Dr. Pradup Khupta

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-1 EXAMINATION (FEB 2019)

B-Tech (2nd SEM)

Course Code: 18B17CI211

Max. Marks: 15

Course Name: DATA STRUCTURES AND ALGORITHMS

Max. Time: 1 HRS

Course Credit: 4

Note: All questions are compulsory. Skip syntax error if there any.

Q1.

 $[3 \times 1 = 3]$

- a. Find the validity of the statement "A O(n) algorithm is $\Theta(1)$ "? Justify your answer.
- b. Arrange the following given computational complexities into decreasing rate of their growth: $O(\log^2 n)$, O(n!), $O(\log(n!))$, O(n), $O(4^n)$, $O(2^{\log n})$.
- c. List the possible scenarios in which a linked list can be considered as broken?
- Q2. What will be output of following C programs? Justify your answer with proper reason(s). (if required then assume that integer and pointer are of 4 Bytes each)? [2 x $1\frac{1}{2} = 3$]

//Program1

//Program2

```
# include <stdio.h>
#include <stdio.h>
                                 int main()
 #define R 10
#define C 20
                                   static int a[]=\{10, 20, 30, 40, 50\};
 int main()
                                   static int *p[] = \{a, a+3, a+4, a+1, a+2\};
                                   int **ptr = p;
   int (*p)[R][C];
   printf("%d",
                sizeof(*p));
                                   ptr++;
                                   printf("%d%d", ptr - p, **ptr);
   getchar();
   return 0;}
```

Q3. Workout the computational complexity of following given codes (in the "Big-Oh" sense).

Also show your all computational steps.

[2 \times 1 = 2]

```
#Algo1
void fun()
{
for (i=1;i<=n,i++)
{
for (j=1;j<=n; j=j+i)
{
Printf("Hello");
}}</pre>
```

```
//Algo2
void fun()
{
   int i, j;
   for (i=1; i<=n; i++)
        for (j=1; j<=log(i); j++)
            printf("Hello");
}</pre>
```

- a) Write an algorithm with computational complexity $O(\log n)$ to search an element in the sorted array. [2]
- b) Assume that we have a doubly linked list and that we want to add a new node between the second and the third nodes in the list. Redraw the figure so that it shows the insertion.

 Write an algorithm for the same.

 [2]
- c) The statements below show some features of "Big-Oh" notation for the functions f = f(n) and g = g(n). Determine whether each statement is **TRUE** or **FALSE**? If **FALSE** then correct the formula.

Statement	TRUE or FALSE?	if FALSE then correct formula is
O(f+g) = O(f) + O(g)		
If $g = O(f)$ and $h = O(f)$ then $g = O(h)$		
$5n + 8n^2 + 100n^3 = O(n^4)$	W. "N	