from vaccine candidate 

reported in Protegen database by software, NERVE, and web servers, Vaxign, 

Predict*. 

Organism 
$
Gram 

+/- 
NERVE Vaxign VaxiJen 

Actinobacillus 

pleuropneumon

iae 

N YES NO NO 

Actinobacillus 

pleuropneumon

iae 
N NO NO YES

Bacillus 

anthracis str. 
'Ames 
Ancestor 

P NO NO NO 

Bacillus 

anthracis str. 
'Ames 
Ancestor'  

P NO NO NO 

Bordetella 

pertussis 
N YES YES  YES

Bordetella 

pertussis 
N NO NO YES

Bordetella 

pertussis 
N NO NO NO 

NERVE Vaxign VaxiJen Jenner-

Predict

177 177 177 177

121 67 97 137

0.684 0.502 0.548 0.774

Comparison result in Protegen dataset

 

of predicted PVCs in Protegen dataset through different 

Results of protein vaccine candidate (PVC) prediction from vaccine candidate 

reported in Protegen database by software, NERVE, and web servers, Vaxign, 

VaxiJen  
Jenner-

Predict 

 YES 

 YES 

 YES 

 YES 

 YES 

 YES 

 YES 
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8. VO_0011036 562026 
Bordetella 

pertussis 
N YES NO YES YES 

9. VO_0011037 225311180 
Bordetella 

pertussis 
N YES YES NO YES 

10. VO_0011038 225311183 
Bordetella 

pertussis 
N YES NO NO YES 

11. VO_0011039 225311182 
Bordetella 

pertussis 
N YES NO NO YES 

12. VO_0011033 33592195 

Bordetella 

pertussis 
Tohama 

N NO NO YES YES 

13. VO_0011034 33594638 

Bordetella 

pertussis 
Tohama 

N NO NO NO YES 

14. VO_0012384 11496927 

Borrelia 

burgdorferi 
B31 

N YES YES YES NO 

15. VO_0012385 11496910 

Borrelia 

burgdorferi 
B31 

N NO NO YES NO 

16. VO_0012386 11497024 

Borrelia 

burgdorferi 
B31 

N YES NO YES NO 

17. VO_0012365 62317941 
Brucella 

abortus 
N NO NO YES YES 

18. VO_0010948 122892474 
Brucella 

melitensis 
N YES NO NO YES 

19. VO_0010962 17986819 
Brucella 

melitensis 16M 
N YES NO NO NO 

20. VO_0010966 17987532 
Brucella 

melitensis 16M 
N YES YES YES YES 

21. VO_0010967 17987867 
Brucella 

melitensis 16M 
N YES YES YES YES 

22. VO_0010856 83269434 

Brucella 

melitensis 
biovar Abortus 

N YES NO YES NO 

23. VO_0010908 82700077 

Brucella 

melitensis 
biovar Abortus  

N NO NO YES NO 

24. VO_0010939 82700421 

Brucella 

melitensis 
biovar Abortus 

N YES YES YES YES 
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2308 

25. VO_0010971 82699574 

Brucella 

melitensis 
biovar Abortus 
2308 

N NO NO NO YES 

26. VO_0010972 82700695 

Brucella 

melitensis 
biovar Abortus 
2308 

N YES YES YES NO 

27. VO_0010973 82700483 

Brucella 

melitensis 
biovar Abortus 
2308 

N NO NO NO YES 

28. VO_0011303 1929918 
Burkholderia 

pseudomallei 
N YES YES YES YES 

29. VO_0010922 53721504 

Burkholderia 

pseudomallei 
K96243 

N NO NO NO YES 

30. VO_0010956 1813949 
Campylobacter 

jejuni 
N NO NO NO YES 

31. VO_0011044 4704601 
Campylobacter 

jejuni 
N YES YES YES YES 

32. VO_0011047 116292649 
Campylobacter 

jejuni 
N NO YES YES NO 

33. VO_0011049 116292677 
Campylobacter 

jejuni 
N YES NO YES NO 

34. VO_0010955 57237809 
Campylobacter 

jejuni 
N NO NO NO YES 

35. VO_0011046 121612545 
Campylobacter 

jejuni 
N YES YES YES YES 

36. VO_0011048 121612344 
Campylobacter 

jejuni 
N YES YES NO YES 

37. VO_0010942 15792662 
Campylobacter 

jejuni 
N YES YES YES YES 

38. VO_0011045 112360246 
Campylobacter 

jejuni 
N YES NO NO YES 

39. VO_0010890 1518659 
Chlamydia 

muridarum 
N YES YES YES YES 

40. VO_0010885 15835130 
Chlamydia 

muridarum 
N YES NO NO YES 

41. VO_0010887 15835057 Chlamydia N NO NO NO YES 
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muridarum 

42. VO_0010888 15835381 
Chlamydia 

muridarum 
N NO NO NO NO 

43. VO_0010889 15835382 
Chlamydia 

muridarum 
N NO NO NO NO 

44. VO_0010891 15834883 
Chlamydia 

muridarum 
N YES YES NO YES 

45. VO_0010893 15834882 
Chlamydia 

muridarum 
N YES YES NO YES 

46. VO_0010881 40601 
Chlamydophila 

abortus 
N YES YES NO YES 

47. VO_0011058 187438939 
Chlamydophila 

abortus 
N YES YES YES YES 

48. VO_0011057 62184917 
Chlamydophila 

abortus 
N NO NO NO NO 

49. VO_0011059 62184696 
Chlamydophila 

abortus 
N NO NO NO YES 

50. VO_0011060 62184824 
Chlamydophila 

abortus 
N YES NO YES NO 

51. VO_0010883 15618244 
Chlamydophila 

pneumoniae  
N NO YES YES YES 

52. VO_0010896 15618301 

Chlamydophila 

pneumoniae 
CWL029 

N NO NO NO NO 

53. VO_0010925 144545 
Chlamydophila 

psittaci 
N YES YES NO YES 

54. VO_0010900 241183337 
Clostridium 

botulinum 
P YES NO NO YES 

55. VO_0010904 169834607 
Clostridium 

botulinum 
P NO NO NO YES 

56. VO_0010905 217781 
Clostridium 

phage c-st 
P YES NO NO YES 

57. VO_0010909 157829735 
Clostridium 
tetani 

P NO 
NO  
 

NO YES 

58. VO_0011287 38199106 
Corynebacteriu

m diphtheriae 
P NO NO NO YES 

59. VO_0010930 30025845 
Coxiella 

burnetii 
N YES YES YES NO 

60. VO_0010938 9632507 
Enterobacteria 

phage 
 YES NO YES YES 
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61. VO_0010943 157021162 
Escherichia 

coli 
N YES YES NO YES 

62. VO_0010988 222104801 
Escherichia 

coli 
N YES YES YES YES 

63. VO_0010941 110643341 
Escherichia 

coli 536 
N 

YES 
 

YES NO YES 

64. VO_0010964 157418230 
Escherichia 

coli APEC 
N YES NO YES YES 

65. VO_0010965| 117624167 
Escherichia 

coli APEC 
N YES NO YES YES 

66. VO_0010984 26248334 
Escherichia 

coli CFT073 
N YES YES YES YES 

67. VO_0010985 26250982 
Escherichia 

coli CFT073 
N NO NO YES YES 

68. VO_0010986 26249458 
Escherichia 

coli CFT073 
N YES YES YES YES 

69. VO_0010989 26246291 
Escherichia 

coli CFT073 
N YES YES YES YES 

70. VO_0010990 26250246 
Escherichia 

coli  
N YES YES YES YES 

71. VO_0010940 15804222 

Escherichia 

coli O157:H7 
EDL933 

N YES YES YES YES 

72. VO_0010944 15804220 

Escherichia 

coli O157:H7 
EDL933 

N YES YES YES YES 

73. VO_0010993 209921909 
Escherichia 

coli SE11 
N YES YES YES YES 

74. VO_0010945 91213965 
Escherichia 

coli UTI89 
N NO NO YES YES 

75. VO_0011076 148688 
Francisella 

tularensis 
N YES YES YES NO 

76. VO_0011078 115315051 

Francisella 

tularensis 
subsp. 
holarctica  

N YES YES YES YES 

77. VO_0011070 118496734 

Francisella 

tularensis 
subsp. novicida 
U112 

N YES YES NO YES 

78. VO_0011072 56708413 Francisella N YES NO YES NO 
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tularensis 
subsp. 
tularensis 
SCHU 

79. VO_0011077 56707247 

Francisella 

tularensis 
subsp. 
tularensis 
SCHU 

N YES NO NO NO 

80. VO_0010914 148896 
Haemophilus 

influenzae 
N YES YES NO NO 

81. VO_0010916 21686508 
Haemophilus 

influenzae 
N YES YES YES YES 

82. VO_0010917 23506944 
Haemophilus 

influenzae 
N YES YES YES YES 

83. VO_0010918 4574246 
Haemophilus 
influenzae 

N NO NO YES YES 

84. VO_0012376 2935168 
Haemophilus 

influenzae 
N NO NO NO YES 

85. VO_0011081 148971 
Haemophilus 

influenzae 
N NO NO NO YES 

86. VO_0012405 4929317 
Haemophilus 

influenzae 
N YES NO NO YES 

87. VO_0012406 9716645 
Haemophilus 

influenzae 
N YES YES YES YES 

88. VO_0010865 68249580 
Haemophilus 

influenzae 
N YES YES YES YES 

89. VO_0010915 68248984 
Haemophilus 

influenzae 
N YES YES YES YES 

90. VO_0011082 68249712 
Haemophilus 

influenzae 
N YES NO YES YES 

91. VO_0011083 68249503 
Haemophilus 

influenzae 
N YES YES YES YES 

92. VO_0011084 68248747 
Haemophilus 

influenzae 
N YES YES YES YES 

93. VO_0011339 3128145 
Helicobacter 

pylori 
N NO NO NO NO 

94. VO_0011341 50313203 
Helicobacter 

pylori 
N YES YES YES YES 

95. VO_0012388 16802248 
Listeria 

monocytogenes 
P YES NO NO YES 
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96. VO_0012404 215422507 
Listeria 

monocytogenes 
P YES YES YES NO 

97. VO_0011344 26513901 
Listonella 

anguillarum 
N YES NO YES YES 

98. VO_0012366 224992215 
Mycobacterium 

bovis BCG  
P YES YES NO YES 

99. VO_0010936 29027587 
Mycobacterium 

tuberculosis 
N YES YES NO YES 

100. VO_0012373 148660242 

Mycobacterium 

tuberculosis 
H37Ra 

P NO NO YES NO 

101. VO_0010919 57117165 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES 0.5657 YES 

102. VO_0012364 15609023 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES NO YES 

103. VO_0010951 15611010 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES YES YES 

104. VO_0010953 15607267 

Mycobacterium 

tuberculosis 
H37Rv 

P NO NO YES YES 

105. VO_0012367 15609117 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES NO NO 

106. VO_0012370 57116798 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES YES YES 

107. VO_0012371 57116919 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES NO NO 

108. VO_0012372 57116920 

Mycobacterium 

tuberculosis 
H37Rv 

P NO NO NO YES 

109. VO_0011175 57116926 

Mycobacterium 

tuberculosis 
H37Rv 

P YES YES NO YES 

110. VO_0011176 15609063 

Mycobacterium 

tuberculosis 
H37Rv 

P YES NO YES YES 

111. VO_0012407 57116801 Mycobacterium P YES YES YES YES 
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tuberculosis 
H37Rv 

112. VO_0012409 15610010 

Mycobacterium 

tuberculosis 
H37Rv 

P NO NO NO YES 

113. VO_0011178 7249262 
Mycoplasma 

gallisepticum 
N YES YES NO YES 

114. VO_0012380 8926211 
Neisseria 

meningitidis 
N YES YES YES YES 

115. VO_0011182 1017433 
Neisseria 

meningitidis 
N YES YES YES YES 

116. VO_0010946 15677945 
Neisseria 

meningitidis  
N YES NO YES YES 

117. VO_0010947 15677829 
Neisseria 

meningitidis 
N NO NO NO YES 

118. VO_0010974 15677776 
Neisseria 

meningitidis 
N NO 

NO 
 

NO YES 

119. VO_0010976 15677037 
Neisseria 

meningitidis 
N YES YES NO NO 

120. VO_0010977 15676883 
Neisseria 

meningitidis 
N YES YES YES YES 

121. VO_0010978 15675973 
Neisseria 

meningitidis 
N YES YES NO NO 

122. VO_0010979 15676561 
Neisseria 

meningitidis 
N YES YES YES YES 

123. VO_0010980 15677822 
Neisseria 

meningitidis 
N NO YES YES YES 

124. VO_0010981 15677705 
Neisseria 

meningitidis 
N YES YES YES NO 

125. VO_0010982 15677911 
Neisseria 

meningitidis 
N YES YES NO NO 

126. VO_0010983 15676917 
Neisseria 

meningitidis 
N YES YES YES NO 

127. VO_0011180 15676020 
Neisseria 

meningitidis 
N YES YES YES YES 

128. VO_0012360 15596974 
Pseudomonas 

aeruginosa  
N YES YES YES YES 

129. VO_0012361 15596903 

Pseudomonas 

aeruginosa 
PAO1 

N NO NO NO YES 
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130. VO_0012362 15598049 

Pseudomonas 

aeruginosa 
PAO1 

N YES NO  YES NO 

131. VO_0011317 152498 
Rickettsia 

prowazekii 
N YES YES YES YES 

132. VO_0011234 112710 
 Rickettsia 

rickettsii 
N YES YES YES YES 

133. VO_0011235 6685726 
 Rickettsia 

rickettsii 
N YES YES YES YES 

134. VO_0010997 259475459 

Salmonella 

enterica subsp. 
enterica 
serovar 
Typhimurium 

N YES YES YES YES 

135. VO_0010999 54036439 

Salmonella 

enterica subsp. 
enterica 
serovar 
Typhimurium 

N NO NO NO YES 

136. VO_0010994 22036246 
Shigella 

flexneri 2a 
N YES YES NO YES 

137. VO_0010995 47056 
Shigella 

flexneri 2a 
N YES NO YES YES 

138. VO_0010996 22036352 
Shigella 

flexneri 2a 
N YES NO NO YES 

139. VO_0010992 13449098 
Shigella 

flexneri 5a 
N YES NO YES NO 

140. VO_0012392 120457 
Staphylococcus 

aureus  
P YES YES YES YES 

141. VO_0012391 49482291 

Staphylococcus 

aureus subsp. 
aureus 
MRSA252 

P NO NO NO YES 

142. VO_0012390 151220968 

Staphylococcus 

aureus subsp. 
aureus 

P YES NO YES YES 

143. VO_0012393 5327234 
Streptococcus 

agalactiae 
P YES YES YES YES 

144. VO_0012403 1620648 
Streptococcus 

agalactiae 
P YES NO YES YES 

145. VO_0012402 76788047 
Streptococcus 

agalactiae 
P YES YES YES YES 
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146. VO_0011211 225870123 
Streptococcus 

equi 
P YES YES NO YES 

147. VO_0011213 225870316 
Streptococcus 

equi 
P YES YES YES YES 

148. VO_0011215 225869898 
Streptococcus 

equi 
P YES NO YES NO 

149. VO_0011216 225871286 
Streptococcus 

equi 
P NO NO NO YES 

150. VO_0011214 225869227 

Streptococcus 

equi subsp. 
zooepidemicus 

P YES YES YES YES 

151. VO_0011190 209867628 
Streptococcus 

pneumoniae 
P NO NO NO YES 

152. VO_0011192 116515376 

Streptococcus 

pneumoniae 
D39 

P YES NO NO YES 

153. VO_0011203 116515359 

Streptococcus 

pneumoniae 
D39 

P YES YES YES YES 

154. VO_0011204 116515876 

Streptococcus 

pneumoniae 
D39 

P NO YES NO YES 

155. VO_0012396 14915682 
Streptococcus 

pyogenes 
P YES NO YES YES 

156. VO_0012398 90567992 

Streptococcus 

pyogenes 
serotype M12 

P YES YES NO NO 

157. VO_0010901 166236883 
synthetic 
construct 

P YES YES NO YES 

158. VO_0011173 283801990 
synthetic 
construct 

S YES YES YES YES 

159. VO_0012399 15639249 
Treponema 

pallidum 
N NO NO NO YES 

160. VO_0012400 15639756 
Treponema 

pallidum 
N NO NO YES NO 

161. VO_0012401 159158965 
Treponema 

pallidum 
N YES YES YES YES 

162. VO_0011270 110264635 
Vibrio cholerae 
O1 

N NO NO YES YES 

163.  VO_0011271 21616882 
Vibrio cholerae 
O1 

N YES YES NO YES 
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164. VO_0011272 15640854 

Vibrio cholerae 
O1 biovar El 
Tor str. N16961 

N YES YES YES YES 

165. VO_0011003 162417777 
Yersinia pestis 
Angola 

N NO NO NO NO 

166. VO_0010870 45478667 

Yersinia pestis 
biovar 
Microtus str. 
91001] 

N YES YES YES NO 

167. VO_0010874 16082719 
Yersinia pestis 
CO92 

N NO NO NO NO 

168. VO_0010877 16082686 
Yersinia pestis 
CO92 

N YES YES YES NO 

169. VO_0010878 16082716 
Yersinia pestis 
CO92 

N NO NO NO YES 

170. VO_0012359 16082755 
Yersinia pestis 
CO92 

N NO NO YES YES 

171. VO_0010913 16082743 
Yersinia pestis 
CO92 

N NO NO NO YES 

172. VO_0011005 218927800 
Yersinia pestis 
CO92 

N YES YES YES YES 

173. VO_0011007 218927806 
Yersinia pestis 
CO92 

N NO NO NO YES 

174. VO_0011009 218930092 
Yersinia pestis 
CO92 

N NO NO NO NO 

175. VO_0011010 218928525 
Yersinia pestis 
CO92 

N YES NO NO NO 

176. VO_0011012 218927621 
Yersinia pestis 
CO92 

N NO NO YES NO 

177. VO_0011013 218930726 
Yersinia pestis 
CO92 

N NO NO NO YES 

*  
For details, see methods section. Jenner-Predict server is based on domains involved in 
host-pathogen interactions which are important in pathogenesis and disease establishment. 
Out of total 257 bacterial protective PVCs reported in the Protegen database, 177 bacterial 
protective antigens having less than 90 percent identity were selected for evaluation 
purpose from 200 proteins with non-cytosolic cellular localization and having less than two 
transmembrane helices. For comparison with VaxiJen, a cut-off of 0.6 was used instead of 
default parameter 0.4 as it predicts almost half of proteome as vaccine candidates with 
default parameter. 

# S. No. indicates Serial Number; p or n in Gram column indicates gram positive and gram 
negative, respectively; and YES or NO denotes the corresponding protein is predicted or 
not, respectively by the corresponding software or web server. 



$ Gram positive bacteria are denoted as “P
the above table. 

 

Figure 2.7: Comparative result of predicted PVCs in VaxiJen datasets through different 

methods 

 

Table 2.7: Results of protein vaccine candidate (PVC) prediction from positive dataset used 

for VaxiJen server development by software, NERVE, and web servers, Vaxign, 

VaxiJen and Jenner-Predict

S. 

No. 

SwissProt 

ID 

Gram 

(P/N) 
Localization

1. Q9RN24 P Extracellular

2. 
Q93V22 
P04977 

N Extracellular

3. Q9S6N1 N Outer Membrane

4. P14013 N  
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itive bacteria are denoted as “P” and gram negative bacteria are denote

result of predicted PVCs in VaxiJen datasets through different 

Results of protein vaccine candidate (PVC) prediction from positive dataset used 

for VaxiJen server development by software, NERVE, and web servers, Vaxign, 

Predict
*
. 

Localization Organism Nerve VaxiJen

Extracellular Bacillus anthracis YES YES 

Extracellular Bordetella pertussis  NO NO 

Outer Membrane Bordetella pertussis NO YES 

Borrelia burgdorferi YES YES 

NERVE Vaxign VaxiJen Jenner-

Predict

41 46 59

-5 -3 -2

0.639 0.494 0.554 0.711

0.758 0.848 0.909 0.94

Comparison result in VaxiJen datasets 

” and gram negative bacteria are denoted as “N” in 

 

result of predicted PVCs in VaxiJen datasets through different 

Results of protein vaccine candidate (PVC) prediction from positive dataset used 

for VaxiJen server development by software, NERVE, and web servers, Vaxign, 

VaxiJen Vaxign 
Jenner-

Predict 

 YES YES 

NO YES 

 NO YES 

 NO NO 
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5. P17739 N Outer Membrane Borrelia burgdorferi YES YES YES NO 

6. P70854 N Unknown Borrelia burgdorferi NO NO NO YES 

7. Q07337 N Outer Membrane Borrelia burgdorferi YES YES NO NO 

8. P0A470 N Unknown Brucella abortus NO NO NO NO 

9. P15453 N Periplasmic Brucella abortus YES YES NO NO 

10. Q45321 N Outer Membrane Brucella melitensis YES YES YES YES 

11. P27053 N Extracellular Campylobacter coli YES YES YES YES 

12. Q46412 N Outer Membrane 
Chlamydia 

trachomatis 
YES YES YES YES 

13. Q9RF12 P Extracellular 
Clostridium 

perfringens   
YES YES YES NO 

14. Q9RM68 P Unknown 
Clostridium 

perfringens   
YES YES NO YES 

15. Q9LA13 P Extracellular Clostridium tetani  NO NO NO YES 

16. P20626 P 
Unknown 
 

Corynebacterium 

pseudotuberculosis  
YES NO YES NO 

17. P05825 N Outer Membrane Escherichia coli  YES YES YES YES 

18. P08191 N Unknown Escherichia coli  YES YES YES YES 

19. P0AFZ6 N 
Cytoplasmic 
Membrane 

Escherichia coli  NO NO NO NO 

20. P17315 N Outer Membrane Escherichia coli  YES YES NO YES 

21. Q93V32 N Unknown Escherichia coli  YES NO YES YES 

22. P43838 N Outer Membrane 
Haemophilus 

influenzae 
YES YES YES YES 

23. P10324 N Outer Membrane 
Haemophilus 

influenzae 
YES YES YES YES 

24. P45996 N Outer Membrane 
Haemophilus 

influenzae 
YES YES NO YES 

25. Q9ZKX5 N Unknown Helicobacter pylori NO NO NO NO 

26. P24017 N Outer Membrane 
Klebsiella 

pneumoniae 
YES YES NO YES 

27. Q48427 N Outer Membrane 
Klebsiella 

pneumoniae 
YES YES YES YES 

28. Q48473 N Outer Membrane 
Klebsiella 

pneumoniae 
YES YES NO YES 

29. P21347 N Extracellular 
Klebsiella 

pneumoniae 
YES YES YES NO 

30. Q9Z374 N Unknown Klebsiella YES NO YES NO 
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pneumoniae 

31. P21171 P Extracellular 
Listeria 

monocytogenes  
YES YES YES YES 

32. Q9L5B9 P Extracellular 
Listeria 

monocytogenes  
YES NO NO YES 

33. Q06947 P Extracellular 
Mycobacterium 

avium 
YES YES YES YES 

34. 
P0A4V3 
P0C926 

N Outermembrane 
Mycobacterium 

bovis 
YES YES  NO NO 

35. P0A671 P 
Cytoplasmic 
Membrane 

Mycobacterium 

bovis 
NO NO NO YES 

36. O05870 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES YES YES 

37. P0A564 P Extracellular 
Mycobacterium 

tuberculosis 

YES 
 

YES YES YES 

38. P0A5P6 P Cell wall 
Mycobacterium 

tuberculosis 

NO 
 

NO YES NO 

39. P0A5Q2 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES NO YES 

40. P0A5Q4 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES YES NO 

41. P0A5Y2 P Unknown 
Mycobacterium 

tuberculosis 
YES YES YES YES 

42. P0A670 P 
Cytoplasmic 
Membrane 

Mycobacterium 

tuberculosis 
NO NO YES YES 

43. 
P31952 
A5U3Q3 

P Extracellular 
Mycobacterium 

tuberculosis 
YES YES NO YES 

44. Q79F92 P 
Cytoplasmic 
Membrane 

Mycobacterium 

tuberculosis 

NO 
 

NO NO NO 

45. O07175 P Unknown 
Mycobacterium 

tuberculosis 
NO YES NO YES 

46. O50430 P 
Cytoplasmic 
Membrane 

Mycobacterium 

tuberculosis 
NO NO YES NO 

47. P0A4V6 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES YES YES 

48. P0A566 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES  YES 

49. P0A568 P Unknown 
Mycobacterium 

tuberculosis 
YES YES YES YES 

50. P0A5B7 P Cell wall Mycobacterium YES YES NO NO 
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tuberculosis 

51. P0A5P2 P Extracellular 
Mycobacterium 

tuberculosis 

NO 
 

YES NO NO 

52. P0A5P8 P Extracellular 
Mycobacterium 

tuberculosis 
YES YES YES NO 

53. P0A5Y2 P Unknown 
Mycobacterium 

tuberculosis 
YES YES YES YES 

54. P15712 P Unknown 
Mycobacterium 

tuberculosis 
YES YES YES YES 

55. P65306 P 
Cytoplasmic 
Membrane 

Mycobacterium 

tuberculosis 

NO 
 

NO NO NO 

56. Q7D8M9 P 
Cytoplasmic 
Membrane 

Mycobacterium 

tuberculosis 

NO 
 

NO YES YES 

57. P96943 N Outer Membrane 
Neisseria 

meningitidis 
YES YES YES YES 

58. Q53348 N Outer Membrane 
Neisseria 

meningitidis 
YES YES YES YES 

59. Q53990 N Extracellular 
Neisseria 

meningitidis 
YES YES NO YES 

60. O30527 N Extracellular 
Pseudomonas 

aeruginosa 

NO 
 

NO NO YES 

61. P11439 N Extracellular 
Pseudomonas 

aeruginosa 

NO 
 

NO NO YES 

62. 32722 N Outer Membrane 
Pseudomonas 

aeruginosa 

NO 
 

YES YES YES 

63. P13794 N Outer Membrane 
Pseudomonas 

aeruginosa 
YES YES YES YES 

64. Q8ZP50 N Outer Membrane 
Salmonella 

typhimurium  
YES YES YES YES 

65. P69178 N Unknown Shigella dysenteriae YES YES NO YES 

66. P0A0L2 P Extracellular 
Staphylococcus 

aureus 
YES YES NO YES 

67. Q53653 P Cell wall 
Staphylococcus 

aureus 
YES YES NO YES 

68. Q3K3Z5 P Extracellular 
Streptococcus 

agalactiae 
YES YES YES YES 

69. Q9ZHG7 P Unknown 
Streptococcus 

agalactiae  
NO NO NO NO 

70. O34097 P Extracellular 
Streptococcus 

pneumoniae 
NO YES YES YES 
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71. 
P11990 
P0C2J9 

P Extracellular 
Streptococcus 

pneumoniae 
YES NO NO YES 

72. Q8DN05 P Extracellular 
Streptococcus 

pneumoniae 
YES YES YES YES 

73. Q8VQ82 P 
Cytoplasmic 
Membrane 

Streptococcus 

pneumoniae 

NO 
 

NO YES YES 

74. Q9AG74 P Unknown 
Streptococcus 

pneumoniae 

NO 
 

NO NO NO 

75. P59206 P Extracellular 
Streptococcus 

pneumoniae 
YES NO YES YES 

76. Q9Z4J8 P Unknown 
Streptococcus 

pneumoniae 
YES NO YES YES 

77. O30405 N Outer Membrane Treponema pallidum NO NO NO YES 

78. O83867 N Unknown Treponema pallidum NO YES NO YES 

79. P19649 N Outer Membrane Treponema pallidum NO YES NO NO 

80. Q87L97 N 
Cytoplasmic 
Membrane 

Vibrio 

parahaemolyticus   
NO NO NO NO 

81. 
P21206 
A4TSQ1 

N Extracellular Yersinia pestis NO NO NO YES 

82. P26948 N Extracellular Yersinia pestis YES YES YES NO 

83. Q7DHH4 P 
Cytoplasmic 
Membrane 

Staphylococcus 

aureus 

NO 
 

NO NO YES 

*  See details in methods section. Jenner-Predict server has been developed by us and is 
based on domains involved in host-pathogen interactions which are important in 
pathogenesis and disease establishment. Out of total 100 bacterial protective antigen in 
positive dataset used for VaxiJen server development, 83 proteins with non-cytosolic 
localization and having less than two transmembrane helices were selected for evaluation 
by different methods. For VaxiJen, a cut-off of 0.6 was used instead of default parameter 
0.4 as it predicts almost half of a bacterial proteome as vaccine candidates with default 
parameter. 

# S. No. indicates Serial Number; P or N in Gram column indicate gram positive or gram 
negative, respectively; and YES or NO denotes the corresponding protein is predicted or 
not, respectively by the corresponding software or web server. 
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Table 2.8: Results of protein vaccine candidate (PVC) prediction from negative dataset used 

for VaxiJen server development by software, NERVE, and web servers, Vaxign, 

VaxiJen and Jenner-Predict* 

#
S. 

No. 

SwissProt 

ID 
Organism Gram Nerve VaxiJen Vaxign 

Jenner-

Predict 

1. P26826 Clostridium perfringens P YES NOT YES NOT 

2. Q8XMI8 Clostridium perfringens P NOT NOT NOT NOT 

3. Q890Y8 Clostridium tetani P NOT NOT NOT NOT 

4. Q8Y652 Listeria monocytogenes P NOT NOT NOT NOT 

5. Q48909 Mycobacterium avium P NOT NOT NOT NOT 

6. Q48919 Mycobacterium avium P YES NOT YES YES 

7. Q7TXM7 Mycobacterium bovis P NOT YES NOT NOT 

8. O69742 Mycobacterium tuberculosis P YES YES YES NOT 

9. O69743 Mycobacterium tuberculosis P NOT NOT NOT NOT 

10. P0A5R6 Mycobacterium tuberculosis P NOT NOT NOT NOT 

11. Q79F93 Mycobacterium tuberculosis P YES NOT NOT NOT 

12. P0A5N0 Mycobacterium tuberculosis P NOT NOT NOT NOT 

13. P63338 Mycobacterium tuberculosis P NOT NOT NOT NOT 

14. P64249 Mycobacterium tuberculosis P NOT NOT NOT NOT 

15. P96910 Mycobacterium tuberculosis P NOT NOT NOT NOT 

16. O07341 Streptococcus pneumoniae P NOT NOT NOT NOT 

17. O33754 Streptococcus pneumoniae P NOT NOT NOT NOT 

18. Q7VWV9 Bordetella pertussis N NOT NOT NOT NOT 

19. O51043 Borrelia burgdorferi N NOT NOT NOT NOT 

20. O51240 Borrelia burgdorferi N NOT NOT NOT NOT 

21. Q05051 Borrelia burgdorferi N YES NOT YES NOT 

22. P0AD79 Escherichia coli N NOT NOT NOT NOT 

23. O25798 Helicobacter pylori N YES NOT NOT NOT 

24. Q3S3S0 Helicobacter pylori N NOT NOT NOT NOT 
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25. P20440 Klebsiella pneumoniae N YES NOT NOT NOT 

26. Q48439 Klebsiella pneumoniae N NOT NOT NOT NOT 

27. Q84HD6 Neisseria meningitidis N NOT NOT NOT NOT 

28. P23181 Pseudomonas aeruginosa N NOT NOT NOT NOT 

29. Q53247 Orientia tsutsugamushi N NOT NOT NOT YES 

30. P07643 reponema pallidum N NOT YES NOT NOT 

31. P29724 Treponema pallidum N NOT NOT NOT NOT 

32. Q8ZF61 Yersinia pestis N YES NOT YES NOT 

33. Q8ZIC6 Yersinia pestis N NOT NOT NOT NOT 
 

*  
See details in methods section. Jenner-Predict server is based on domains involved in 
host-pathogen interactions which are important in pathogenesis and disease 
establishment. Out of total 100 bacterial protective antigen in negative dataset used for 
VaxiJen server, 34 proteins with non-cytosolic cellular localization and having less than 
two transmembrane helices were selected evaluation by different methods. For VaxiJen, a 
cut-off of 0.6 was used instead of default parameter 0.4 as it predicts almost half of a 
bacterial proteome as vaccine candidates with default parameter. 

# S. No. indicates Serial Number; P or N in Gram column indicate gram-positive or gram-
negative, respectively; and YES or NO denotes the corresponding protein is predicted or 
not, respectively by the corresponding software or web server. 

 

2.3.4 Output 

The server, Jenner-Predict, has been designed for easy submission of a job in three 

different ways as well as user-friendly and interactive interpretation of results in the form of 

table and hyperlinks on output values. Just after job submission, a unique URL link is 

generated through random numbers so that users actively remain confident. The user may 

bookmark the unique URL link of his/her submission for tracking the status as jobs are 

processed in a queue. Once a job has been completed, the output is provided in a tabular 

format which can be accessed through unique URL link at any time. A sample output of 

result is represented in Figure 2.8. The information provided in different columns are as 

follows: 1. Sr. No.; 2. Gene Id; 3. Localization; 4. No. of transmembrane helices; 5. Pfam 

domain ID; 6. No. of IEDB TCE(s) match(s); 7. No. of IEDB BCE(s) match(s) (Hyperlinks 

on 6 and 7 showing details of matching epitopes); 8. and 9. Autoimmunity information 

through 35% identical matches in 80 AA lengths, and No. of continuous 9-mer identical 



87 

 

match in an alignment, respectively; and 10. Conservation in number of strains of an 

organism in the form of x/y/z: x. all (pathogenic and non-pathogenic)/, y. pathogenic/, z. non-

pathogenic. 

 

 

Figure 2.8: Output result of Jenner-Predict server 

 

2.4 Discussion 

The motivation behind developing this web server is to provide credible vaccine 

candidates and information regarding their vaccine potential in terms of possible 

immunogenicity, absence of autoimmunity and conservation so that subunit vaccine 

development can be accelerated. The outcome of the web server has substantiated that 

domains involved in host-pathogen interactions are better criterion for prediction of PVCs 

than approaches dependent upon only adhesin-likeliness or machine learning. As PVCs are 

predicted based on their functions, biologists can assess the importance of given function in 
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pathogenesis for that organism. The information regarding the function of PVC could be 

instrumental for vaccine development. For example, colonization is crucial in Streptococcus 

pathogenesis and proteins (also predicted by Jenner-Predict) involved in this process were 

used as vaccine candidates (Nobbs et al., 2009).  

Most of the earlier RV methods focused on outer membrane or secretory proteins of a 

proteome to identify PVCs. Pizza et al. screened proteome sequences of N. meningitis to 

identify proteins which are probably surface exposed or involved in transportation and 

obtained 570 proteins. Out of them, 350 proteins were expressed and experimentally tested 

for their immunogenic potential. Finally, 7 proteins were found to provide protective 

immunity against N. meningitidis (Pizza et al., 2000). Similarly, Wizemann et al. searched 

for motifs related to secretory or surface binding proteins in S. pneumoniae proteome and 130 

proteins were identified. Out of them, 108 were expressed and tested for their protective 

immunity. Finally, 6 proteins were found as protective antigens. Similar studies were 

performed for P. gingivalis (Ross et al., 2001) and C. pneumoniae (Montigiani et al., 2002). 

Although proteins providing immunity were identified in all the above mentioned studies but 

the number of experiments, cost and time requirement were enormous even for identifying 

PVCs from a particular localization. On the contrary, Jenner-Predict server is relying on 

protein domains involved in host-pathogen interactions for providing reasonably less number 

of prioritized vaccine candidates from a proteome. For better validation of vaccine 

candidates, the user may select few prospective vaccine candidates for experimental testing to 

verify their protective immunity.  

The BCE and TCE mapping algorithms were developed to identify possible immunogenic 

region(s) and consequently prediction of immunogenic potential of a protein. But these 

methods have drawbacks of over-prediction and even predict epitope(s) in known non-

antigenic proteins (Blythe and Flower, 2005; Gowthaman and Agrewala, 2007; Ponomarenko 

and Bourne, 2007; Zhang et al., 2010). Currently available antigen or PVC prediction 

methods were not validated on complete or diverse data. NERVE software was evaluated on 

its prediction ability of popular vaccine candidates from five bacterial proteomes instead of 

all known vaccine candidates in those organisms. Similarly, the Vaxign server was evaluated 

against only limited number of known OMP vaccine candidates from uropathogenic E. coli 

(He et al., 2010). Further, the VaxiJen server was developed on limited data. Even some of 

the sequences used as the negative data (non-antigenic) for web server development were 

predicted as vaccine candidates (antigenic proteins) by other methods (Table 2.8). Our web 
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server predicted two such proteins (Q48919 and Q53247) as PVCs from the negative dataset 

sequences.  Experimental data confirmed that alanine and proline rich secreted protein 

(Q48919) is immunogenic (Lee et al., 2009) whereas the other protein is a periplasmic serine 

or membrane protease (htrA gene) and has already been reported as protective antigen in 

Haemophilus influenzae (Loosmore et al., 1998). The other PVCs predicted from negative 

dataset by NERVE, Vaxign and VaxiJen do not have evidence of being immunogenic in 

literature. This outcome justifies higher sensitivity of our method.  

To provide prospective PVCs of a proteome, the predicted vaccine candidates are 

prioritized by Jenner-Predict server. The PVCs having more IEDB epitope matches are 

ranked higher as such epitope match increases their possibility to be immunogenic. Since 

epitopes identified using ‘hands on’ peptide-by-peptide in vitro assays have been more 

substantive than epitopes predicted by using in silico methods, known and validated epitopes 

from the IEDB (Vita et al., 2010) are mapped on PVCs to predict their potential 

immunogenic regions. The web server de-prioritizes PVC having human homolog(s) as they 

can potentially cause autoimmunity (Iwai et al., 2005) or produce low immune response 

(Grossman and Paul, 2001). Conservation information of PVCs is provided to demonstrate 

their broad specificities. Since the web server provides conserved and potential immunogenic 

PVCs, it may be useful to replace the existing strain-specific vaccine candidates. For 

example, the established vaccine candidate, PspA, is having choline-binding protein (CBP) 

domain and it has limited application from vaccine point of view as it is strain-specific. In 

contrast, our tool predicted cbpE (GI: 225858728) protein which is conserved across different 

strains of S. pneumoniae and has the same CBP domain. Since this protein has been surface 

exposed, and involved in nasopharyngeal colonization and/or dissemination of S. pneumoniae 

which is important for virulence, this protein may further be explored for vaccine 

development process (Rosenow et al., 1997).  

Jenner-Predict server predicted 3 experimentally known promising PVCs, STK (Giefing et 

al., 2008), NanA (Turbyfill et al., 2008), and PsaA (Talkington et al., 1996) in S. pneumoniae 

which are containing domains from non-adhesins functional classes such as PASTA, BNR 

and SBP, respectively, and these proteins are known to be immunogenic. Similarly, our 

method predicted established non-adhesin vaccine candidates, Omp A, IreA, BtuB and TolC 

(provides protective immune responses (Hagan and Mobley, 2007) in E. coli). The wide-

ranging applicability of the web server to all bacteria is substantiated by its high sensitivity 

for predicting diverse protective antigens from more than 40 pathogenic bacteria reported in 
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Protegen database (Table 2.6) and dataset used for VaxiJen server development (Table 2.7 

and Table 2.8).  Our domain based method was effective in predicting many established non-

adhesin vaccine candidates reported in Protegen database (Yang et al., 2011) such as 13 

toxins, 12 binding proteins (fibronectin, penicillin, choline, etc.), 10 membrane proteins, 6 

surface proteins, etc. (Table 2.6) which were not predicted by other methods. These 

protective antigens are involved in many important pathogenesis processes like virulence, 

invasion, colonization, iron acquisition, osmo-regulation, etc. (Table 2.6). Additional 

significance of comparison result was also evaluated on fifteen random datasets where in all 

cases Jenner-Predict outperform other methods (Table 2.6b). Furthermore mean of sensitivity 

again justify the predictive dominance of Jenner-Predict and minimum standard deviation of 

sensitivity within random datasets supports sensitive of method followed in Jenner-Predict 

(Table 2.6b).  The sensitivity of the web server was further substantiated by its prediction of 

immunogenic protein, Q48919, from negative dataset used for training of VaxiJen server 

(Table 2.8). Higher sensitivity and specificity of Jenner-Predict server (Figure 2.7) justifies 

the domains involved in host-pathogen interactions and pathogenesis are better criteria for 

PVCs prediction than other existing approaches. Jenner-Predict server is freely accessible for 

research and education purpose at http://14.139.240.55/vaccine/home.html. Output results 

and associated data can also be downloaded from available links. Standalone version of tool 

is not available. 

Further Jenner-Predict can be improved by including prediction of vaccine candidates 

from cytosolic proteins. The methodology followed in Jenner-Predict (currently considers 

non-cytosolic proteins), domain based approach, may extended further for vaccine candidate 

prediction. Considering cytosolic protein on the basis of any sequence property or using any 

algorithm may further improve the prediction accuracy of the method. 

2.5 Conclusions  

The Jenner-Predict server has been developed to predict potential PVCs and also to 

provide their vaccine potential with an objective of assisting subunit vaccine development. 

The web server was validated on independent and diverse datasets, where it outperformed 

other PVC prediction tools. Its performance substantiated that the proteins involved in host-

pathogen interactions and pathogenesis are better criteria than methods based on machine 

learning or adhesin-likeliness. Our method predicts less number of proteins with high 

prediction accuracy which confirms its reliability. Mapping of known epitopes from IEDB 
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database on PVCs increases the probability of a protein to be immunogenic. Comparison of 

these PVCs with human proteome sequences reduces the chance of their failure due to 

autoimmunity. Conservation of PVCs in pathogenic strains provides crucial information on 

their broad-specificities or sero-independent nature. The web server demonstrated that 

domain-based method can be used to predict PVCs from pathogen proteomes. Since the web 

server provides prioritized PVCs, few prospective proteins from a proteome could be taken 

for experimental evaluation to identify subunit vaccine candidates.  
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CHAPTER 3 

 

EPICOMBFLU: EXPLORING KNOWN INFLUENZA EPITOPES AND 

THEIR COMBINATION TO DESIGN UNIVERSAL INFLUENZA 

VACCINE 

___________________________________________________________________________ 
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ABSTRACT 

In spite of concerted efforts by Global Influenza Surveillance Network (GISN) and World 

Health Organization (WHO), influenza is responsible for annual deaths of half a million 

people worldwide. Vaccination is the best preventive measure against this pervasive health 

problem but influenza vaccines developed from surveillance data of each season are strain-

specific and provide protection against strains which are closely related to strains used in 

vaccine itself; therefore, these vaccines are unable to provide protection against pandemic 

strains arising from antigenic shift and/or drift. Seasonal epidemics and occasional pandemics 

along with drug resistance of influenza have created a necessity of universal influenza 

vaccine (UIV). Researchers have shown that combination of conserved epitopes has potential 

to be used as UIV. Influenza virus is one of the highly studied viruses due to its ancient 

importance. Hence, enormous information related to strains, proteins and nucleotides 

sequences, epitopes and other associated information are available for influenza virus. But 

there is no resource where conservation of epitopes is available as well as a resource where 

manually or automatically combination of conserved epitopes can be checked for their 

vaccine potential. In this chapter of thesis, available data on strains, proteins, epitopes and 

their associated information were used to develop a web-resource, EpiCombFlu which can 

explore different influenza epitopes and their combinations for conservation among different 

strains, population coverage, and immune response for vaccine design within the module 

“Epitope Information Resource”. Forward selection algorithm (FSA) was implemented in 

EpiCombFlu to select optimum combination of epitopes (in module “Epitope Combination 

Explorer”) which may be expressed and evaluated as potential UIV. The web-resource is 

freely available at http://14.139.240.55/influenza/home.html. 

 

(The content of this chapter has already been published: V. Jaiswal, et al. “EpiCombFlu: 

Exploring known influenza epitopes and their combination to design universal influenza 

vaccine”. Bioinformatics 2013, 29(15):1904-1907) 
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Figure 3.1: Graphical abstract of EpiCombFlu web server 
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3.1 Introduction 

Old battle against influenza worldwide costs half a million lives annually. Global 

influenza epidemics causes massive burden on health care system with about 1 billion 

infections annually which resulted in around 5 million severe cases of disease (Girard et al., 

2005). Despite availability of vaccines, there is always a threat of pandemic from newly 

emerging virulent strains. Current influenza vaccines i.e. trivalent inactivated vaccine (TIV) 

and live-attenuated vaccine (LAV) provide moderate protection which is greatly reduced or 

absent in some seasons (Osterholm et al., 2012). Pandemics of flu in the past have indicated 

that these vaccines were not efficient against new virulent strains. The Spanish flu was 

influenza pandemic which is considered as the most serious pandemics of recorded history 

(Table 3.1). Lists of flu pandemics are given in following Table 3.1. 

 

Table 3.1: Details of known influenza pandemics in past 

Name of Pandemics Year No. of Deaths Subtype involved 

Asiatic or Russian Flu 1889-1890 1 million Possibly H3N8 or H2N2 

Spanish Flu 1918-1920 20-100 million H1N1 

Asian Flu 1957-1958 1-1.5 million H2N2 

Hong Kong Flu 1968-1969 0.75-1 million H3N2 

Russian Flu 1977-1978 No accurate count  H1N1 

2009 Flu pandemic 2009-2010 18000 H1N1/09 

 

Current influenza vaccines generally consist of three influenza virus strains that the 

Centers for Disease Control and Prevention (CDC) determines to be the most predominant 

circulating strains for that flu season. Usually, all available influenza vaccines contain three 

strains of influenza virus which typically comprise two influenza A virus strains (H1N1 and 

H3N2) and one influenza B strains (Clayville, 2011).  

To monitor the predominant circulating influenza strains and migration of influenza drift 

mutants for selection of appropriate influenza virus strains intended for vaccine, the Global 

Influenza Surveillance Network (GISN) was established by the World Health Organization 

(WHO) in 1947 (Cox et al., 1994). Now GISN comprises of 136 National Influenza Centres 

(NICs) at 106 countries, 5 WHO Collaborating Centres, 11 H5 Reference Laboratories and 4 

Essential Regulatory Laboratories. GISN continues to expand its network to increase its 

global surveillance area and broaden its reach. Five WHO Collaborating Centres (Atlanta, 
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Beijing, London, Melbourne and Tokyo) receive collected samples (influenza specimens and 

isolates) from WHO NICs and Reference Laboratories for further study of sample for 

antigenic properties, genetic and drug sensitivity properties. 

Influenza is one of the most studied viruses due to its involvement in occasional deadly 

pandemics and seasonal epidemics from ancient time. Around sixty thousand strains of 

influenza virus are reported worldwide and the number of strains continues to grow, millions 

of proteins sequences associated with strains and other information about location, antigenic 

properties and virulence demands appropriate storage and analysis system. Burgeoning 

amount of data generated through next generation sequencing technology and other high 

throughput experiments further demand the requirement of high end computational resources. 

Taking into account the importance of information resources for influenza virus, several 

computational resources were constructed which are not only having databases but also they 

provide the facility to do analysis on available data (e.g. Influenza Research database (IRD)  

and Influenza Virus Database (IVDB) (Chang et al., 2007)). Influenza web resources contain 

information about strains, nucleotides sequences, proteins sequences, epitopes sequences, 

location of strains, animal surveillance, sequence feature variant types, immune epitope data, 

3D protein structures, host factor Data and other associated information (Chang et al., 2007; 

Squires et al., 2012). Details of the influenza-focused web-accessible resource are provided 

in Table 3.2.  

 

Table 3.2: Web resources focused on influenza 

Resource Name 

and Year of 

Establishment 

Web Link Description 

Influenza Sequence 

& Epitope Database 

(ISED) 

http://influenza.

korea.ac.kr/ISE

D2/index_3.jsp 

ISED catalogues the influenza sequence and epitope 

information obtained in countries worldwide and 

currently hosts a total of 50403 influenza A and 5215 

influenza B virus sequence data including pandemic 

A/H1N1 2009 virus sequences collected from 42 

countries. A total of 545 amantadine-resistant 

influenza virus sequences collected in Korea. ISED 

provides users with application tools to analyze 



97 

 

sequence alignment and difference patterns, and 

allows users to visualize epitope matching structures 

(Yang et al., 2009). 

Influenza Virus 

Database Systems 

(IVDS) 

http://virusdb.cz

c.hokudai.ac.jp/ 

The IVDS presents influenza virus data obtained at 

the Graduate School of Veterinary Medicine and 

Research Center for Zoonosis Control, Hokkaido 

University, Japan, a member of the OIE Reference 

Laboratory for highly pathogenic avian influenza and 

low pathogenic avian influenza, for further global 

collaboration and data sharing. 

Influenza Research 

Database (IRD) 

http://www.flud

b.org 

This resource will contain avian and non-human 

mammalian influenza surveillance data, human 

clinical data associated with virus extracts, 

phenotypic characteristics of viruses isolated from 

extracts and all genomic and proteomic data available 

in public repositories for influenza viruses. The IRD 

provides a suite of tools for analysis of all types of 

influenza data and a personal work bench on which 

each user can store lists of important data selected 

from IRD resource (Squires et al., 2012). 

Influenza Virus 

Resource (IVR) 

http://www.ncbi.

nlm.nih.gov/gen

omes/FLU/FLU.

html 

The IVR obtains data from the NIAID Influenza 

Genome Sequencing Project as well as from 

GenBank. It combines sequences with tools for flu 

sequence analysis, annotation and finally submits the 

sequences to GenBank. In addition, it provides links 

to other resources that contain flu sequences, 

publications and general information about flu 

viruses (Bao et al., 2008). 
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Global Initiative on 

Sharing Avian 

Influenza Data 

(GISAID) 

EpiFlu Database 

http://www.gisai

d.org 

This platform is designed and maintained for 

scientists from various disciplines in influenza 

research, including veterinary and human virology, 

bioinformatics, epidemiology, immunology and 

clinical analysis etc. From this resource one can find 

a series of services which pledge to offer the most 

complete information on influenza. 

The Influenza Virus 

Database (IVDB) 

http://influenza.

psych.ac.cn/ 

The IVDB is an integrated information resource and 

analysis platform for genetic, genomic, and 

phylogenetic studies of influenza virus (Chang et al., 

2007). 

The OpenFlu 

database 

(OpenFluDB) 

http://openflu.vit

al-

it.ch/browse.php 

It is a collaborative effort to share observations on 

the evolution of Influenza virus in both animals and 

humans. It contains genomic and protein sequences 

as well as epidemiological data from more than 

25,000 isolates (Liechti et al., 2010). 

 

Current influenza (TIV and LAV) vaccines provide protection by producing neutralizing 

antibodies against surface structural glycoproteins: hemagglutinin (HA) and neuraminidase 

(NA). But frequent mutations in these surface proteins results in escape of many virulent 

strains from antibody mediated immunity provided by vaccine strains (Fiore et al., 2009). Flu 

pandemic in 2009, and development of resistance strains to ribavirin and oseltamvir drugs 

which are first line of defense against influenza (Regoes and Bonhoeffer, 2006) reignited the 

hunt for UIV which can effectively counter the epidemics and pandemics caused by influenza 

virus. 

Several research studies are exploring protein based vaccines for influenza. The main 

focus for the protein-based subunit vaccine design has been given to surface proteins such as 

hemagglutinin (HA) and neuraminidase (NA) but variable nature of these surface proteins led 

to the use of other influenza proteins for vaccines development. Influenza proteins known to 

provide immune responses include HA, NA, matrix protein, nucleoprotein and PB1 protein 

(Chen et al., 2011; Doucet et al., 2011; El Bakkouri et al., 2011; Košík et al., 2012; Sylte and 

Suarez, 2009). High sequence variations in this virus proteins lead to search for conserved 
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part of proteins which also contains immunogenic region (epitopes) for UIV design (Tan et 

al., 2011). Epitopes are the only region of protein required for immune response therefore, 

epitope has least possibility of side effects. In recent years, epitope-based vaccines have 

shown their effectiveness against human immune-deficiency virus (HIV), hepatitis B and 

influenza viruses in clinical studies (Atsmon et al., 2012; Engler et al., 2001; Gahery et al., 

2006). Current approaches have been focusing on B-cell epitope (BCE) and/or T-cell epitope 

(TCE) mediated immune responses to develop the UIV (Goodman et al., 2011; Kaur et al., 

2011). Single conserved ectodomain (epitope) of M2 (M2e) protein was developed by some 

company as UIV against influenza virus but mutations in middle part of the ectodomain 

eliminated its potential as UIV (Wang et al., 2009). In M2 protein the amino acid threonine 

and glutamic acid in positions five and six, respectively were responsible for the formation of 

escape variants from antibody response (Wang et al., 2009). Vaccine produced from single 

conserved TCE or BCE may not provide broad-specific protection but a vaccine developed 

from cocktail of a few conserved epitopes can take it closer to UIV (Atsmon et al., 2012). 

Multimeric-001 vaccine was developed by BiondVax with an objective to protect humans 

from seasonal as well as pandemic influenza strains which are developed due to genetic drifts 

and shifts. Multimeric-001, contains trimeric combination of 9 linear epitopes from three 

different proteins (Hemagglutinin (HA), nucleoprotein (NP) and matrix protein 1 (M1)) of 

influenza virus, has known to provide broad protection and is currently in phase 2 clinical 

trials (Atsmon et al., 2012). Recent positive outcomes of epitopes-based vaccines have 

opened an opportunity that the available enormous information (epitope, protein, and 

nucleotide sequences, immunogenic data, strains, etc.) on known epitopes (BCEs and TCEs) 

in public databases may be explored for the selection of epitopes and/or their combinations to 

design potential UIV. Therefore, a web resource named as EpiCombFlu has been developed 

which consists of “Epitope Information Resource” and “Epitopes Combination Explorer”. 

The former is a database containing epitopes strains coverage and their immunogenic data 

while the latter explores combinations of epitopes for maximum strains coverage using 

forward selection algorithm (FSA). 
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3.2  Methods 

3.2.1 Data collection of proteins and epitopes of influenza virus 

All available sequences of 12 proteins (complete set of proteins encoded by influenza) 

HA, NA, NP, M1, M2, PB1, PB2, PB1-F2, NS1, NS2, PA and PA-X of influenza A virus 

were retrieved from influenza research database (http://www.fludb.org/). Redundant protein 

sequences within a strain were discarded while constricting protein sequences files for above 

mentioned 12 proteins.  Different sequences of each individual protein (i.e. HA, NA, etc.) and 

their associated information such as strain name, subtype, country and host were stored. TCE 

and BCE “full data” files were downloaded from immune epitope database (IEDB) 

(http://www.immuneepitope.org/) and all epitopes source organism (influenza), host 

organism (human) and ‘qualitative measurement’ related to immune response (positive, 

positive-low, positive-intermediate or positive-high) from 11 influenza proteins were 

extracted separately. Individual epitopes along with their literature reference, IEDB Id, and 

information on types of immunogenic response and HLA allele (in case of TCE only) were 

stored in MySQL database as backend data for development of web resource. To avoid 

similar epitopes from same region of the same protein, the epitopes were clustered so that 

only one epitope will be selected from each cluster. CD-Hit (http://weizhong-lab.ucsd.edu/cd-

hit/) was used for clustering of similar epitopes with threshold identity cut-off value 80%. 

Total number of non-overlapping clusters obtained in HA, NA, NP, M1, M2, PB1, PB2, PB1-

F2, NS1, NS2 and PA proteins were 238, 72, 74, 33, 9, 48, 16, 4, 24, 10 and 20, respectively. 

Clustering of epitopes helps in covering different regions of a protein and provides option to 

avoid similar type of epitopes. 

 

3.2.2 Calculation of epitopes strain coverage among different strains and population 

coverage 

All epitopes were matched against respective proteins to determine their strain coverage. 

Exact sequence match is taken as conservation cut-off because there is immense inter-

residues interaction in T-cell epitope so even a single amino acid substitution can alter 

interaction of other residues to TCR or HLA molecules (Rimmelzwaan et al., 2004). Data of 

all epitopes in terms of coverage in strains, vaccine strains, continent-wise strains, subtypes, 

and their host organism were calculated by using in-house programs. Individual strain 

coverage (ISC) of each epitope was computed as the number of strains containing the epitope 
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in their respective protein sequences and cumulative strain coverage (CSC) for combination 

of epitopes was determined as the number of all strains containing any epitope in their 

respective protein sequences. The strain coverage percentage of each epitope was calculated 

as ISC number multiplied by 100 and then divided by total number of strains where that 

protein sequence was available. Similarly coverage percentage of combination of epitopes 

was calculated as CSC number multiplied by 100 and then divided by total number of strains 

where any protein sequence was known. This coverage information was stored in MySQL 

database.  

Population coverage of TCE based vaccine is crucial due to polymorphism of MHC 

molecules which display distinct peptide-binding specificity. TCE that binds to several HLA 

or common HLA supertype (most frequent HLA supertype in population) provides maximum 

population coverage. HLA supertypes of all TCEs (CTL and Th) were also stored. Global 

representative of the most frequent supertype of HLA-A and HLA-B (A1, A2, A3, B24, B7) 

were categorized to provide population coverage information (Sidney et al., 2008). 

 

 

Figure 3.2: Methodology followed in EpiCombFlu 
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3.2.3 Database: Epitope Information Resource (EIR)  

Immunogenic information of epitopes and their coverage data were stored in MySQL 

database as backend data. The user interface (web pages) was designed in hypertext markup 

language (HTML), and PERL and PHP languages were used in developing server side 

program, which retrieve information from MySQL database for processing user’s request. 

EpiCombFlu’s resource can be searched by protein’s name, continent’s name, host 

organism’s name and/or epitope’s type. The results can be refined and tabulated 

(downloadable in .xls format). 

 

3.2.4 Forward selection algorithm (FSA) for finding optimal combination of epitopes 

(Epitope Combination Explorer)  

The main component of EpiCombFlu is “Epitope Combination Explorer”, which 

implements FSA to explore different combinations of epitopes for UIV. Evaluation of all 

combinations of epitopes covering approximately all global strains of influenza can result in 

combinatorial explosion. Therefore, FSA was developed and implemented in the web server 

to determine optimal combination of epitopes covering almost all global strains. By default, 

FSA takes epitope with maximum strain coverage as initial one. To select the next one 

(epitope), it determines cumulative strains coverage (CSC) for combination of new and initial 

epitopes, and the epitope (irrespective of protein) with maximum strain coverage is included 

into the combination. Similar method is followed to include third epitope into the 

combination, and the algorithm will incorporate epitopes in an iterative manner till user 

mentioned numbers of epitopes are added in the combination. The FSA can also take initial 

epitope(s) from user and then adds new epitopes (according to FSA) to provide optimal 

combination for maximum strains coverage. The stepwise execution of FSA and its output is 

provided in Figure 3.3 and ‘Tutorial’ (http://14.139.240.55/vaccine/tutorial.html). 

 

 



Ei- Initial epitope or initially selected epitopes

Ed- All known epitopes of influenza stored in our database

K- User provided number of epitope included through FSA

 

Figure 3.3: Flow diagram of forward selection algorithm (

 

3.3 Results 

Web resource EpiCombFlu provides compiled information on epitope’s strain coverage, 

epitope-type, host-type, literature refer

epitope(s) for developing UIV. The web resource also provides analysis facility which adds 

epitope automatically on the basis of maximum strain coverage. The inclusion of information 

on strain and population coverage, and both humoral and cellular immune r

in EpiCombFlu are crucial for epitope

Arnon, 2005).  
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Initial epitope or initially selected epitopes 

All known epitopes of influenza stored in our database 

User provided number of epitope included through FSA 

forward selection algorithm (FSA) 

provides compiled information on epitope’s strain coverage, 

type, literature references, etc. so that user can evaluate the prospective 

epitope(s) for developing UIV. The web resource also provides analysis facility which adds 

epitope automatically on the basis of maximum strain coverage. The inclusion of information 

on strain and population coverage, and both humoral and cellular immune response features 

in EpiCombFlu are crucial for epitope-based broad spectrum vaccine (Ben

 

provides compiled information on epitope’s strain coverage, 

ences, etc. so that user can evaluate the prospective 

epitope(s) for developing UIV. The web resource also provides analysis facility which adds 

epitope automatically on the basis of maximum strain coverage. The inclusion of information 

esponse features 

(Ben-Yedidia and 
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3.3.1 Description 

The web resource provides a user-friendly interface “Epitope Information Resource” to 

search and retrieve information related to influenza epitopes. Output of the search is 

presented in a tabular format which contains strain coverage and immunogenic information of 

epitopes. “Epitope Combination Explorer” evaluates different combinations of influenza 

epitopes using FSA. There are two options to submit epitope sequences into this module: 1. 

Selection of an epitope from dropdown menu of corresponding proteins (mouse on epitope 

sequence in the ‘list box’ displays a hover showing information about their immune 

responses, and coverage in strains (global, continents-wise and vaccine, strains), subtypes, 

and their host organism) and 2. Typing epitope sequence in provided text box Figure 3.4. The 

“Epitope Combination Explorer” provides similar information as “Epitope Information 

Resource” about conservation and immune response but for combination of selected epitopes.  

3.3.2 Conservation of epitopes according to strain, sub-type and host-type 

Epitope from HA, GLFGAIAGFI, has maximum strain coverage and is conserved in 

27402 strains. Top 10 epitopes from HA protein has conservation range in between 27402 to 

13761 strains. Some epitopes were highly conserved and more than seventy epitopes were 

conserved in more than 10000 strains and twelve epitopes were found to be conserved in 

more than 20000 strains (Table 3.3). In web resource, strain coverage information of each 

epitope is hovered so that user can select conserved epitopes. Strain coverage data of top 10 

epitopes of each protein is given in Table 3.3.  
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Figure 3.4: Job submission page of EpiCombFlu depicting three different methods for 

submission of a job. i) Selection of an epitope from drop down menu of 

corresponding protein, ii) Typing epitope sequence in provided text box and iii) 

To add epitopes through FSA 
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Table 3.3: Top 10 epitopes according to strain coverage data of each eleven influenza proteins 

Protein 

Name 

Epitope 

Id 

Epitope 

Type 

All 

Strain 
Asia 

North 

America 
Europe Africa 

South 

America 
Oceania Human Avian Swine MHC Allele Name 

HA 20837 T-cell 27402 11382 9655 3966 1198 594 568 12846 11610 2400 
HLA-A*02:01|HLA-
A*02:02|HLA-A*02:03|HLA-
A*02:06|HLA-A*68:02 

HA 20838 B-cell 27303 11319 9641 3947 1197 592 568 12792 11571 2394 Not Applicable  

HA 62335 T-cell 17276 5699 6835 3287 338 641 459 14067 21 3172 H-2-IEd  

HA 11335 T-cell 17048 5805 6505 3289 335 638 460 14150 22 2861 HLA-DRB5*01:01 

HA 151026 B-cell 16979 5777 6476 3277 335 638 460 14112 22 2831 Not Applicable 

HA 95880 T-cell 16562 5325 7082 2746 337 582 475 13031 254 3249 HLA-Class II allele undetermined  

HA 151039 B-cell 16556 5331 7085 2730 337 583 475 13023 254 3249 Not Applicable 

HA 95458 T-cell 15846 4998 6832 2674 283 575 469 12555 79 3199 HLA-Class II allele undetermined  

HA 150978 B-cell 13807 5045 4970 2541 264 519 455 11411 223 2145 Not Applicable 

HA 79809 T-cell 13761 4512 5655 2587 104 478 415 10482 1442 1781 
HLA-DRA*01:01/DRB1*01:01| 
/DRB1*04:01 

M1 18170 T-cell 24550 9034 10978 2564 479 253 1211 12794 8272 2675 HLA-DR4 

M1 79905 T-cell 24528 9021 10971 2562 479 253 1211 12794 8264 2661 HLA-DRA*01:01/DRB1*04:01 

M1 33844 T-cell 24518 8947 11016 2584 470 253 1216 12790 8234 2691 HLA-A3 

M1 4349 T-cell 24507 9105 10878 2537 481 260 1209 12846 8326 2675 HLA-B35|HLA-B*35:01 
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M1 97192 T-cell 24495 9097 10876 2535 481 260 1209 12845 8321 2669 HLA-A1 

M1 144210 T-cell 24453 9077 10872 2528 481 259 1199 12825 8300 2669 
HLA-A*03:01|HLA-A*11:01|HLA-
A*31:01|HLA-A*33:01|HLA-
A*68:01 

M1 97255 T-cell 24097 8655 10939 2542 467 252 1211 12714 7951 2653 HLA-Class I allele undetermined 

M1 129032 T-cell 24033 8936 10450 2688 473 255 1198 12937 7958 2598 HLA-DRB5  

M1 97730 T-cell 24015 8822 10756 2490 475 245 1195 12503 8243 2625 HLA-Class II allele undetermined 

M1 65112 T-cell 23996 8814 10755 2488 472 244 1191 12497 8229 2629 HLA-DRB1*04:04  

M2 144461 T-cell 14594 4939 6822 2022 301 201 293 5381 6752 2149 
HLA-A*03:01|HLA-A*11:01|HLA-
A*31:01|HLA-A*33:01|HLA-
A*68:01  

M2 97562 T-cell 14143 4358 7131 1194 346 64 1024 6294 6153 1218 -------------- 

M2 97518 T-cell 6573 2821 2457 506 116 40 620 6540 4 29 -------------- 

M2 68383 T-cell 6134 1629 2899 563 123 42 866 5809 77 248 HLA-B44  

M2 97545 T-cell 6166 2440 3080 488 22 20 104 127 5706 149 HLA-Class I allele undetermined  

M2 97727 T-cell 5461 1396 2542 523 119 40 833 5389 10 62 -------------- 

M2 59318 B-cell 4929 1295 2416 431 117 40 622 4876 4 49 Not Applicable 

M2 97749 B-cell 4847 1765 2525 435 18 12 81 103 4526 64 Not Applicable  

M2 97544 T-cell 4085 1161 1708 398 105 7 703 4054 1 30 HLA-Class I allele undetermined  

M2 128914 T-cell 2100 858 935 80 12 26 185 2098 2 0 HLA-DRB1*04:04  
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NA 127810 T-cell 14624 5883 4770 2705 568 273 409 9764 3549 1189 
HLA-DRB1*01:01|HLA-
DRB1*07:01|HLA-DRB1*11:01  

NA 135949 T-cell 14049 5601 4540 2665 562 273 394 9718 3051 1164 
HLA-DRB1*01:01|HLA-
DRB1*07:01|HLA-DRB5*01:01 

NA 135932 T-cell 13111 5700 4157 2436 141 273 395 9813 2417 775 
HLA-DRB1*11:01|HLA-
DRB5*01:01  

NA 62486 T-cell 12088 4928 4083 2045 386 233 397 8645 2632 711 HLA-A24 

NA 135909 T-cell 11710 4918 3525 2268 548 251 193 7227 2955 1441 HLA-DRB1*15:01  

NA 136008 T-cell 11681 4916 3486 2270 552 251 193 7320 2993 1274 HLA-DRB1*15:01  

NA 130337 T-cell 11553 4644 4017 1903 363 233 377 8380 2425 652 -------------- 

NA 135946 T-cell 10808 4675 2953 2275 455 250 194 7286 2975 461 
HLA-DRB1*04:01|HLA-
DRB1*15:01  

NA 135938 T-cell 10801 5010 2591 2302 442 249 194 7360 2666 685 HLA-DRB1*04:01 

NA 135937 T-cell 10722 4588 2933 2294 458 250 193 7251 2918 469 
HLA-DRB1*04:01|HLA-
DRB1*15:01  

NP 9745 T-cell 18914 6457 8631 2041 321 230 1206 9634 7389 1393 HLA-Class II allele undetermined  

NP 21255 T-cell 18906 6452 8640 2043 321 227 1195 9620 7399 1403 HLA-A*02:01  

NP 38688 T-cell 18883 6463 8614 2029 321 229 1199 9609 7392 1384 HLA-B*07:02|HLA-B*54:01 

NP 97772 T-cell 18873 6444 8617 2033 327 230 1194 9632 7348 1395 HLA-B44|HLA-B*18:01 

NP 27126 T-cell 18867 6419 8613 2043 331 227 1206 9634 7335 1397 HLA-B8 

NP 49220 T-cell 18843 6441 8605 2020 320 229 1200 9605 7374 1368 HLA-DRB1*01:01  
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NP 27283 T-cell 18800 6390 8577 2153 217 227 1204 9838 7058 1404 HLA-A3|HLA-A28 

NP 67439 T-cell 18626 6461 8350 2053 318 224 1192 9611 7269 1389 HLA-Class II allele undetermined 

NP 56698 T-cell 18648 6010 8620 2222 335 229 1202 9852 6867 1427 HLA-DQ5 

NP 164408 T-cell 18586 6441 8335 2048 318 224 1192 9606 7243 1381 HLA-Class I allele undetermined 

NS1 10014 T-cell 14918 5953 6083 1845 329 213 467 6518 6416 1427 HLA-DR3  

NS1 19312 T-cell 13187 5225 5295 1711 315 189 428 5485 6015 1137 HLA-B44  

NS1 130242 T-cell 10648 3849 4459 990 340 48 942 5105 5259 108 HLA-DRB1*01:01  

NS1 144293 T-cell 9136 4190 3433 880 250 53 306 2022 6208 377 
HLA-A*02:01|HLA-
A*02:02|HLA-A*02:03|HLA-
A*02:06|HLA-A*68:02  

NS1 128294 T-cell 7202 2011 3504 1062 71 197 350 5876 226 991 HLA-DRB1*03:01  

NS1 97170 B-cell 6802 3402 2416 554 273 19 119 494 5713 68 Not Applicable 

NS1 128504 T-cell 6195 2641 2687 535 35 27 257 1425 4423 182 HLA-DRB1*11:01  

NS1 27467 T-cell 4761 1226 2808 410 33 36 236 1372 2933 32 HLA-Class I allele undetermined 

NS1 2014 T-cell 4758 1226 2806 409 33 36 236 1372 2932 32 HLA-A*02:01|HLA-A2 

NS1 128445 T-cell 4724 1212 2788 408 32 36 236 1371 2902 32 HLA-A*02:01  

NS2 97405 T-cell 17089 6037 7385 1976 325 193 1148 9627 5643 1354 HLA-A2  

NS2 97195 T-cell 13738 5088 6237 1665 277 163 290 4723 7110 1309 HLA-A2  
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NS2 144440 T-cell 10280 3161 5037 880 232 58 891 4862 4269 747 
HLA-B*18:01|HLA-B*40:01|HLA-
B*40:02|HLA-B*44:03|HLA-
B*45:01|HLA-B*44:02  

NS2 148935 T-cell 6564 2633 3048 500 34 51 277 1808 4239 57 HLA-DR|  

NS2 41785 T-cell 6442 2537 2858 655 67 41 267 1832 4261 212 HLA-Class II allele undetermined  

NS2 97498 T-cell 3742 1102 1527 368 64 5 674 3301 399 40 HLA-Class II allele undetermined  

NS2 97757 T-cell 3641 853 1576 443 60 10 691 3575 16 50 -------------- 

NS2 129425 T-cell 1340 312 751 50 1 28 198 1286 52 1 -------------- 

NS2 129280 T-cell 1297 313 709 53 1 29 190 1250 36 10 -------------- 

NS2 128860 T-cell 1239 295 690 43 1 29 181 1206 29 2 -------------- 

PA 17119 T-cell 18194 5514 8989 1955 311 220 1178 9214 7125 1325 
HLA-A*02:01|HLA-
A*02:02|HLA-A*02:03|HLA-
A*02:06|HLA-A*68:02|HLA-A2 

PA 129181 T-cell 18150 5870 8722 1824 317 212 1177 8931 7484 1245 -------------- 

PA 76533 T-cell 18076 5458 8949 1949 296 222 1175 9204 7042 1305 HLA-A*24:02|HLA-A*23:01  

PA 148589 T-cell 18040 5733 8758 1836 296 216 1173 9121 7198 1238 HLA-DR  

PA 97503 T-cell 17899 5735 8622 1823 309 219 1164 9026 7278 1217 HLA-Class I allele undetermined 

PA 128477 T-cell 17873 5689 8626 1867 291 218 1163 9067 7302 1185 -------------- 

PA 144377 T-cell 17562 5121 8785 1929 309 222 1170 9158 6885 999 
HLA-A*03:01|HLA-A*11:01|HLA-
A*31:01|HLA-A*68:01 
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PA 97623 T-cell 17290 5680 8256 1895 238 188 1007 8013 7445 1305 HLA-DR  

PA 62180 T-cell 16607 5255 8405 1718 311 216 676 8110 6976 1046 HLA-B8  

PA 148968 T-cell 14735 5278 6953 1473 274 214 521 6988 6454 1029 HLA-DR  

PB1 75755 T-cell 18702 6168 8941 1860 320 220 1166 9201 7656 1331 
HLA-A*01:01|HLA-
A*26:01|HLA-A*30:02|HLA-
A*29:02 

PB1 10514 T-cell 18698 6219 8883 1860 322 221 1166 9280 7592 1318 HLA-A26  

PB1 97682 T-cell 18596 6094 8922 1850 317 220 1166 9144 7620 1321 HLA-Class I allele undetermined 

PB1 165648 T-cell 18603 6084 8948 1832 327 222 1163 9073 7644 1360 HLA-B27  

PB1 127207 T-cell 18565 6158 8842 1839 318 219 1162 9248 7520 1291 HLA-DRB1*04:01 

PB1 45001 T-cell 18573 6112 8864 1834 341 221 1171 9101 7633 1344 
HLA-A*02:01|HLA-
A*02:02|HLA-A*02:03|HLA-
A*02:06|HLA-A*68:02 

PB1 6174 T-cell 18558 6064 8926 1826 330 222 1163 9061 7634 1347 HLA-B44  

PB1 97309 T-cell 18554 6108 8862 1833 329 221 1171 9099 7617 1343 HLA-A2 

PB1 42143 T-cell 18543 6111 8852 1831 327 221 1171 9102 7613 1343 HLA-A2 

PB1 97655 T-cell 18514 6090 8846 1829 327 221 1171 9094 7595 1342 HLA-DR 

PB2 97519 T-cell 1113 97 486 142 3 0 385 1103 0 10 -------------- 

PB2 144475 T-cell 178 172 0 0 0 0 0 15 151 0 
HLA-A*03:01|HLA-A*11:01|HLA-
A*31:01|HLA-A*33:01|HLA-
A*68:01  
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PB2 130187 T-cell 2 2 0 0 0 0 0 2 0 0 -------------- 

PB2 97779 T-cell 2 2 0 0 0 0 0 2 0 0 HLA-Class I allele undetermined 

PB2 164387 T-cell 18293 5870 8802 1911 298 220 1168 9224 7303 1293 HLA-B27  

PB2 148683 T-cell 18070 5575 8808 1972 309 217 1168 9278 7005 1312 HLA-DR  

PB2 144526 T-cell 17827 5404 8777 1922 311 218 1168 9200 6844 1302 
HLA-A*03:01|HLA-A*11:01|HLA-
A*31:01|HLA-A*68:01  

PB2 97446 T-cell 17411 5200 8615 1882 313 215 1159 9031 6684 1248 HLA-DR  

PB2 97696 T-cell 17033 5128 8408 1815 296 213 1147 9041 6591 952 -------------- 

PB2 173541 T-cell 16417 5375 7848 1719 290 177 981 8055 7084 828 -------------- 

PB1f2 129123 T-cell 2780 630 1273 141 40 5 689 2748 0 32 -------------- 

PB1f2 97574 B-cell 2700 920 1376 67 49 5 279 1742 808 19 Not Applicable  

PB1f2 97462 B-cell 182 182 0 0 0 0 0 24 153 0 Not Applicable 
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3.3.3 Performance of the FSA for UIV design 

When the epitope with maximum strain coverage, GLFGAIAGFI, was used as an initial 

epitope for FSA and all other epitopes were added automatically based on maximum 

cumulative strains coverage of combined epitopes (Refer Section 3.2.4, Figure. 3.5), nine 

epitopes were selected from five proteins (4 HA, 2 NA, 1 M1, 1 NP and 1 NS1) covering 

51222 strains out of total 57414 strains of influenza A virus (Table 3.4). Epitopes 1, 3 and 7 

provide CTL immune responses. Epitopes bind to MHC II alleles were taken as Th-cell 

epitopes. Interestingly, other six epitopes are known to induce Th immune response which is 

crucial to encounter viral infection (Tan et al., 2011). First and seventh CTL and second and 

fifth Th epitopes are known to bind with multiple HLA supertypes indicating their applicability 

to global human population. 

Epitope-based vaccine, Multimeric-001, is composed of nine epitopes (four BCE and one 

Th epitope from HA protein, two CTL and one Th from NP protein, and one peptide that 

contains both BCE and CTL epitope from M1 protein) and epitopes forming this vaccine have 

coverage of only 30848 strains of influenza A virus (Table 3.4) in comparison to 51222 strains 

coverage of 9 epitopes combination discovered in the present work by FSA. Besides coverage, 

FSA discovered combination of epitopes is expected to induce better immune response and 

population coverage which is important in vaccine design against influenza virus. 
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• End result of the FSA including sequences of epitopes, Epitope ID, CSC, ISC, MHC

allele, etc. has been provided in Table 3.4 (Case

• The above flow diagram is also effective for the cases of user selected epitope or set of 

epitopes. The user provided ep

diagram, and the moment user wishes FSA to combine epitopes, the FSA computes 

CSC for the combination of already selected epitopes, Ec with each of remaining 

epitopes one by one. The combination which

the combination. The detailed procedure related execution of FSA has been provided in 

the tutorials. Few outputs using user selected epitope(s) has been provided in the Table 

3.4 (details in Table 3.5-3.12).

 

Figure 3.5: Stepwise execution of FSA started through epitope (GLFGAIAGFI) having 

maximum strain coverage (refer section 3.3.3)
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End result of the FSA including sequences of epitopes, Epitope ID, CSC, ISC, MHC

allele, etc. has been provided in Table 3.4 (Case-II). 

The above flow diagram is also effective for the cases of user selected epitope or set of 

epitopes. The user provided epitope(s) are incorporated in the starting steps of flow 

diagram, and the moment user wishes FSA to combine epitopes, the FSA computes 

CSC for the combination of already selected epitopes, Ec with each of remaining 

epitopes one by one. The combination which provides maximum CSC is included into 

the combination. The detailed procedure related execution of FSA has been provided in 

the tutorials. Few outputs using user selected epitope(s) has been provided in the Table 

3.12). 

Stepwise execution of FSA started through epitope (GLFGAIAGFI) having 

maximum strain coverage (refer section 3.3.3) 

 

End result of the FSA including sequences of epitopes, Epitope ID, CSC, ISC, MHC-

The above flow diagram is also effective for the cases of user selected epitope or set of 

itope(s) are incorporated in the starting steps of flow 

diagram, and the moment user wishes FSA to combine epitopes, the FSA computes 

CSC for the combination of already selected epitopes, Ec with each of remaining 

provides maximum CSC is included into 

the combination. The detailed procedure related execution of FSA has been provided in 

the tutorials. Few outputs using user selected epitope(s) has been provided in the Table 

Stepwise execution of FSA started through epitope (GLFGAIAGFI) having 
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3.3.4 Output 

Output results of “Epitope Combination Explorer” (ECE) were designed to display in 

tabular format for easy interpretation. First row of result table shows information about the 

selected combination of epitopes and all other rows represent the similar information but for 

individual epitopes taken into combination. Output table is having four columns. First column 

represents the epitope ID (IEDB ID); second column contains the description of epitope or 

combination of epitopes in terms of conservation (according global strains, continent-wise 

strain, vaccine strains, host-wise, and subtypes), epitope type (T-cell, B-cell or Both), MHC 

allele name (in case of T-cell) and cluster ID of epitope; and third and fourth columns contain 

pie chart according to continent wise strain coverage of epitope or combination of epitopes 

(fourth column) and global strain coverage of epitope or combination of epitopes (fifth 

column). Sample output for combination of two epitopes is provided in Figure 3.6.  

 

 



 

Figure 3.6: Output result of “Epitope Combination Explorer” calculated fro

of two epitopes 
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Output result of “Epitope Combination Explorer” calculated from the combination 

 

m the combination 
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Table 3.4: Comparative analysis of strains coverage and their continent-wise distribution for different combination of epitopes (Multimeric-001 and 

EpiCombFlu using FSA)*  

Case Methods of epitopes combination 
All Strains 

Coverage 
Asia Africa Europe 

North 

America 
Oceania 

South 

America  
Human Avian Swine 

I. Multimeric-001 30848 17213 925 5931 17095 2805 1142 21485 6983 1418 

II. FSA selection 51222 21242 1704 8061 17145 1802 1205 31184 13670 5167 

III. 

20 length epitope from HA as 
initial epitope and subsequent 8 
epitopes were selected 
automatically through FSA 

51057 21204 1706 8043 17034 1804 1203 31130 13579 5143 

IV. 

20 length epitope from HA as 
initial epitope and subsequently 
only more than 10 lengths epitopes 
were selected automatically 
through FSA  

50916 21043 1662 7983 16939 1787 1439 31430 13312 5092 

V. 
First BCE was selected manually 
and subsequent 8 epitopes were 
selected automatically by FSA 

51178 21201 1703 8059 17145 1802 1205 31165 13646 5166 

VI. 

First two BCEs were selected 
manually and subsequent 7 
epitopes were selected 
automatically by FSA 

51141 21203 1691 8048 17129 1802 1205 31167 13610 5160 

VII. 

First four BCEs (3 epitopes from 
HA and 1 form M1) were selected 
manually and subsequent 5 
epitopes were selected 
automatically by FSA 

51122 21199 1691 8039 17123 1802 1205 31154 13610 5155 

VIII. First four BCEs (low strain 48999 20418 1643 7447 16494 1755 1182 29918 13164 4858 
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coverage) were selected manually 
and subsequent 5 epitopes were 
selected automatically by FSA 

IX. 
Only Th epitopes were selected 
through FSA 

49713 20860 1687 7615 16547 1749 1194 30697 12815 5101 

 * The Multimeric-001 was developed by BiondVax (Atsmon et al., 2012) and EpiCombFlu method has been developed in the present work. 
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Table 3.5: Case II: FSA identified nine epitopes, and their information related to epitope ID, CSC, ISC, different host-strain coverage, immune      

response and MHC allele distribution is provided. 

Epitope 

number 
Epitope sequences 

$Epitope 
ID 

$
CSC 

$
ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of Immune 
response 

MHC Allele 

E1 GLFGAIAGFI 20837 27402 27402 12846 11610 2400 T-cell 

HLA-A*02:01 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 

E2 IYWTIVKPGDILLINS 29727 40535 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E3 KTRPILSPLTK 33844 44668 24518 12790 8234 2691 T-cell HLA-A3 

E4 STDTVDTVLEKNVTVTHS 95880 47747 16562 13031 254 3249 Th-cell 
HLA-Class II allele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 48960 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 DRLRRDQKS 10014 49629 14918 6518 6416 1427 Th-cell HLA-DR3 

E7 ILRGSVAHK 27283 50182 18800 9838 7058 1404 T-cell 
HLA-A3 
HLA-A28 

E8 EQLSSVSSFERFE 113375 50729 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E9 CVCINGTCTVVMTDGSA 127615 51222 8646 5625 1790 1203 Th-cell DRB1*01:01 

$ Refer section 3.3.3 and Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage. 



121 

 

Table 3.6: Case III: FSA 20 length epitope from HA was selected as initial epitope and subsequent 8 epitopes were selected automatically through 

FSA. Nine epitopes information related to epitope ID, CSC, ISC, different host-strain coverage, immune response and MHC allele 

distribution is provided. 

Epitope 

number 
Epitope sequences 

$
Epitope 

ID 
$CSC $ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of 
Immune 
response 

MHC Allele 

E1 
CYPYDVPDYASLRSLVAS

SG 
138761 12682 12682 11526 945 129 Th-cell 

HLA-DRB5*01:01 
HLA-DRB1*04:01 

E2 GLFGAIAGFI 20837 39020 27402 12846 11610 2400 T-cell 

HLA-A*02:01 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 

E3 KTRPILSPLTK 33844 43806 24518 12790 8234 2691 T-cell HLA-A3 

E4 STDTVDTVLEKNVTVTHS 95880 46885 16562 13031 254 3249 Th-cell 
HLA-Class II allele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 48097 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 PGDILLINSTGNLIAPR 129567 49298 13065 12619 2 407 Th-cell 
HLA-Class IIallele 
undetermined 

E7 DRLRRDQKS 10014 49964 14918 6518 6416 1427 Th-cell HLA-DR3 

E8 EQLSSVSSFERFE 113375 50514 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E9 ILRGSVAHK 27283 51057 18800 9838 7058 1404 T-cell 
HLA-A3 
HLA-A28 

$ Refer Table 3.4.. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.7: Case IV: FSA 20 length epitope from HA was selected as initial epitope and subsequent 8 epitopes with 10 or more than 10 lengths were 

selected automatically through FSA. Nine epitopes information related to epitope ID, CSC, ISC, different host-strain coverage, immune 

response and MHC allele distribution is provided. 

Epitope 

number 
Epitope sequences 

$
Epitope 

ID 
$CSC $ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of Immune 
response 

MHC Allele 

E1 
CYPYDVPDYASLRSLVAS

SG 
138761 12682 12682 11526 945 129 Th-cell 

HLA-DRB5*01:01 
HLA-DRB1*04:01 

E2 GLFGAIAGFI 20837 39020 27402 12846 11610 2400 T-cell 

HLA-A*02:01 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 

E3 KTRPILSPLTK 33844 43806 24518 12790 8234 2691 T-cell HLA-A3 

E4 STDTVDTVLEKNVTVTHS 95880 46885 16562 13031 254 3249 Th-cell 
HLA-Class IIallele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 48097 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 PGDILLINSTGNLIAPR 129567 49298 13065 12619 2 407 Th-cell 
HLA-Class IIallele 
undetermined 

E7 EQLSSVSSFERFE 113375 49886 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E8 LILRGSVAHKSCLPACVY 97448 50437 16963 8331 6868 1265 Th-cell 
HLA-Class IIallele 
undetermined 

E9 NQNLEYQIGYICSGIFG 135967 50916 7872 7182  521 Th-cell DRB1*01:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.8: Case V: FSA First BCE was selected manually and subsequent 8 epitopes were selected automatically by FSA. Nine epitopes information 

related to epitope ID, CSC, ISC, different host-strain coverage, immune response and MHC allele distribution is provided 

Epitope 

number 
Epitope sequences 

$Epitope 
ID 

$
CSC 

$
ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of Immune 
response 

MHC Allele 

E1 GLFGAIAGFIE 20838 27303 27303 12792 11571 2394 B-Cell Not Applicable 

E2 IYWTIVKPGDILLINS 29727 40436 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E3 KTRPILSPLTK 33844 44584 24518 12790 8234 2691 T-cell HLA-A3 

E4 STDTVDTVLEKNVTVTHS 95880 47683 16562 13031 254 3249 Th-cell 
HLA-Class IIallele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 48897 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 DRLRRDQKS 10014 49577 14918 6518 6416 1427 Th-cell HLA-DR3 

E7 EQLSSVSSFERFE 113375 50134 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E8 ILRGSVAHK 27283 50684 18800 9838 7058 1404 T-cell 
HLA-A3 
HLA-A28 

E9 CVCINGTCTVVMTDGSA 127615 51178 8646 5625 1790 1203 Th-cell DRB1*01:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.9: Case VI: FSA First two BCEs were selected manually and subsequent 7 epitopes were selected automatically by FSA. Nine epitopes 

information related to epitope ID, CSC, ISC, different host-strain coverage, immune response and MHC allele distribution is provided. 

Epitope 

number 
Epitope sequences 

$Epitope 
ID 

$
CSC 

$
ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of Immune 
response 

MHC Allele 

E1 GLFGAIAGFIE 20838 27303 27303 12792 11571 2394 B-Cell Not Applicable 

E2 GILGFVFTL 20354 35790 23620 12785 7367 2664 T-cell/B-cell 

HLA-A*02:01 
HLA-A2 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 
HLA-B*35:01 

E3 IYWTIVKPGDILLINS 29727 44507 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E4 STDTVDTVLEKNVTVTHS 95880 47606 16562 13031 254 3249 Th-cell 
HLA-Class IIallele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 48830 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 DRLRRDQKS 10014 49530 14918 6518 6416 1427 Th-cell HLA-DR3 

E7 EQLSSVSSFERFE 113375 50087 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E8 ILRGSVAHK 27283 50640 18800 9838 7058 1404 T-cell 
HLA-A3 
HLA-A28 

E9 CVCINGTCTVVMTDGSA 127615 51141 8646 5625 1790 1203 Th-cell DRB1*01:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.10: Case VII: FSA first four BCEs (3 epitopes from HA and 1 form M1) were selected manually and subsequent 7 epitopes were selected 

automatically by FSA. Nine epitopes information related to epitope ID, CSC, ISC, different host-strain coverage, immune response and 

MHC allele distribution is provided. 

Epitope 

number 
Epitope sequences 

$
Epitope 

ID 
$CSC $ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of Immune 
response 

MHC Allele 

E1 GLFGAIAGFIE 20838 27303 27303 12792 11571 2394 B-Cell Not Applicable 

E2 LREQLSSVSSFERFE 151026 35790 16979 14112 22 2831 B-Cell Not Applicable 

E3 GILGFVFTL 20354 38858 23620 12785 7367 2664 T-cell/B-Cell 

HLA-A*02:01 
HLA-A2 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 
HLA-B*35:01 

E4 NSTDTVDTVLEKNVT 151039 39515 16556 13023 254 3249 B-Cell Not Applicable 

E5 IYWTIVKPGDILLINS 29727 48211 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E6 RTFFLTQGALLNDKHSN 127810 49416 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E7 DRLRRDQKS 10014 50068 14918 6518 6416 1427 Th-cell HLA-DR3 

E8 ILRGSVAHK 27283 50621 18800 9838 7058 1404 T-cell 
HLA-A3 
HLA-A28 

E9 CVCINGTCTVVMTDGSA 127615 51122 8646 5625 1790 1203 Th-cell DRB1*01:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.11: Case VIII: FSA first four BCEs (with low strain coverage) were selected manually and subsequent 5 epitopes were selected automatically 

by FSA. Nine epitopes information related to epitope ID, CSC, ISC, different host-strain coverage, immune response and MHC allele 

distribution is provided. 

Epitope 

number 
Epitope sequences 

$
Epitope 

ID 
$CSC $ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of 
Immune 
response 

MHC Allele 

E1 
HKIFKMEKGKVVKSVELD

APNYHY 
97383 453 453 56 380 0 B-Cell Not Applicable 

E2 RVTVSTRRSQQTIIPNIG 56434 1542 1089 78 934 7 B-Cell Not Applicable 

E3 

MSLLTEVETYVLSIIPSGPL

KAEIAQKLEDVFAGKNTD

LEALMEWLKTRPI 

97507 2894 1629 118 1446 12 B-Cell Not Applicable 

E4 RKKRGLFGAIAGFIE 163243 4920 3185 320 2752 24 B-Cell Not Applicable 

E5 GLFGAIAGFI 20837 27601 27402 12846 11610 2400 T-cell 

HLA-A*02:01 
HLA-A*02:02 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 

E6 IYWTIVKPGDILLINS 29727 40733 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E7 KTRPILSPLTK 33844 44721 24518 12790 8234 2691 T-cell HLA-A3 

E8 STDTVDTVLEKNVTVTHS 95880 47800 16562 13031 254 3249 Th-cell 
HLA-Class IIallele 
undetermined 
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E9 RTFFLTQGALLNDKHSN 127810 48999 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Table 3.12: Case IX: FSA only Th epitopes were selected through FSA. Nine epitopes information related to epitope ID, CSC, ISC, different host-

strain coverage, immune response and MHC allele distribution is provided. 

Epitope 

number 
Epitope sequences 

$
Epitope 

ID 
$CSC $ISC 

Human 
strains 

Avian 
strain 

Swine 
strain 

Type of 
Immune 
response 

MHC Allele 

E1 FVFTLTVPSER 18170 24550 24550 12794 8272 2675 Th-Cell HLA-DR4 

E2 EQLSSVSSFERFE 113375 33632 17048 14150 22 2861 Th-cell HLA-DRB5*01:01 

E3 IYWTIVKPGDILLINS 29727 42331 13178 12730 3 411 Th-cell 
HLA-DRB1*07:01 
HLA-DRB1*15:01 

E4 NIHPLTIGECPKYVK 139558 44672 4884 374 4365 28 Th-cell 
HLA-Class IIallele 
undetermined 

E5 RTFFLTQGALLNDKHSN 127810 46197 14624 9764 3549 1189 Th-cell 
HLA-DRB1*01:01 
HLA-DRB1*07:01 
HLA-DRB1*11:01 

E6 
NAELLVLLENQKTLDEHD

AN 
152823 47577 2218 9 2115 32 Th-cell 

HLA-DRB1*01:01 
HLA-DRB1*03:01 
HLA-DRB1*04:01 

E7 STDTVDTVLEKNVTVTHS 95880 48356 16562 13031 254 3249 Th-cell 
HLA-Class IIallele 
undetermined 

E8 DRLRRDQKS 10014 49065 14918 6518 6416 1427 Th-cell HLA-DR3 

E9 GFAPFSKDNSIRLSAGG 127658 49713 9280 5666 2209 1303 Th-cell 
HLA-DRB1*03:01 
HLA-DRB1*04:01 

$ Refer Table 3.4. Epitope ID related to IEDB. CSC: cumulative strain coverage of combined epitopes and ISC: individual strain coverage 
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Figure 3.7: Comparison of combination of epitopes used in mulmeric-001 and generated through FSA in different conditions (Table 3.4) 
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3.4 DISCUSSION 

The EpiCombFlu resource has been developed to assist vaccinologists for producing 

epitope-based UIVs. Epitope Information Resource (EIR) implemented in EpiCombFlu having 

information about known epitopes which are providing immune response in humans. EIR 

incorporated calculated conservation of all epitopes according to location (continent-wise), 

vaccine strain, subtypes and host. In light of high variability of influenza virus these 

information are essential for universal vaccine design. EIR also incorporate other immunogenic 

information of epitopes which is important in epitopes based vaccine design. Furthermore 

some of the accumulated epitopes were highly conserved (more than seventy epitopes were 

conserved in more than 10000 strains and twelve epitopes were conserved in more than 20000 

strains). Thorough conserved epitopes with their other associated information important for 

vaccine design (such as immune response, MHC allele, protein name, literature reference, 

epitope sequence, host, location, and conservations) EIR expected to bridge the gap of 

antigenic variability in influenza virus which is the major hurdle in influenza vaccine design. 

None of known epitopes of influenza was conserved in all known influenza virus strains 

therefore only through combination of conserved epitopes the strain coverage of influenza 

virus can maximize. Recent research of Multimeric-001 also emphasizes the importance of 

combination of conserved epitopes in UIV design. Therefore, the most important feature of 

EpiCombFlu is the “Epitope Combination Explorer (ECE)” design to explore vaccine potential 

of different combination of epitopes. ECE provides facility to design different combination of 

epitopes manually and/or automatically. Automatically combination of epitopes is generated 

through adding up the epitope(s) according to FSA. Different combinations of epitopes 

(potential UIVs with optimum strain coverage) can be identified with the help of FSA with 

different initial epitope(s). The flexible options to design combination of epitopes is 

implemented in ECE which provide unique facility to user so, that user can use his/her domain 

knowledge and power of computational algorithm simultaneously in selection different 

combination of epitopes for UIV. The combination of epitopes can be expressed as synthetic 

protein and its UIV potential could be checked. Since evolutionary conserved epitopes are from 

functionally important parts of proteins, therefore, these immunogenic parts are expected to be 

retained by new pandemic strains (McMurry et al., 2008). The developed vaccine containing 

these epitopes is anticipated to prevent or mitigate infection by pandemic strains. 

The performance of EpiCombFlu server does not depend on initially selected epitopes. 

Many independent studies were also carried out to verify whether selection of different 
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combination of epitopes can alter the strain coverage or not (Table 3.4). In first case, instead of 

taking epitope with maximum strain coverage as initial epitope, a 20 length epitope from HA 

was taken and FSA was used to find out combination of epitopes with optimal strain coverage. 

Similarly in second case, the same 20 length epitope was taken as initial epitope and then only 

10 or more length epitopes were used subsequently for combination by FSA (Table 3.4). The 

FSA method was able to find combination of 9 epitopes having around 90% strains coverage. 

Even when 4 BCEs with low strain coverage were used as initial epitopes then also web 

resource (FSA) was able to get 85 percent strain coverage with addition of five epitopes. This 

outcome of FSA justifies strains coverage is not dependent on selection of initial epitopes. 

Even if the user may like to include one or more epitopes (i.e. known to be highly 

immunogenic or preferred epitopes of user) for developing the UIV then also the web resource 

(FSA) can easily combine other database epitopes to get maximum strain coverage (Table 3.4). 

When combination of epitopes used in multimeric-001 compared with FSA generated 

combinations, than all FSA generated combination were having extensively more strain 

coverage in all cases such as avian, human, swine and global strains (Figure 3.7). Comparison 

result again justified the importance of EpiCombFlu for universal influenza vaccine design. 

EpiCombFlu server is freely accessible for research and education purpose at 

http://14.139.240.55/influenza/home.html. Output results and associated data and search result 

of database “Epitope Information Resource” can be downloaded from available links. 

Currently, standalone version of tool is not available. 

EpiCombFlu is developed on linear epitopes and further its efficiency may be improved by 

considering discontinuous epitopes. Conservation calculation of structural epitopes should not 

be like linear epitopes and three dimensional structures of epitopes must be taken in 

consideration. Although structure of majority of epitopes are not available but inclusion of 

structural epitopes may further improve the reliability of methodology followed in 

EpiCombFlu.   
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CONCLUSIONS 

 

The prediction of broad-specific vaccine candidates and design of universal epitope-based 

vaccines are anticipated to overcome the limitations of current vaccines. In this work, known 

immunogenic and biological information, available sequence data and other associated 

information were used to develop novel methods which were implemented subsequently as 

cybertools to predict better vaccine candidates. The Jenner-Predict server has been developed 

to predict potential protein vaccine candidates (PVCs) and also to provide their vaccine 

potential with an objective of assisting subunit vaccine development. The web server was 

validated on independent and diverse datasets, where it outperformed other PVC prediction 

tools. Its performance substantiated that the proteins involved in host-pathogen interactions and 

pathogenesis are better criteria than methods based on machine learning or adhesin-likeliness. 

The method based on host-pathogen interaction predicts less number of PVCs in a proteome 

with high prediction accuracy which confirms its reliability. The vaccine potential of PVCs is 

evaluated in terms of their possible immunogenicity by comparing with known immunogenic 

epitopes, absence of autoimmunity and conservation in different strains. Mapping of known 

epitopes from immune epitope database (IEDB) on PVCs increases the probability of a protein 

to be immunogenic. Comparison of these PVCs with human proteome sequences reduces the 

chance of their failure due to autoimmunity. Conservation of PVCs in pathogenic strains 

provides crucial information on their broad-specificities. Since the web server provides 

prioritized PVCs, few prospective proteins from a proteome could be taken for experimental 

evaluation to identify subunit vaccine candidates.  

Web resource, EpiCombFlu has been developed, which consists of the “Epitope Information 

Resource” (database containing epitopes’ strain coverage and their immunogenic data) and the 

“Epitope Combination Explorer” to discover combinations of epitopes for maximum strains’ 

coverage using forward selection algorithm (FSA). Comparative study has shown that it 

provides better combination of epitopes in comparison with all other reported and/or analyzed 

epitopes combinations for universal influenza vaccine (UIV). Combinations of nine epitopes 

through FSA were conserved in ~90% global influenza A virus strains justify the potential of 

EpiCombFlu in UIV design. Simulation studies have shown that the FSA did not depend on 

initial epitope selection and was effective in providing combination of epitopes covering 

optimum (more than 85%) global strain coverage. This resource is expected to accelerate the 

development of universal vaccine against influenza. The cybertools developed in the present 

work are not organism specific i.e. the methodology used in Jenner-predict can be extended to 
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protozoa, fungi, parasites, etc. and similarly, the principle employed in EpiCombFlu can be 

expanded to other highly variable pathogenic viruses in which epitopes and proteins sequences 

or several strains are known.  
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